Skip to main content

The Role of Phosphoinositides and Inositol Phosphates in Plant Cell Signaling

  • Chapter
  • First Online:
Lipid-mediated Protein Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 991))

Abstract

Work over the recent years has greatly expanded our understanding of the specific molecules involved in plant phosphoinositide signaling. Physiological approaches, combined with analytical techniques and genetic mutants have provided tools to understand how individual genes function in this pathway. Several key differences between plants and animals have become apparent. This chapter will highlight the key areas where major differences between plants and animals occur. In particular, phospholipase C and levels of phosphatidylinositol phosphates differ between plants and animals, and may influence how inositol second messengers form and function in plants. Whether inositol 1,4,5-trisphosphate and/or inositol hexakisphosphate (InsP6) function as second messengers in plants is discussed. Recent data on potential, novel roles of InsP6 in plants is considered, along with the existence of a unique InsP6 synthesis pathway. Lastly, the complexity of myo-inositol synthesis in plants is discussed in reference to synthesis of phosphoinositides and impact on plant growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boss WF, Im YJ (2012) Phosphoinositide signaling. Annu Rev Plant Biol 63:409–429

    Article  PubMed  CAS  Google Scholar 

  2. Boss WF, Sederoff HW, Im YJ, Moran N, Grunden AM, Perera IY (2010) Basal signaling regulates plant growth and development. Plant Physiol 154(2):439–443

    Article  PubMed  CAS  Google Scholar 

  3. Brearley C (2008) Sorting out PtdIns(4,5)P2 and clathrin-coated vesicles in plants. Biochem J 415(3):e1–e3

    Article  PubMed  CAS  Google Scholar 

  4. Munnik T, Nielsen E (2011) Green light for polyphosphoinositide signals in plants. Curr Opin Plant Biol 14(5):489–497

    Article  PubMed  CAS  Google Scholar 

  5. Burnette RN, Gunesekera BM, Gillaspy GE (2003) An Arabidopsis inositol 5-phosphatase gain-of-function alters abscisic acid signaling. Plant Physiol 132(2):1011–1019

    Article  PubMed  CAS  Google Scholar 

  6. DeWald DB, Torabinejad J, Jones CA, Shope JC, Cangelosi AR, Thompson JE, Prestwich GD, Hama H (2001) Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol 126(2):759–769

    Article  PubMed  CAS  Google Scholar 

  7. Sanchez JP, Chua NH (2001) Arabidopsis plc1 is required for secondary responses to abscisic acid signals. Plant Cell 13(5):1143–1154

    PubMed  CAS  Google Scholar 

  8. Xiong L, Lee B-h, Ishitani M, Lee H, Zhang C, Zhu J-K (2001) FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev 15(15):1971–1984

    Article  PubMed  CAS  Google Scholar 

  9. Khodakovskaya M, Sword C, Wu Q, Perera IY, Boss WF, Brown CS, Winter Sederoff H (2010) Increasing inositol (1,4,5)-trisphosphate metabolism affects drought tolerance, carbohydrate metabolism and phosphate-sensitive biomass increases in tomato. Plant Biotechnol J 8:170–183

    Google Scholar 

  10. Khodakovskaya M, Sword C, Wu Q, Perera IY, Boss WF, Brown CS, Winter Sederoff H (2010) Increasing inositol (1,4,5)-trisphosphate metabolism affects drought tolerance, carbohydrate metabolism and phosphate-sensitive biomass increases in tomato. Plant Biotechnol J 8(2):170–183

    Article  PubMed  CAS  Google Scholar 

  11. Perera IY, Hung CY, Moore CD, Stevenson-Paulik J, Boss WF (2008) Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling. Plant Cell 20(10):2876–2893

    Article  PubMed  CAS  Google Scholar 

  12. Perera IY, Hung CY, Brady S, Muday GK, Boss WF (2006) A universal role for inositol 1,4,5-trisphosphate-mediated signaling in plant gravitropism. Plant Physiol 140(2):746–760

    Article  PubMed  CAS  Google Scholar 

  13. Morse MJ, Crain RC, Satter RL (1987) Light-stimulated inositolphospholipid turnover in Samanea saman leaf pulvini. Proc Natl Acad Sci U S A 84(20):7075–7078

    Article  PubMed  CAS  Google Scholar 

  14. Shacklock PS, Read ND, Trewavas AJ (1992) Cytosolic free calcium mediated red light-induced photomorphogenesis. Nature 358:753–755

    Article  CAS  Google Scholar 

  15. Kashem MA, Itoh K, Iwabuchi S, Hori H, Mitsui T (2000) Possible involvement of phosphoinositide-Ca2+ signaling in the regulation of alpha-amylase expression and germination of rice seed (Oryza sativa L.). Plant Cell Physiol 41(4):399–407

    Article  PubMed  CAS  Google Scholar 

  16. Reggiani R, Laoreti P (2000) Evidence for the involvement of phospholipase C in the anaerobic signal transduction. Plant Cell Physiol 41(12):1392–1396

    Article  PubMed  CAS  Google Scholar 

  17. Smolenska-Sym GaK A (1996) Inositol 1,4,5-trisphosphate formation in leaves of winter oilseed rape plants in response to freezing, tissue water potential and abscisic acid. Physiol Plant 96(4):692–698

