Skip to main content

Phosphatidic Acid-Mediated Signaling

  • Chapter
  • First Online:
Lipid-mediated Protein Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 991))

Abstract

Phosphatidic acid (PA) is recognized as an important class of lipid messengers. The cellular PA levels are dynamic; PA is produced and metabolized by several enzymatic reactions, including different phospholipases, lipid kinases, and phosphatases. PA interacts with various proteins and the interactions may modulate enzyme catalytic activities and/or tether proteins to membranes. The PA-protein interactions are impacted by changes in cellular pH and other effectors, such as cations. PA is involved in a wide range of cellular processes, including vesicular trafficking, cytoskeletal organization, secretion, cell proliferation, and survival. Manipulations of different PA production reactions alter cellular and organismal response to a wide range of abiotic and biotic stresses. Further investigations of PA’s function and mechanisms of action will advance not only the understanding of cell signaling networks but also may lead to biotechnological and pharmacological applications.

Yu Liu and Yuan Su contributed equally

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anthony RG, Henriques R, Helfer A, Mészáros T, Rios G, Testerink C, Munnik T, Deák M, Koncz C, Bögre L (2004) A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J 23:572–581

    PubMed  CAS  Google Scholar 

  2. Arisz SA, Testerink C, Munnik T (2009) Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta 1791:869–875

    PubMed  CAS  Google Scholar 

  3. Awai K, Xu C, Tamot B, Benning C (2006) A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. Proc Natl Acad Sci U S A 103:10817–10822

    PubMed  CAS  Google Scholar 

  4. Baillie GS, Huston E, Scotland G, Hodgkin M, Gall I, Peden AH, MacKenzie C, Houslay ES, Currie R, Pettitt TR, Walmsley AR, Wakelam MJ, Warwicker J, Houslay MD (2002) TAPAS-1, a novel microdomain within the unique N-terminal region of the PDE4A1 cAMP-specific phosphodiesterase that allows rapid, Ca2+-triggered membrane association with selectivity for interaction with phosphatidic acid. J Biol Chem 277:28298–28309

    PubMed  CAS  Google Scholar 

  5. Bargmann BO, Laxalt AM, ter Riet B, van Schooten B, Merquiol E, Testerink C, Haring MA, Bartels D, Munnik T (2009) Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol 50:78–89

    PubMed  CAS  Google Scholar 

  6. Barrera FN, Poveda JA, González-Ros JM, Neira JL (2003) Binding of the C-terminal sterile alpha motif (SAM) domain of human p73 to lipid membranes. J Biol Chem 278:46878–46885

    PubMed  CAS  Google Scholar 

  7. Bektas M, Payne SG, Liu H, Goparaju S, Milstien S, Spiegel S (2005) A novel acylglycerol kinase that produces lysophosphatidic acid modulates cross talk with EGFR in prostate cancer cells. J Cell Biol 169:801–811

    PubMed  CAS  Google Scholar 

  8. Burger KN, Demel RA, Schmid SL, de Kruijff B (2000) Dynamin is membrane-active: lipid insertion is induced by phosphoinositides and phosphatidic acid. Biochemistry 39:12485–12493

    PubMed  CAS  Google Scholar 

  9. Camoni L, Di Lucente C, Pallucca R, Visconti S, Aducci P (2012) Binding of phosphatidic acid to 14-3-3 proteins hampers their ability to activate the plant plasma membrane H+-ATPase. IUBMB Life 64:710–716

    PubMed  CAS  Google Scholar 

  10. Chae YC, Kim JH, Kim KL, Kim HW, Lee HY, Heo WD, Meyer T, Suh PG, Ryu SH (2008) Phospholipase D activity regulates integrin-mediated cell spreading and migration by inducing GTP-Rac translocation to the plasma membrane. Mol Biol Cell 19:3111–3123

    PubMed  CAS  Google Scholar 

  11. Choi SY, Huang P, Jenkins GM, Chan DC, Schiller J, Frohman MA (2006) A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 8:1255–1262