    Article  Google Scholar 

  18. Liu HT, Gao F, Cui SJ, Han JL, da Sun Y, Zhou RG (2006) Primary evidence for involvement of IP3 in heat-shock signal transduction in Arabidopsis. Cell Res 16(4):394–400

    Article  PubMed  CAS  Google Scholar 

  19. Zheng SZ, Liu YL, Li B, Shang ZL, Zhou RG, Sun DY (2012) Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Plant J 69(4):689–700

    Article  PubMed  CAS  Google Scholar 

  20. Andersson MX, Kourtchenko O, Dangl JL, Mackey D, Ellerstrom M (2006) Phospholipase-dependent signalling during the AvrRpm1- and AvrRpt2-induced disease resistance responses in Arabidopsis thaliana. Plant J 47(6):947–959

    Article  PubMed  CAS  Google Scholar 

  21. Legendre L, Yueh YG, Crain R, Haddock N, Heinstein PF, Low PS (1993) Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem 268:24559–24563

    PubMed  CAS  Google Scholar 

  22. Mosblech A, Konig S, Stenzel I, Grzeganek P, Feussner I, Heilmann I (2008) Phosphoinositide and inositolpolyphosphate signalling in defense responses of Arabidopsis thaliana challenged by mechanical wounding. Mol Plant 1(2):249–261

    Article  PubMed  CAS  Google Scholar 

  23. Gillaspy G (2010) Signaling and the polyphosphoinositide phosphatases. In: Munnik T (ed) Lipid signaling in plants. Springer, Berlin

    Google Scholar 

  24. Dowd PaG S (2010) The emerging roles of phospholipase C in plant growth and development. In: Munnik T (ed) Lipid signaling in plants. Springer, Berlin

    Google Scholar 

  25. Melin PM, Sommarin M, Sandelius AS, Jergil B (1987) Identification of Ca2+-stimulated polyphosphoinositide phospholipase C in isolated plant plasma membranes. FEBS Lett 223(1):87–91

    Article  PubMed  CAS  Google Scholar 

  26. Gaude N, Nakamura Y, Scheible WR, Ohta H, Dormann P (2008) Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J 56(1):28–39

    Article  PubMed  CAS  Google Scholar 

  27. Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361:315–325

    Article  PubMed  CAS  Google Scholar 

  28. Majerus PW (1992) Inositol phosphate biochemistry. Annu Rev Biochem 61:225–250

    Article  PubMed  CAS  Google Scholar 

  29. Munnik T, Irvine RF, Musgrave A (1998) Phospholipid signaling in plants. Biochim Biophys Acta 1389:222–272

    Article  PubMed  CAS  Google Scholar 

  30. Im YJ, Perera IY, Brglez I, Davis AJ, Stevenson-Paulik J, Phillippy BQ, Johannes E, Allen NS, Boss WF (2007) Increasing plasma membrane phosphatidylinositol(4,5)bisphosphate biosynthesis increases phosphoinositide metabolism in Nicotiana tabacum. Plant Cell 19(5):1603–1616

    Article  PubMed  CAS  Google Scholar 

  31. Mueller-Roeber B, Pical C (2002) Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol 130(1):22–46

    Article  PubMed  CAS  Google Scholar 

  32. Vossen JH, Abd-El-Haliem A, Fradin EF, van den Berg GC, Ekengren SK, Meijer HJ, Seifi A, Bai Y, Munnik T, Thomma BP, Joosten MH (2010) Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J 62(2):224–239

    Article  PubMed  CAS  Google Scholar 

  33. Serna-Sanz A, Parniske M, Peck SC (2011) Phosphoproteome analysis of Lotus japonicus roots reveals shared and distinct components of symbiosis and defense. Mol Plant Microbe Interact 24(8):932–937

    Article  PubMed  CAS  Google Scholar 

  34. Williams ME, Torabinejad J, Cohick E, Parker K, Drake EJ, Thompson JE, Hortter M, Dewald DB (2005) Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4,5)P2 and constitutive expression of the stress-response pathway. Plant Physiol 138(2):686–700

    Article  PubMed  CAS  Google Scholar 

  35. Cunningham E, Thomas GM, Ball A, Hiles I, Cockcroft S (1995) Phosphatidylinositol transfer protein dictates the rate of inositol trisphosphate production by promoting the synthesis of PIP2. Curr Biol 5(7):775–783

    Article  PubMed  CAS  Google Scholar 

  36. Vermeer JE, Thole JM, Goedhart J, Nielsen E, Munnik T, Gadella TW Jr (2009) Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. Plant J 57(2):356–372

    Article  PubMed  CAS  Google Scholar 

  37. Munnik T, Vermeer JE (2010) Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ 33(4):655–669

    Article  PubMed  CAS  Google Scholar 

  38. Hammond GR, Fischer MJ, Anderson KE, Holdich J, Koteci A, Balla T, Irvine RF (2012) PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 337(6095):727–730

    Article  PubMed  CAS  Google Scholar 

  39. Gillaspy GE (2011) The cellular language of myo-inositol signaling. New Phytol 192(4):823–839

    Article  PubMed  CAS  Google Scholar 

  40. Preuss ML, Schmitz AJ, Thole JM, Bonner HK, Otegui MS, Nielsen E (2006) A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana. J Cell Biol 172(7):991–998

    Article  PubMed  CAS  Google Scholar 

  41. Thole JM, Vermeer JE, Zhang Y, Gadella TW Jr, Nielsen E (2008) Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana. Plant Cell 20(2):381–395

    Article  PubMed  CAS  Google Scholar 

  42. Ischebeck T, Stenzel I, Heilmann I (2008) Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. Plant Cell 20(12):3312–3330

    Article  PubMed  CAS  Google Scholar 

  43. Konig S, Ischebeck T, Lerche J, Stenzel I, Heilmann I (2008) Salt-stress-induced association of phosphatidylinositol 4,5-bisphosphate with clathrin-coated vesicles in plants. Biochem J 415(3):387–399

    Article  PubMed  Google Scholar 

  44. Perera IY, Love J, Heilmann I, Thompson WF, Boss WF (2002) Up-regulation of phosphoinositide metabolism in tobacco cells constitutively expressing the human type I inositol polyphosphate 5-phosphatase. Plant Physiol 129(4):1795–1806

    Article  PubMed  CAS  Google Scholar 

  45. Stenzel I, Ischebeck T, Konig S, Holubowska A, Sporysz M, Hause B, Heilmann I (2008) The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell 20(1):124–141

    Article  PubMed  CAS  Google Scholar 

  46. Whitley P, Hinz S, Doughty J (2009) Arabidopsis FAB1/PIKfyve proteins are essential for development of viable pollen. Plant Physiol 151(4):1812–1822

    Article  PubMed  CAS  Google Scholar 

  47. Zhao Y, Yan A, Feijo JA, Furutani M, Takenawa T, Hwang I, Fu Y, Yang Z (2010) Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. Plant Cell 22(12):4031–4044

    Article  PubMed  CAS  Google Scholar 

  48. Hirano T, Sato MH (2011) Arabidopsis FAB1A/B is possibly involved in the recycling of auxin transporters. Plant Signal Behav 6(4):583–585

    Article  PubMed  CAS  Google Scholar 

  49. Ischebeck T, Stenzel I, Hempel F, Jin X, Mosblech A, Heilmann I (2011) Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum. Plant J 65(3):453–468

    Article  PubMed  CAS  Google Scholar 

  50. Vollmer AH, Youssef NN, Dewald DB (2011) Unique cell wall abnormalities in the putative phosphoinositide phosphatase mutant AtSAC9. Planta 234(5):993–1005

    Article  PubMed  CAS  Google Scholar 

  51. Carland F, Nelson T (2009) CVP2- and CVL1-mediated phosphoinositide signaling as a regulator of the ARF GAP SFC/VAN3 in establishment of foliar vein patterns. Plant J 59(6):895–907

    Article  PubMed  CAS  Google Scholar 

  52. Naramoto S, Sawa S, Koizumi K, Uemura T, Ueda T, Friml J, Nakano A, Fukuda H (2009) Phosphoinositide-dependent regulation of VAN3 ARF-GAP localization and activity essential for vascular tissue continuity in plants. Development 136(9):1529–1538

    Article  PubMed  CAS  Google Scholar 

  53. Ischebeck T, Seiler S, Heilmann I (2010) At the poles across kingdoms: phosphoinositides and polar tip growth. Protoplasma 240(1–4):13–31

    Article  PubMed  CAS  Google Scholar 

  54. Kale SD, Gu B, Capelluto DG, Dou D, Feldman E, Rumore A, Arredondo FD, Hanlon R, Fudal I, Rouxel T, Lawrence CB, Shan W, Tyler BM (2010) External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142(2):284–295

    Article  PubMed  CAS  Google Scholar 

  55. Sun F, Kale SD, Azurmendi HF, Li D, Tyler BM, Capelluto DG (2013) Structural basis for interactions of the phytophthora sojae RxLR effector Avh5 with phosphatidylinositol 3-phosphate and for host cell entry. Mol Plant Microbe Interact 26:330–44

    Google Scholar 

  56. Yaeno T, Li H, Chaparro-Garcia A, Schornack S, Koshiba S, Watanabe S, Kigawa T, Kamoun S, Shirasu K (2011) Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity. Proc Natl Acad Sci U S A 108(35):14682–14687

    Article  PubMed  CAS  Google Scholar 

  57. Elge S, Brearley C, Xia HJ, Kehr J, Xue HW, Mueller-Roeber B (2001) An Arabidopsis inositol phospholipid kinase strongly expressed in procambial cells: synthesis of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 in insect cells by 5-phosphorylation of precursors. Plant J 26(6):561–571

    Article  PubMed  CAS  Google Scholar 

  58. Newton AC (2010) Protein kinase C: poised to signal. Am J Physiol Endocrinol Metab 298(3):E395–E402

    Article  PubMed  CAS  Google Scholar 

  59. Park MH, Chae Q (1990) Intracellular protein phosphorylation in oat (Avena sativa L.) protoplasts by phytochrome action: involvement of protein kinase C. Biochem Biophys Res Commun 169(3):1185–1190

    Article  PubMed  CAS  Google Scholar 

  60. Hayashida N, Mizoguchi T, Shinozaki K (1993) Cloning and characterization of a plant gene encoding a protein kinase. Gene 124(2):251–255