    PubMed  CAS  Google Scholar 

  12. Coursol S, Le Stunff H, Lynch DV, Gilroy S, Assmann SM, Spiegel S (2005) Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture. Plant Physiol 137:724–737

    PubMed  CAS  Google Scholar 

  13. Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868

    PubMed  CAS  Google Scholar 

  14. Delon C, Manifava M, Wood E, Thompson D, Krugmann S, Pyne S, Ktistakis NT (2004) Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. J Biol Chem 279:44763–44774

    PubMed  CAS  Google Scholar 

  15. Distéfano AM, Scuffi D, García-Mata C, Lamattina L, Laxalt AM (2012) Phospholipase Dδ is involved in nitric oxide-induced stomatal closure. Planta 236(6):1899–1907

    PubMed  Google Scholar 

  16. Dubots E, Audry M, Yamaryo Y, Bastien O, Ohta H, Breton C, Maréchal E, Block MA (2010) Activation of the chloroplast monogalactosyldiacylglycerol synthase MGD1 by phosphatidic acid and phosphatidylglycerol. J Biol Chem 285:6003–6011

    PubMed  CAS  Google Scholar 

  17. Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294:1942–1945

    PubMed  CAS  Google Scholar 

  18. Faugaret D, Chouinard FC, Harbour D, El azreq MA, Bourgoin SG (2011) An essential role for phospholipase D in the recruitment of vesicle amine transport protein-1 to membranes in human neutrophils. Biochem Pharmacol 81:144–156

    PubMed  CAS  Google Scholar 

  19. Fernandez-Ulibarri I, Viella M, Lazaro-Dieguez F, Sarri E, Martinez SE, Jimenez N, Claro E, Merida I, Burger KN, Egea G (2007) Diacylglycerol is required for the formation of COPI vesicles in the Golgi-to-ER transport pathway. Mol Biol Cell 18:3250–3263

    PubMed  CAS  Google Scholar 

  20. Foster DA (2009) Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochim Biophys Acta 1791:949–955

    PubMed  CAS  Google Scholar 

  21. Frank C, Keilhack H, Opitz F, Zschörnig O, Böhmer FD (1999) Binding of phosphatidic acid to the protein-tyrosine phosphatase SHP-1 as a basis for activity modulation. Biochemistry 38:11993–12002

    PubMed  CAS  Google Scholar 

  22. Gao Q, Frohman MA (2012) Roles for the lipid-signaling enzyme MitoPLD in mitochondrial dynamics, piRNA biogenesis, and spermatogenesis. BMB Rep 45:7–13

    PubMed  CAS  Google Scholar 

  23. García-García J, Corbalán-García S, Gómez-Fernández JC (1999) Effect of calcium and phosphatidic acid binding on the C2 domain of PKC alpha as studied by Fourier transform infrared spectroscopy. Biochemistry 38:9667–9675

    PubMed  Google Scholar 

  24. Gardiner JC, Harper JD, Weerakoon ND, Collings DA, Ritchie S, Gilroy S, Cyr RJ, Marc J (2001) A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane. Plant Cell 13:2143–2158

    PubMed  CAS  Google Scholar 

  25. Gómez-Merino FC, Brearley CA, Ornatowska M, Abdel-Haliem ME, Zanor MI, Mueller-Roeber B (2004) AtDGK2, a novel diacylglycerol kinase from Arabidopsis thaliana, phosphorylates 1-stearoyl-2-arachidonoyl-sn-glycerol and 1,2-dioleoyl-sn-glycerol and exhibits cold-inducible gene expression. J Biol Chem 279:8230–8241

    PubMed  Google Scholar 

  26. Goto K, Hozumi Y, Nakano T, Saino-Saito S, Martelli AM (2008) Lipid messenger, diacylglycerol, and its regulator, diacylglycerol kinase, in cells, organs, and animals: history and perspective. Tohoku J Exp Med 214:199–212

    PubMed  CAS  Google Scholar 

  27. Grange M, Sette C, Cuomo M, Conti M, Lagarde M, Prigent AF, Némoz G (2000) The cAMP-specific phosphodiesterase PDE4D3 is regulated by phosphatidic acid binding. Consequences for cAMP signaling pathway and characterization of a phosphatidic acid binding site. J Biol Chem 275:33379–33387

    PubMed  CAS  Google Scholar 

  28. Guo L, Mishra G, Taylor K, Wang X (2011) Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. J Biol Chem 286:13336–13345

    PubMed  CAS  Google Scholar 

  29. Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W, Wang X (2012a) Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell 24:2200–2212

    PubMed  CAS  Google Scholar 

  30. Guo L, Mishra G, Markham JE, Li M, Tawfall A, Welti R, Wang X (2012b) Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis. J Biol Chem 287:8286–8296

    PubMed  CAS  Google Scholar 

  31. Guo L, Wang X (2012) Crosstalk between phospholipase D and sphingosine kinase in plant stress signaling. Front Plant Sci 3:51

    PubMed  CAS  Google Scholar 

  32. Han GS, O’Hara L, Carman GM, Siniossoglou S (2008) An unconventional diacylglycerol kinase that regulates phospholipid synthesis and nuclear membrane growth. J Biol Chem 283:20433–20442

    PubMed  CAS  Google Scholar 

  33. Hasin M, Kennedy EP (1982) Role of phosphatidylethanolamine in the biosynthesis of pyrophosphoethanolamine residues in the lipopolysaccharide of Escherichia coli. J Biol Chem 257:12475–12477

    PubMed  CAS  Google Scholar 

  34. Hekman M, Albert S, Galmiche A, Rennefahrt UE, Fueller J, Fischer A, Puehringer D, Wiese S, Rapp UR (2006) Reversible membrane interaction of BAD requires two C-terminal lipid binding domains in conjunction with 14-3-3 protein binding. J Biol Chem 281:17321–17336

    PubMed  CAS  Google Scholar 

  35. Henry RA, Boyce SY, Kurz T, Wolf RA (1995) Stimulation and binding of myocardial phospholipase C by phosphatidic acid. Am J Physiol 269(2 Pt 1):C349–C358

    PubMed  CAS  Google Scholar 

  36. Hokin LE, Hokin MR (1959) Diglyceride phosphokinase: an enzyme which catalyzes the synthesis of phosphatidic acid. Biochim Biophys Acta 31:285–287

    PubMed  CAS  Google Scholar 

  37. Hong Y, Devaiah SP, Bahn SC, Thamasandra BN, Li M, Welti R, Wang X (2009) Phospholipase Dε and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant J 58:376–387

    PubMed  CAS  Google Scholar 

  38. Hong Y, Pan X, Welti R, Wang X (2008) The effect of phospholipase Dα3 on Arabidopsis response to hyperosmotic stress and glucose. Plant Signal Behav 3:1099–1100

    PubMed  Google Scholar 

  39. Hong Y, Zhang W, Wang X (2010) Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant Cell Environ 33:627–635

    PubMed  CAS  Google Scholar 

  40. Huang S, Gao L, Blanchoin L, Staiger CJ (2006) Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol Biol Cell 17:1946–1958

    PubMed  CAS  Google Scholar 

  41. Huang P, Altshuller YM, Hou JC, Pessin JE, Frohman MA (2005) Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1. Mol Biol Cell 16:2614–2623

    PubMed  CAS  Google Scholar 

  42. Ito M, Feng J, Tsujino S, Inagaki N, Inagaki M, Tanaka J, Ichikawa K, Hartshorne DJ, Nakano T (1997) Interaction of smooth muscle myosin phosphatase with phospholipids. Biochemistry 36:7607–7614

    PubMed  CAS  Google Scholar 

  43. Ito S, Werth DK, Richert ND, Pastan I (1983) Vinculin phosphorylation by the src kinase. Interaction of vinculin with phospholipid vesicles. J Biol Chem 258:14626–14631