    Article  PubMed  CAS  Google Scholar 

  61. Lee Y, Assmann SM (1991) Diacylglycerols induce both ion pumping in patch-clamped guard-cell protoplasts and opening of intact stomata. Proc Natl Acad Sci U S A 88(6):2127–2131

    Article  PubMed  CAS  Google Scholar 

  62. Arisz SA, Testerink C, Munnik T (2009) Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta 1791(9):869–875

    Article  PubMed  CAS  Google Scholar 

  63. Testerink C, Munnik T (2011) Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. J Exp Bot 62(7):2349–2361

    Article  PubMed  CAS  Google Scholar 

  64. Trewavas AJ (1999) How plants learn. Proc Natl Acad Sci 96(8):4216–4218

    Article  PubMed  CAS  Google Scholar 

  65. Trewavas AJ, Knight M (1994) Mechanical signalling, calcium and plant form. Plant Mol Biol 26:1329–1341

    Article  PubMed  CAS  Google Scholar 

  66. Alves E, Bartlett PJ, Garcia CR, Thomas AP (2011) Melatonin and IP3-induced Ca2+ release from intracellular stores in the malaria parasite Plasmodium falciparum within infected red blood cells. J Biol Chem 286(7):5905–5912

    Article  PubMed  CAS  Google Scholar 

  67. Wheeler GL, Brownlee C (2008) Ca2+ signalling in plants and green algae–changing channels. Trends Plant Sci 13(9):506–514

    Article  PubMed  CAS  Google Scholar 

  68. Krinke O, Novotna Z, Valentova O, Martinec J (2007) Inositol trisphosphate receptor in higher plants: is it real? J Exp Bot 58(3):361–376

    Article  PubMed  CAS  Google Scholar 

  69. Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411(6841):1053–1057

    Article  PubMed  CAS  Google Scholar 

  70. McAinsh MR, Gray JE, Hetherington AM, Leckie CP, Ng C (2000) Ca2+ signalling in stomatal guard cells. Biochem Soc Trans 28(4):476–481

    Article  PubMed  CAS  Google Scholar 

  71. Webb AA, Larman MG, Montgomery LT, Taylor JE, Hetherington AM (2001) The role of calcium in ABA-induced gene expression and stomatal movements. Plant J 26(3):351–362

    Article  PubMed  CAS  Google Scholar 

  72. Lee YL, Coi YB, Suh S, Lee JD, Assmann SM, Joe CO, Kelleher JF, Crain RC (1996) Abscisic acid-induced phosphoinositide turnover in guard cell protoplasts of Vicia faba. Plant Physiol 110:987–996

    PubMed  CAS  Google Scholar 

  73. Staxen II, Pical C, Montgomery LT, Gray JE, Hetherington AM, McAinsh MR (1999) Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci U S A 96(4):1779–1784

    Article  PubMed  CAS  Google Scholar 

  74. Meimoun P, Vidal G, Bohrer AS, Lehner A, Tran D, Briand J, Bouteau F, Rona JP (2009) Intracellular Ca2+ stores could participate to abscisic acid-induced depolarization and stomatal closure in Arabidopsis thaliana. Plant Signal Behav 4(9):830–835

    Article  PubMed  CAS  Google Scholar 

  75. Gilroy S, Read ND, Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure [see comments]. Nature 346(6286):769–771

    Article  PubMed  CAS  Google Scholar 

  76. Forster B (1990) Injected inositol 1,4,5-trisphosphate activates Ca2(+)-sensitive K+ channels in the plasmalemma of Eremosphaera viridis. FEBS Lett 269(1):197–201

    Article  PubMed  CAS  Google Scholar 

  77. Blatt MR, Thiel G, Trentham DR (1990) Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-trisphosphate. Nature 346(6286):766–769

    Article  PubMed  CAS  Google Scholar 

  78. Thiel G, MacRobbie EA, Hanke DE (1990) Raising the intracellular level of inositol 1,4,5-trisphosphate changes plasma membrane ion transport in characean algae. EMBO J 9(6):1737–1741

    PubMed  CAS  Google Scholar 

  79. Tucker EB, Boss WF (1996) Mastoparan-induced intracellular Ca2+ fluxes may regulate cell-to-cell communication in plants. Plant Physiol 111(2):459–467

    PubMed  CAS  Google Scholar 

  80. Han S, Tang R, Anderson LK, Woerner TE, Pei ZM (2003) A cell surface receptor mediates extracellular Ca(2+) sensing in guard cells. Nature 425(6954):196–200

    Article  PubMed  CAS  Google Scholar 

  81. Nomura H, Komori T, Kobori M, Nakahira Y, Shiina T (2008) Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. Plant J 53(6):988–998

    Article  PubMed  CAS  Google Scholar 

  82. Astle MV, Horan KA, Ooms LM, Mitchell CA (2007) The inositol polyphosphate 5-phosphatases: traffic controllers, waistline watchers and tumour suppressors? Biochem Soc Symp 74:161–181

    Article  PubMed  CAS  Google Scholar 

  83. Ooms LM, Horan KA, Rahman P, Seaton G, Gurung R, Kethesparan DS, Mitchell CA (2009) The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J 419(1):29–49

    Article  PubMed  CAS  Google Scholar 

  84. Erneux C, Govaerts C, Communi D, Pesesse X (1998) The diversity and possible functions of the inositol 5-polyphosphatases. Biochim Biophys Acta 1436:185–199