    PubMed  CAS  Google Scholar 

  44. Itoh T, Hasegawa J, Tsujita K, Kanaho Y, Takenawa T (2009) The tyrosine kinase Fer is a downstream target of the PLD-PA pathway that regulates cell migration. Sci Signal 2:ra52

    PubMed  Google Scholar 

  45. Jang JH, Lee CS, Hwang D, Ryu SH (2012) Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners. Prog Lipid Res 51:71–81

    PubMed  CAS  Google Scholar 

  46. Jones JA, Hannun YA (2002) Tight binding inhibition of protein phosphatase-1 by phosphatidic acid. Specificity of inhibition by the phospholipid. J Biol Chem 277:15530–15538

    PubMed  CAS  Google Scholar 

  47. Jones JA, Rawles R, Hannun YA (2005) Identification of a novel phosphatidic acid binding domain in protein phosphatase-1. Biochemistry 44:13235–13245

    PubMed  CAS  Google Scholar 

  48. Jose Lopez-Andreo M, Gomez-Fernandez JC, Corbalan-Garcia S (2003) The simultaneous production of phosphatidic acid and diacylglycerol is essential for the translocation of protein kinase Cepsilon to the plasma membrane in RBL-2H3 cells. Mol Biol Cell 14:4885–4895

    PubMed  Google Scholar 

  49. Kang DW, Choi KY, Min d S (2011) Phospholipase D meets Wnt signaling: a new target for cancer therapy. Cancer Res 71:293–297

    PubMed  CAS  Google Scholar 

  50. Klimecka M, Szczegielniak J, Godecka L, Lewandowska-Gnatowska E, Dobrowolska G, Muszyńska G (2011) Regulation of wound-responsive calcium-dependent protein kinase from maize (ZmCPK11) by phosphatidic acid. Acta Biochim Pol 58:589–595

    PubMed  CAS  Google Scholar 

  51. Kolesnikov YS, Nokhrina KP, Kretynin SV, Volotovski ID, Martinec J, Romanov GA, Kravets VS (2012) Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells. Biochemistry (Mosc) 77:1–14

    CAS  Google Scholar 

  52. Kooijman EE, Chupin V, de Kruijff B, Burger KN (2003) Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4:162–174

    PubMed  CAS  Google Scholar 

  53. Kooijman EE, Carter KM, Van Laar EG, Chupin V, Burger KN, de Kruijff B (2005) What makes the bioactive lipids phosphatidic acid and lysophosphatidic acid so special? Biochemistry 44:17007–17015

    PubMed  CAS  Google Scholar 

  54. Kooijman EE, Tieleman DP, Testerink C, Munnik T, Rijkers DT, Burger KN, de Kruijff B (2007) An electrostatic/hydrogen bond switch as the basis for the specific interaction of phosphatidic acid with proteins. J Biol Chem 282:11356–11364

    PubMed  CAS  Google Scholar 

  55. Kusner DJ, Barton JA, Wen KK, Wang X, Rubenstein PA, Iyer SS (2002) Regulation of phospholipase D activity by actin. Actin exerts bidirectional modulation of Mammalian phospholipase D activity in a polymerization-dependent, isoform-specific manner. J Biol Chem 277:50683–50692

    PubMed  CAS  Google Scholar 

  56. Lehman N, Ledford B, Di Fulvio M, Frondorf K, McPhail LC, Gomez-Cambronero J (2007) Phospholipase D2-derived phosphatidic acid binds to and activates ribosomal p70 S6 kinase independently of mTOR. FASEB J 21:1075–1087

    PubMed  CAS  Google Scholar 

  57. Li D, Urs AN, Allegood J, Leon A, Merrill AH Jr, Sewer MB (2007) Cyclic AMP-stimulated interaction between steroidogenic factor 1 and diacylglycerol kinase theta facilitates induction of CYP17. Mol Cell Biol 27:6669–6685

    PubMed  CAS  Google Scholar 

  58. Li G, Xue HW (2007) Arabidopsis PLDζ2 regulates vesicle trafficking and is required for auxin response. Plant Cell 19:281–295

    PubMed  CAS  Google Scholar 

  59. Li J, Henty-Ridilla JL, Huang S, Wang X, Blanchoin L, Staiger CJ (2012) Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis. Plant Cell 24:3742–3754

    PubMed  CAS  Google Scholar 

  60. Li M, Hong Y, Wang X (2009) Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim Biophys Acta 1791:927–935

    CAS  Google Scholar 

  61. Li M, Qin C, Welti R, Wang X (2006) Double knockouts of phospholipases Dζ1 and Dζ2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning. Plant Physiol 140:761–770

    PubMed  CAS  Google Scholar 

  62. Limatola C, Schaap D, Moolenaar WH, van Blitterswijk WJ (1994) Phosphatidic acid activation of protein kinase C-zeta overexpressed in COS cells: comparison with other protein kinase C isotypes and other acidic lipids. Biochem J 304:1001–1008

    PubMed  CAS  Google Scholar 

  63. Loewen CJ, Gaspar ML, Jesch SA, Delon C, Ktistakis NT, Henry SA, Levine TP (2004) Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304:1644–1647

    PubMed  CAS  Google Scholar 

  64. Loewen CJ (2012) Lipids as conductors in the orchestra of life. F1000 Biol Rep 4:4

    PubMed  Google Scholar 

  65. Jayaram B, Kowluru A (2012) Phagocytic NADPH oxidase links ARNO-Arf6 signaling pathway in glucose-stimulated insulin secretion from the pancreatic β-cell. Cell Physiol Biochem 30:1351–1362

    PubMed  CAS  Google Scholar 

  66. Ma WN, Park SY, Han JS (2010) Role of phospholipase D1 in glucose-induced insulin secretion in pancreatic beta cells. Exp Mol Med 42:456–464

    PubMed  CAS  Google Scholar 

  67. Manifava M, Thuring JW, Lim ZY, Packman L, Holmes AB, Ktistakis NT (2001) Differential binding of traffic-related proteins to phosphatidic acid- or phosphatidylinositol (4,5)- bisphosphate-coupled affinity reagents. J Biol Chem 276:8987–8994

    PubMed  CAS  Google Scholar 

  68. McLoughlin F, Galvan-Ampudia CS, Julkowska MM, Caarls L, van der Does D, Laurière C, Munnik T, Haring MA, Testerink C (2012) The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. Plant J 72:436–449

    PubMed  CAS  Google Scholar 

  69. Min MK, Kim SJ, Miao Y, Shin J, Jiang L, Hwang I (2007) Overexpression of Arabidopsis AGD7 causes relocation of Golgi-localized proteins to the endoplasmic reticulum and inhibits protein trafficking in plant cells. Plant Physiol 143:1601–1614

    PubMed  CAS  Google Scholar 

  70. Mishra G, Zhang W, Deng F, Zhao J, Wang X (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312:264–266

    PubMed  CAS  Google Scholar 

  71. Moreau K, Ravikumar B, Puri C, Rubinsztein DC (2012) Arf6 promotes autophagosome formation via effects on phosphatidylinositol 4,5-bisphosphate and phospholipase D. J Cell Biol 196:483–496

    PubMed  CAS  Google Scholar 

  72. Moritz A, De Graan PN, Gispen WH, Wirtz KW (1992) Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase. J Biol Chem 267:7207–7210

    PubMed  CAS  Google Scholar 

  73. Nabet A, Boggs JM, Pézolet M (1994) Study by infrared spectroscopy of the interaction of bovine myelin basic protein with phosphatidic acid. Biochemistry 33:14792–14799

    PubMed  CAS  Google Scholar 

  74. Nagamine S, Kabuta T, Furuta A, Yamamoto K, Takahashi A, Wada K (2010) Deficiency of ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) leads to vulnerability to lipid peroxidation. Neurochem Int 57:102–110