    Article  PubMed  CAS  Google Scholar 

  85. York JD, Guo S, Odom AR, Spiegelberg BD, Stolz LE (2001) An expanded view of inositol signaling. Adv Enzyme Regul 41:57–71

    Article  PubMed  CAS  Google Scholar 

  86. Zhong R, Ye ZH (2004) Molecular and biochemical characterization of three WD-repeat-domain-containing inositol polyphosphate 5-phosphatases in Arabidopsis thaliana. Plant Cell Physiol 45(11):1720–1728

    Article  PubMed  CAS  Google Scholar 

  87. Ananieva EA, Gillaspy GE, Ely A, Burnette RN, Erickson FL (2008) Interaction of the WD40 domain of a myoinositol polyphosphate 5-phosphatase with SnRK1 links inositol, sugar, and stress signaling. Plant Physiol 148(4):1868–1882

    Article  PubMed  CAS  Google Scholar 

  88. Coello P, Hey SJ, Halford NG (2011) The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot 62(3):883–893

    Article  PubMed  CAS  Google Scholar 

  89. Baena-Gonzalez E, Sheen J (2008) Convergent energy and stress signaling. Trends Plant Sci 13(9):474–482

    Article  PubMed  CAS  Google Scholar 

  90. Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448(7156):938–942

    Article  PubMed  CAS  Google Scholar 

  91. Ananieva EA, Gillaspy GE (2009) Switches in nutrient and inositol signaling. Plant Signal Behav 4(4):304–306

    Article  PubMed  CAS  Google Scholar 

  92. Ercetin M, Torabinejad J, Robinson J, Gillaspy G (2008) A phospholipid-specific Myo-inositol polyphosphate 5-phosphatase required for seedling growth. Plant Mol Biol 67:375–388

    Article  PubMed  CAS  Google Scholar 

  93. Ercetin ME, Gillaspy GE (2004) Molecular characterization of an Arabidopsis gene encoding a phospholipid-specific inositol polyphosphate 5-phosphatase. Plant Physiol 135(2):938–946

    Article  PubMed  CAS  Google Scholar 

  94. Berdy S, Kudla J, Gruissem W, Gillaspy G (2001) Molecular characterization of At5PTase1, an inositol phosphatase capable of terminating IP3 signaling. Plant Physiol 126:801–810

    Article  PubMed  CAS  Google Scholar 

  95. Kaye Y, Golani Y, Singer Y, Leshem Y, Cohen G, Ercetin M, Gillaspy G, Levine A (2011) Inositol polyphosphate 5-phosphatase7 regulates the production of reactive oxygen species and salt tolerance in Arabidopsis. Plant Physiol 157(1):229–241

    Article  PubMed  CAS  Google Scholar 

  96. Zhong R, Burk DH, Morrison WH 3rd, Ye ZH (2004) FRAGILE FIBER3, an Arabidopsis gene encoding a type II inositol polyphosphate 5-phosphatase, is required for secondary wall synthesis and actin organization in fiber cells. Plant Cell 16(12):3242–3259

    Article  PubMed  CAS  Google Scholar 

  97. Carland FM, Nelson T (2004) Cotyledon vascular pattern2-mediated inositol (1,4,5) triphosphate signal transduction is essential for closed venation patterns of Arabidopsis foliar organs. Plant Cell 16(5):1263–1275

    Article  PubMed  CAS  Google Scholar 

  98. Jones MA, Raymond MJ, Smirnoff N (2006) Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. Plant J 45(1):83–100

    Article  PubMed  CAS  Google Scholar 

  99. Chen X, Lin WH, Wang Y, Luan S, Xue HW (2008) An inositol polyphosphate 5-phosphatase functions in PHOTOTROPIN1 signaling in Arabidopis by altering cytosolic Ca2+. Plant Cell 20(2):353–366

    Article  PubMed  CAS  Google Scholar 

  100. Wang Y, Lin WH, Chen X, Xue HW (2009) The role of Arabidopsis 5PTase13 in root gravitropism through modulation of vesicle trafficking. Cell Res 19(10):1191–1204

    Article  PubMed  CAS  Google Scholar 

  101. Gunesekera B, Torabinejad J, Robinson J, Gillaspy GE (2007) Inositol polyphosphate 5-phosphatases 1 and 2 are required for regulating seedling growth. Plant Physiol 143(3):1408–1417

    Article  PubMed  CAS  Google Scholar 

  102. York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285(5424):96–100

    Article  PubMed  CAS  Google Scholar 

  103. Raboy V, Bowen D (2006) Genetics of inositol polyphosphates. Subcell Biochem 39:71–101

    Article  PubMed  Google Scholar 

  104. Monserrate JP, York JD (2010) Inositol phosphate synthesis and the nuclear processes they affect. Curr Opin Cell Biol 22(3):365–373

    Article  PubMed  CAS  Google Scholar 

  105. Lemtiri-Chlieh F, MacRobbie EA, Brearley CA (2000) Inositol hexakisphosphate is a physiological signal regulating the K+-inward rectifying conductance in guard cells. Proc Natl Acad Sci U S A 97(15):8687–8692

    Article  PubMed  CAS  Google Scholar 

  106. Lemtiri-Chlieh F, MacRobbie EA, Webb AA, Manison NF, Brownlee C, Skepper JN, Chen J, Prestwich GD, Brearley CA (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci U S A 100(17):10091–10095