    PubMed  CAS  Google Scholar 

  75. Nie Z, Stanley KT, Stauffer S, Jacques KM, Hirsch DS, Takei J, Randazzo PA (2002) AGAP1, an endosome-associated, phosphoinositide-dependent ADP-ribosylation factor GTPase-activating protein that affects actin cytoskeleton. J Biol Chem 277:48965–48975

    PubMed  CAS  Google Scholar 

  76. Nishikimi A, Fukuhara H, Su W, Hongu T, Takasuga S, Mihara H, Cao Q, Sanematsu F, Kanai M, Hasegawa H, Tanaka Y, Shibasaki M, Kanaho Y, Sasaki T, Frohman MA, Fukui Y (2009) Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis. Science 324:384–387

    PubMed  CAS  Google Scholar 

  77. Ouyang YS, Tu Y, Barker SA, Yang F (2003) Regulators of G-protein signaling (RGS) 4, insertion into model membranes and inhibition of activity by phosphatidic acid. J Biol Chem 278:11115–11122

    PubMed  CAS  Google Scholar 

  78. Pedersen KM, Finsen B, Celis JE, Jensen NA (1998) Expression of a novel murine phospholipase D homolog coincides with late neuronal development in the forebrain. J Biol Chem 273:31494–31504

    PubMed  CAS  Google Scholar 

  79. Peng X, Frohman MA (2012) Mammalian phospholipase D physiological and pathological roles. Acta Physiol (Oxf) 204:219–226

    CAS  Google Scholar 

  80. Peters C, Li M, Narasimhan R, Roth M, Welti R, Wang X (2010) Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 22:2642–2659

    PubMed  CAS  Google Scholar 

  81. Petersen J, Eriksson SK, Harryson P, Pierog S, Colby T, Bartels D, Röhrig H (2012) The lysine-rich motif of intrinsically disordered stress protein CDeT11-24 from Craterostigma plantagineum is responsible for phosphatidic acid binding and protection of enzymes from damaging effects caused by desiccation. J Exp Bot 63:4919–4929

    PubMed  CAS  Google Scholar 

  82. Pleskot R, Potocký M, Pejchar P, Linek J, Bezvoda R, Martinec J, Valentová O, Novotná Z, Zárský V (2010) Mutual regulation of plant phospholipase D and the actin cytoskeleton. Plant J 62:494–507

    PubMed  CAS  Google Scholar 

  83. Qualliotine-Mann D, Agwu DE, Ellenburg MD, McCall CE, McPhail LC (1993) Phosphatidic acid and diacylglycerol synergize in a cell-free system for activation of NADPH oxidase from human neutrophils. J Biol Chem 268:23843–23849

    PubMed  CAS  Google Scholar 

  84. Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor EB, Baskin TI (2007) Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J 50:514–528

    PubMed  CAS  Google Scholar 

  85. Riebeling C, Morris AJ, Shields D (2009) Phospholipase D in the Golgi apparatus. Biochim Biophys Acta 1791:876–880

    PubMed  CAS  Google Scholar 

  86. Rizzo MA, Shome K, Watkins SC, Romero G (2000) The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. J Biol Chem 275:2391–2398

    Google Scholar 

  87. Roach AN, Wang Z, Wu P, Zhang F, Chan RB, Yonekubo Y, Di Paolo G, Gorfe AA, Du G (2012) Phosphatidic acid regulation of PIPKI is critical for actin cytoskeletal reorganization. J Lipid Res 53:2598–2609

    PubMed  CAS  Google Scholar 

  88. Rotering H, Raetz CR (1983) Appearance of monoglyceride and triglyceride in the cell envelope of Escherichia coli mutants defective in diglyceride kinase. J Biol Chem 258:8068–8073

    PubMed  CAS  Google Scholar 

  89. Roth MG (2008) Molecular mechanisms of PLD function in membrane traffic. Traffic 9:1233–1239

    PubMed  CAS  Google Scholar 

  90. Rouhiainen A, Tumova S, Valmu L, Kalkkinen N, Rauvala H (2007) Pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). J Leukoc Biol 81:49–58

    PubMed  CAS  Google Scholar 

  91. Rudge SA, Sciorra VA, Iwamoto M, Zhou C, Strahl T, Morris AJ, Thorner J, Engebrecht J (2004) Roles of phosphoinositides and of Spo14p (phospholipase D)-generated phosphatidic acid during yeast sporulation. Mol Biol Cell 15:207–218

    PubMed  CAS  Google Scholar 

  92. Scott SA, Selvy PE, Buck JR, Cho HP, Criswell TL, Thomas AL, Armstrong MD, Arteaga CL, Lindsley CW, Brown HA (2009) Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness. Nat Chem Biol 5:108–117

    PubMed  CAS  Google Scholar 

  93. Sergeant S, Waite KA, Heravi J, McPhail LC (2001) Phosphatidic acid regulates tyrosine phosphorylating activity in human neutrophils: enhancement of Fgr activity. J Biol Chem 276:4737–4746

    PubMed  CAS  Google Scholar 

  94. Shin JJ, Loewen CJ (2011) Putting the pH into phosphatidic acid signaling. BMC Biol 9:85

    PubMed  CAS  Google Scholar 

  95. Shulga YV, Topham MK, Epand RM (2011) Regulation and functions of diacylglycerol kinases. Chem Rev 111:6186–6208

    PubMed  CAS  Google Scholar 

  96. Siniossoglou S (2012) Phospholipid metabolism and nuclear function: roles of the lipin family of phosphatidic acid phosphatases. Biochim Biophys Acta S1388–1981:00211–00219

    Google Scholar 

  97. Stahelin RV, Ananthanarayanan B, Blatner NR, Singh S, Bruzik KS, Murray D, Cho W (2004) Mechanism of membrane binding of the phospholipase D1 PX domain. J Biol Chem 279:54918–54926

    PubMed  CAS  Google Scholar 

  98. Testerink C, Dekker HL, Lim ZY, Johns MK, Holmes AB, Koster CG, Ktistakis NT, Munnik T (2004) Isolation and identification of phosphatidic acid targets from plants. Plant J 39:527–536

    PubMed  CAS  Google Scholar 

  99. Testerink C, Larsen PB, van der Does D, van Himbergen JA, Munnik T (2007) Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. J Exp Bot 58:3905–3914

    PubMed  CAS  Google Scholar 

  100. Testerink C, Munnik T (2011) Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J Exp Bot 62:2349–2361

    PubMed  CAS  Google Scholar 

  101. Van den Brink-van der Laan E, Killian JA, de Kruijff B (2004) Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta 1666:275–288

    PubMed  CAS  Google Scholar 

  102. Walch-Liu P, Ivanov II, Filleur S, Gan Y, Remans T, Forde BG (2006) Nitrogen regulation of root branching. Ann Bot 97:875–881

    PubMed  CAS  Google Scholar 

  103. Wan G, Zhaorigetu S, Liu Z, Kaini R, Jiang Z, Hu CA (2008) Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J Biol Chem 283:21540–21549

    PubMed  CAS  Google Scholar 

  104. Wang X, Devaiah SP, Zhang W, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278

    PubMed  CAS  Google Scholar 

  105. Wang Z, Benning C (2012) Chloroplast lipid synthesis and lipid trafficking through ER-plastid membrane contact sites. Biochem Soc Trans 40:457–463

    PubMed  CAS  Google Scholar 

  106. Wang Z, Xu C, Benning C (2012) TGD4 involved in endoplasmic reticulum-to-chloroplast lipid trafficking is a phosphatidic acid binding protein. Plant J 70:614–623

    PubMed  CAS  Google Scholar 

  107. Xiong Y, Sheen J (2012) Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J Biol Chem 287:2836–2842

    PubMed  CAS  Google Scholar 

  108. Xu Y, Liu Y, Ridgway ND, McMaster CR (2001) Novel members of the human oxysterol-binding protein family bind phospholipids and regulate vesicle transport. J Biol Chem 276:18407–18414