    Article  PubMed  CAS  Google Scholar 

  107. Shamsuddin AM, Vucenik I, Cole KE (1997) IP6: a novel anti-cancer agent. Life Sci 61(4):343–354

    Article  PubMed  CAS  Google Scholar 

  108. Shamsuddin AM (1995) Inositol phosphates have novel anticancer function. J Nutr 125(3 Suppl):725S–732S

    PubMed  CAS  Google Scholar 

  109. Cowieson AJ, Acamovic T, Bedford MR (2006) Phytic acid and phytase: implications for protein utilization by poultry. Poult Sci 85(5):878–885

    PubMed  CAS  Google Scholar 

  110. Raboy V, Bowen D (2006) Genetics of inositol polyphosphates. In: Lahiri Majumder A, Biswas BB (eds) Biology of inositols and phosphoinositides. Springer, New York, pp 71–101

    Chapter  Google Scholar 

  111. Raboy V (2007) Seed phosphorus and the development of low-phytate crops. Inositol phosphates linking agriculture and the environment. CABI, Oxfordshire

    Google Scholar 

  112. Raboy V (2007) The ABCs of low-phytate crops. Nat Biotechnol 25(8):874–875

    Article  PubMed  CAS  Google Scholar 

  113. Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Natl Acad Sci U S A 102(35):12612–12617

    Article  PubMed  CAS  Google Scholar 

  114. Xia HJ, Yang G (2005) Inositol 1,4,5-trisphosphate 3-kinases: functions and regulations. Cell Res 15(2):83–91

    Article  PubMed  CAS  Google Scholar 

  115. Stevenson-Paulik J, Odom AR, York JD (2002) Molecular and biochemical characterization of two plant inositol polyphosphate 6-/3-/5-kinases. J Biol Chem 277(45):42711–42718

    Article  PubMed  CAS  Google Scholar 

  116. Endo-Streeter S, Tsui MK, Odom AR, Block J, York JD (2012) Structural studies and protein engineering of inositol phosphate multikinase. J Biol Chem 287(42):35360–35369

    Article  PubMed  CAS  Google Scholar 

  117. Xia HJ, Brearley C, Elge S, Kaplan B, Fromm H, Mueller-Roeber B (2003) Arabidopsis inositol polyphosphate 6-/3-kinase is a nuclear protein that complements a yeast mutant lacking a functional ArgR-Mcm1 transcription complex. Plant Cell 15(2):449–463

    Article  PubMed  CAS  Google Scholar 

  118. Shi J, Wang H, Hazebroek J, Ertl DS, Harp T (2005) The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J 42(5):708–719

    Article  PubMed  CAS  Google Scholar 

  119. Raboy V (2003) myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64(6):1033–1043

    Article  PubMed  CAS  Google Scholar 

  120. Abelson PH (1999) A potential phosphate crisis. Science 283(5410):2015

    Article  PubMed  CAS  Google Scholar 

  121. Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PP, Sheridan WF, Ertl DS (2000) Origin and seed phenotype of maize low phytic acid 1–1 and low phytic acid 2–1. Plant Physiol 124(1):355–368

    Article  PubMed  CAS  Google Scholar 

  122. Dorsch JA, Cook A, Young KA, Anderson JM, Bauman AT, Volkmann CJ, Murthy PP, Raboy V (2003) Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry 62(5):691–706

    Article  PubMed  CAS  Google Scholar 

  123. Ercetin ME, Ananieva EA, Safaee NM, Torabinejad J, Robinson JY, Gillaspy GE (2008) A phosphatidylinositol phosphate-specific myo-inositol polyphosphate 5-phosphatase required for seedling growth. Plant Mol Biol 67:375–388

    Article  PubMed  CAS  Google Scholar 

  124. Caddick SE, Harrison CJ, Stavridou I, Mitchell JL, Hemmings AM, Brearley CA (2008) A Solanum tuberosum inositol phosphate kinase (StITPK1) displaying inositol phosphate-inositol phosphate and inositol phosphate-ADP phosphotransferase activities. FEBS Lett 582(12):1731–1737

    Article  PubMed  CAS  Google Scholar 

  125. Nagy R, Grob H, Weder B, Green P, Klein M, Frelet-Barrand A, Schjoerring JK, Brearley C, Martinoia E (2009) The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. J Biol Chem 284(48):33614–33622

    Article  PubMed  CAS  Google Scholar 

  126. Bennett M, Onnebo SM, Azevedo C, Saiardi A (2006) Inositol pyrophosphates: metabolism and signaling. Cell Mol Life Sci 63(5):552–564

    Article  PubMed  CAS  Google Scholar 

  127. Burton A, Hu X, Saiardi A (2009) Are inositol pyrophosphates signalling molecules? J Cell Physiol 220(1):8–15

    Article  PubMed  CAS  Google Scholar 

  128. Losito O, Szijgyarto Z, Resnick AC, Saiardi A (2009) Inositol pyrophosphates and their unique metabolic complexity: analysis by gel electrophoresis. PLoS One 4(5):e5580