    PubMed  CAS  Google Scholar 

  109. Yamashita A, Kumazawa T, Koga H, Suzuki N, Oka S, Sugiura T (2010) Generation of lysophosphatidylinositol by DDHD domain containing 1 (DDHD1): possible involvement of phospholipase D/phosphatidic acid in the activation of DDHD1. Biochim Biophys Acta 1801:711–720

    PubMed  CAS  Google Scholar 

  110. Yang CY, Frohman MA (2012) Mitochondria: signaling with phosphatidic acid. Int J Biochem Cell Biol 44:1346–1350. http://www.ncbi.nlm.nih.gov/pubmed/22609101.

    Google Scholar 

  111. Yokozeki T, Homma K, Kuroda S, Kikkawa U, Ohno S, Takahashi M, Imahori K, Kanaho Y (1998) Phosphatidic acid-dependent phosphorylation of a 29-kDa protein by protein kinase Cα in bovine brain cytosol. J Neurochem 71:410–417

    PubMed  CAS  Google Scholar 

  112. Yoneda A, Ogawa H, Kojima K, Matsumoto I (1998) Characterization of the ligand binding activities of vitronectin: interaction of vitronectin with lipids and identification of the binding domains for various ligands using recombinant domains. Biochemistry 37:6351–6360

    PubMed  CAS  Google Scholar 

  113. Yoshikawa F, Banno Y, Otani Y, Yamaguchi Y, Nagakura-Takagi Y, Morita N, Sato Y, Saruta C, Nishibe H, Sadakata T, Shinoda Y, Hayashi K, Mishima Y, Baba H, Furuichi T (2010) Phospholipase D family member 4, a transmembrane glycoprotein with no phospholipase D activity, expression in spleen and early postnatal microglia. PLoS One 5:e13932

    PubMed  Google Scholar 

  114. Young BP, Shin JJH, Orij R, Chao JT, Li SC, Guan XL, Khong A, Jan E, Wenk MR, Prinz WA, Smits GJ, Loewen CJ (2010) Phosphatidic acid is a pH biosensor that links membrane biogenesis to metabolism. Science 329:1085–1088

    PubMed  CAS  Google Scholar 

  115. Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773

    PubMed  CAS  Google Scholar 

  116. Zhang Q, Lin F, Mao T, Nie J, Yan M, Yuan M, Zhang W (2012) Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell 24:4555–4576

    PubMed  CAS  Google Scholar 

  117. Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci U S A 101:9508–9513

    PubMed  CAS  Google Scholar 

  118. Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X (2009) Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377

    PubMed  CAS  Google Scholar 

  119. Zhang ZB, Yang G, Arana F, Chen Z, Li Y, Xia HJ (2007) Arabidopsis inositol polyphosphate 6-/3-kinase (AtIpk2beta) is involved in axillary shoot branching via auxin signaling. Plant Physiol 144:942–951

    PubMed  CAS  Google Scholar 

  120. Zhao C, Du G, Skowronek K, Frohman MA, Bar-Sagi D (2007) Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat Cell Biol 9:706–712

    PubMed  CAS  Google Scholar 

  121. Zou J, Chang SC, Marjanovic J, Majerus PW (2009) MTMR9 increases MTMR6 enzyme activity, stability, and role in apoptosis. J Biol Chem 284:2064–2071

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work resulting from Wang laboratory was supported by grants from the National Science Foundation Grant IOS-0818740, the US Dep­artment of Agriculture Grant 2007-35318-18393, and the US Department of Energy Grant DE-SC0001295. We thank Brian Fanella for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liu, Y., Su, Y., Wang, X. (2013). Phosphatidic Acid-Mediated Signaling. In: Capelluto, D. (eds) Lipid-mediated Protein Signaling. Advances in Experimental Medicine and Biology, vol 991. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6331-9_9

Download citation

Publish with us

Policies and ethics