    Article  PubMed  CAS  Google Scholar 

  129. Nagata E, Saiardi A, Tsukamoto H, Okada Y, Itoh Y, Satoh T, Itoh J, Margolis RL, Takizawa S, Sawa A, Takagi S (2011) Inositol hexakisphosphate kinases induce cell death in Huntington disease. J Biol Chem 286(30):26680–26686

    Article  PubMed  CAS  Google Scholar 

  130. Saiardi A, Bhandari R, Resnick AC, Snowman AM, Snyder SH (2004) Phosphorylation of proteins by inositol pyrophosphates. Science 306(5704):2101–2105

    Article  PubMed  CAS  Google Scholar 

  131. Saiardi A, Resnick AC, Snowman AM, Wendland B, Snyder SH (2005) Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc Natl Acad Sci U S A 102(6):1911–1914

    Article  PubMed  CAS  Google Scholar 

  132. Szijgyarto Z, Garedew A, Azevedo C, Saiardi A (2011) Influence of inositol pyrophosphates on cellular energy dynamics. Science 334(6057):802–805

    Article  PubMed  CAS  Google Scholar 

  133. Flores S, Smart CC (2000) Abscisic acid-induced changes in inositol metabolism in Spirodela polyrrhiza. Planta 211(6):823–832

    Article  PubMed  CAS  Google Scholar 

  134. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468(7322):400–405

    Article  PubMed  CAS  Google Scholar 

  135. Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446(7136):640–645

    Article  PubMed  CAS  Google Scholar 

  136. Tan X, Zheng N (2009) Hormone signaling through protein destruction: a lesson from plants. Am J Physiol Endocrinol Metab 296(2):E223–E227

    Article  PubMed  CAS  Google Scholar 

  137. Hanke DE, Parmar PN, Caddick SE, Green P, Brearley CA (2012) Synthesis of inositol phosphate ligands of plant hormone-receptor complexes: pathways of inositol hexakisphosphate turnover. Biochem J 444(3):601–609

    Article  PubMed  CAS  Google Scholar 

  138. Mosblech A, Thurow C, Gatz C, Feussner I, Heilmann I (2011) Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana. Plant J 65(6):949–957

    Article  PubMed  CAS  Google Scholar 

  139. Biffen M, Hanke DE (1990) Reduction in the level of intracellular myo-inositol in culture soybean (Glycine max) cells inhibits cell division. Biochem J 265:809–814

    PubMed  CAS  Google Scholar 

  140. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    PubMed  CAS  Google Scholar 

  141. Bachhawat N, Mande SC (2000) Complex evolution of the inositol-1-phosphate synthase gene among archaea and eubacteria. Trends Genet 16(3):111–113

    Article  PubMed  CAS  Google Scholar 

  142. Dean-Johnson M, Wang X (1996) Differentially expressed forms of 1L-myo-inositol-1-phosphate synthase in Phaseolus vulgaris. J Biol Chem 271:17215–17218

    Article  Google Scholar 

  143. Donahue JL, Alford SR, Torabinejad J, Kerwin RE, Nourbakhsh A, Ray WK, Hernick M, Huang X, Lyons BM, Hein PP, Gillaspy GE (2010) The Arabidopsis thaliana Myo-inositol 1-phosphate synthase1 gene is required for Myo-inositol synthesis and suppression of cell death. Plant Cell 22(3):888–903

    Article  PubMed  CAS  Google Scholar 

  144. Fu J, Peterson K, Guttieri M, Souza E, Raboy V (2008) Barley (Hordeum vulgare L.) inositol monophosphatase: gene structure and enzyme characteristics. Plant Mol Biol 67(6):629–642

    Article  PubMed  CAS  Google Scholar 

  145. Gillaspy GE, Keddie JS, Oda K, Gruissem W (1995) Plant inositol monophosphatase is a lithium-sensitive enzyme encoded by a multigene family. Plant Cell 7:2175–2185

    PubMed  CAS  Google Scholar 

  146. Hegeman CE, Good LL, Grabau EA (2001) Expression of D-myo-inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis. Plant Physiol 125(4):1941–1948

    Article  PubMed  CAS  Google Scholar 

  147. Sato Y, Yazawa K, Yoshida S, Tamaoki M, Nakajima N, Iwai H, Ishii T, Satoh S (2011) Expression and functions of myo-inositol monophosphatase family genes in seed development of Arabidopsis. J Plant Res 124(3):385–394. doi:10.1007/s10265-010-0381-y

    Article  PubMed  CAS  Google Scholar 

  148. Sasaki T, Sasaki J, Sakai T, Takasuga S, Suzuki A (2007) The physiology of phosphoinositides. Biol Pharm Bull 30(9):1599–1604

    Article  PubMed  CAS  Google Scholar 

  149. Yoshikawa T, Padigaru M, Karkera JD, Sharma M, Berrettini WH, Esterling LE, Detera-Wadleigh SD (2000) Genomic structure and novel variants of myo-inositol monophosphatase 2 (IMPA2). Mol Psychiatry 5(2):165–171

    Article  PubMed  CAS  Google Scholar 

  150. Smart C, Fleming A (1993) A plant gene with homology to D-myo-inositol-3-phosphate synthase is rapidly and spatially up-regulated during aba-induced morphogenic response in Spirodela polrrhiza. Plant J 4:279–293

    Article  PubMed  CAS  Google Scholar 

  151. Yoshida KT, Wada T, Koyama H, Mizobuchi-Fukuoka R, Naito S (1999) Temporal and spatial patterns of accumulation of the transcript of Myo-inositol-1-phosphate synthase and phytin-containing particles during seed development in rice. Plant Physiol 119(1):65–72

    Article  PubMed  CAS  Google Scholar 

  152. Chen IW, Charalampous CF (1966) Biochemical studies on D-Inositol 1-phosphate as an intermediate in the biosynthesis of inositol from glucose-6-phosphate, and characteristics of two reactions in this biosynthesis. J Biol Chem 241:2194–2199

    PubMed  CAS  Google Scholar 

  153. Eisenberg F, Bolden AH, Loewus FA (1964) Inositol formation by cyclization of glucose chain in rat testis. Biochem Biophys Res Commun 14:419–424

    Article  PubMed  Google Scholar 

  154. Loewus MW (1977) Hydrogen isotope effects in the cyclization of D-glucose 6-phosphate by myo-inositol-1-phosphate synthase. J Biol Chem 252(20):7221–7223

    PubMed  CAS  Google Scholar 

  155. Loewus MW, Loewus FA (1980) The C-5 hydrogen isotope-effect in myo-inositol 1-phosphate synthase as evidence for the myo-inositol oxidation-pathway. Carbohydr Res 82(2):333–342

    Article  PubMed  CAS  Google Scholar 

  156. Loewus MW, Loewus FA, Brillinger GU, Otsuka H, Floss HG (1980) Stereochemistry of the myo-inositol-1-phosphate synthase reaction. J Biol Chem 255(24):11710–11712

    PubMed  CAS  Google Scholar 

  157. Sherman WR, Stewart MA, Zinbo M (1969) Mass spectrometric study on the mechanism of D-glucose 6-phosphate-L- myo-inositol 1-phosphate cyclase. J Biol Chem 244(20):5703–5708

    PubMed  CAS  Google Scholar 

  158. Torabinejad J, Donahue JL, Gunesekera BN, Allen-Daniels MJ, Gillaspy GE (2009) VTC4 is a bifunctional enzyme that affects myo-inositol and ascorbate biosynthesis in plants. Plant Physiol 150(2):951–961

    Article  PubMed  CAS  Google Scholar 

  159. Petersen LN, Marineo S, Mandala S, Davids F, Sewell BT, Ingle RA (2010) The missing link in plant histidine biosynthesis: Arabidopsis myoinositol monophosphatase-like2 encodes a functional histidinol-phosphate phosphatase. Plant Physiol 152(3):1186–1196

    Article  PubMed  CAS  Google Scholar 

  160. Majumder AL, Johnson MD, Henry SA (1997) 1L-myo-inositol-1-phosphate synthase. Biochim Biophys Acta 1348(1–2):245–256

    PubMed  CAS  Google Scholar 

  161. Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dunn TM, Wang GL, Bellizzi M, Parsons JF, Morrissey D, Bravo JE, Lynch DV, Xiao S (2008) An inositolphosphoryleramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20(11):3163–3179

    Article  PubMed  CAS  Google Scholar 

  162. Lorrain S, Vailleau F, Balague C, Roby D (2003) Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci 8(6):263–271

    Article  PubMed  CAS  Google Scholar 

  163. Murphy AM, Otto B, Brearley CA, Carr JP, Hanke DE (2008) A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. Plant J 56(4):638–652

    Article  PubMed  CAS  Google Scholar 

  164. Keller R, Brearley C, Trethewey R, Muller-Rober B (1998) Reduced inositol content and altered morphology in transgenic potato plants inhibited for 1D-myo-inositol 3-phosphate synthase. Plant J 16:403–410

    Article  CAS  Google Scholar 

  165. Christie JM, Murphy AS (2012) Shoot phototropism in higher plants: new light through old concepts. Am J Bot 100(1):35–46

    Article  PubMed  CAS  Google Scholar 

  166. Grunewald W, Friml J (2010) The march of the PINs: developmental plasticity by dynamic polar targeting in plant cells. EMBO J 29(16):2700–2714

    Article  PubMed  CAS  Google Scholar 

  167. Luo Y, Qin G, Zhang J, Liang Y, Song Y, Zhao M, Tsuge T, Aoyama T, Liu J, Gu H, Qu LJ (2011) D-myo-inositol-3-phosphate affects phosphatidylinositol-mediated endomembrane function in Arabidopsis and is essential for auxin-regulated embryogenesis. Plant Cell 23(4):1352–1372

    Article  PubMed  CAS  Google Scholar 

  168. Chen H, Xiong L (2010) myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development. J Biol Chem 285(31):24238–24247

    Article  PubMed  CAS  Google Scholar 

  169. Lofke C, Ischebeck T, Konig S, Freitag S, Heilmann I (2008) Alternative metabolic fates of phosphatidylinositol produced by phosphatidylinositol synthase isoforms in Arabidopsis thaliana. Biochem J 413(1):115–124

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenda E. Gillaspy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gillaspy, G.E. (2013). The Role of Phosphoinositides and Inositol Phosphates in Plant Cell Signaling. In: Capelluto, D. (eds) Lipid-mediated Protein Signaling. Advances in Experimental Medicine and Biology, vol 991. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6331-9_8

Download citation

Publish with us

Policies and ethics