Skip to main content

Large (>100 km Diameter) Impact Structures

  • Chapter
  • First Online:
The Asteroid Impact Connection of Planetary Evolution

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

  • 965 Accesses

Abstract

This chapter present summaries of the structure and shock metamorphic features of some of the largest recorded impact structures, including Maniitsoq (southwest Greenland), Yarrabubba (Western Australia), Vredefort (South Africa), Sudbury (Ontario) and Chicxulub (Yucatan, Mexico). Large impact structures (D ≥ 100 km) are more likely to have major seismic, tectonic and magmatic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addison WD, Brumpton GR, Vallini DA, McNaughton NJ, Davis DW, Kissin SA, Fralick PW, Hammond AL (2005) Discovery of distal ejecta from the 1850 Ma Sudbury impact event. Geology 33:193–196

    Article  Google Scholar 

  • Alvarez L, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108

    Article  Google Scholar 

  • Alvarez W, Claeys P, Kieffer SW (1995) Emplacement of KT boundary shocked quartz from Chicxulub crater. Science 269:930–935

    Article  Google Scholar 

  • Beerling DJ, Lomax BH, Royer DL, Upchurch GR, Kump LR (2002) An atmospheric PCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf mega fossils. Proc Nat Acad Sci 99:7836–7840

    Article  Google Scholar 

  • Boerner DE, Milkereit B, Davidson A (2000) Geoscience impact: a synthesis of studies of the Sudbury structure. Canadian J Earth Sci 37:477–501

    Article  Google Scholar 

  • Brink MC, Wanders FB, Bischoff AA (1997) Vredefort: a model for the anatomy of an astroblemes. Tectonophysics 270:83–114

    Article  Google Scholar 

  • Buchanan PC, Reimold WU (2002) Planar deformation features and impact glass in inclusions from the Vredefort granophyre South Africa. Meteor Planet Sci 37:807–822

    Article  Google Scholar 

  • Butler HR (1994) Lineament analysis of the Sudbury multiring impact structure. In: Large meteorite impacts and planetary evolution. Geol Soc Am Sp Pap 293:319–330

    Google Scholar 

  • Camargo ZA, Suarez GR (1994) Evidencia sismica del crater de impacto de Chicxulub. Boletin de la Asociacion Mexicana de Geofisicos de Exploracion 34:1–28

    Google Scholar 

  • Cannon WF, Schulz KJ, Wright J, Horton D, Kring A (2010) The Sudbury impact layer in the Paleoproterozoic iron ranges of northern Michigan, USA. Geol Soc Am Bull 122:50–75

    Article  Google Scholar 

  • Claeys P, Kiessling W, Alvarez, W (2002) Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary. In: Koeberl C., MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond: Boulder, Colorado, Geol Soc Am Spec Pap 356:55–68

    Google Scholar 

  • Dence MR (1972) Meteorite impact craters and the structure of the Sudbury basin. Geol Assoc Canada Sp Pap 10:7–18

    Google Scholar 

  • Dietz RS (1961) Vredefort ring structure: meteorite impact scar? J Geol 69:496–505

    Article  Google Scholar 

  • Dietz RS (1964) Sudbury structure as an astroblemes. J. Geol 72:412–434

    Article  Google Scholar 

  • Dietz RS (1968) Shatter cones in cryptoexplosion structures. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Book Corp Baltimore, pp 267–285

    Google Scholar 

  • French BM (1968) Sudbury structure Ontario: some petrographic evidence for an origin by meteorite impact. In: French BM, Short NM (eds) Shock metamorphism of natural materials. Mono Books, Baltimore, pp 383–412

    Google Scholar 

  • French BM, Orth CJ, Quintana LR (1988) Iridium in the Vredefort Bronzite Granophyre—impact melting and limits on a possible extraterrestrial component. Lunar and Planetary Science Conference 19th Houston TX 14–18, pp 733–744

    Google Scholar 

  • Garde AA, Glikson AY (2011) Recognition of re-deformed planar deformation features (PDF) in large impact structures. 74th Ann Meteor Soc Meet, 5246 pdf

    Google Scholar 

  • Garde AA, McDonald I, Dyck B, Keulen N (2012) Searching for giant ancient impact structures on Earth: the Meso-Archaean Maniitsoq structure, West Greenland. Earth Planet Sci Lett 2012:337–338

    Google Scholar 

  • Giblin PE (1984) History of exploration and development of geological studies and development of geological concepts. In: Pye E, Naldrett AJ, Giblin PE (eds) The geology and ore deposits of the Sudbury structure. Ontario Geol Surv, pp 3–24

    Google Scholar 

  • Gibson RL, Reimold WU (2001) The Vredefort impact structure South Africa: The scientific evidence and a two-day excursion guide. Council Geosci Mem 92:111 p

    Google Scholar 

  • Grieve RAF (2006) Impact structures in Canada. Geol Assoc Canada, p 210

    Google Scholar 

  • Grieve RAF, Stöffler D, Deutsch A (1991) The sudbury structure: controversial or misunderstood? J Geophys Res 96:22753–22764

    Article  Google Scholar 

  • Grieve RAF, Reimold WU, Morgan J, Riller U, Pilkington (2008) Observations and interpretations at Vredefort Sudbury and Chicxulub: towards an empirical model of terrestrial impact basin formation. Meteor Planet Sci 43:855–882

    Article  Google Scholar 

  • Grieve RAF, Ames DE, Morgan JV, Artmieva N (2010) The evolution of the Onaping formation at the Sudbury impact structure. Meteor Planet Sci 45:159–782

    Google Scholar 

  • Guy-Bray J (1966) Shatter cones at Sudbury. J. Geol 74:243–245

    Article  Google Scholar 

  • Hargraves RB (1961) Shatter cones in the rocks of the Vredefort ring. Geol Soc S Afr Trans 64:147–154

    Google Scholar 

  • Henkel H, Reimold WU (1998) Integrated geophysical modeling of a giant complex impact structure: anatomy of the Vredefort structure South Africa. Tectonophysics 287:1–20

    Article  Google Scholar 

  • Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo ZA, Jacobsen SB, Boynton WV (1991) A possible Cretaceous-Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology 19:867–871

    Article  Google Scholar 

  • Hildebrand AR, Pilkington M, Connors M, Ortiz-Aleman C, Chavez RE (1995) Size and structure of the Chicxulub crater revealed by horizontal gravity gradients and cenotes. Nature 376:415–417

    Article  Google Scholar 

  • Hildebrand AR, Pilkington M, Ortiz-Aleman C, Chavez RE, Urrutia-Fucugauchi J, Connors M, Graniel-Castro E, Camarago ZA, Halpenny JF, Niehaus D (1998) Mapping Chicxulub crater structure with gravity and seismic reflection data. In: Meteorites Flux with time and impact effects. Sp Publ Geol Soc London 140:153–173

    Google Scholar 

  • Jirsa MA, Weiblen PW, Vislova T, McSwiggen PL (2008) Sudbury impactite layer near Gunflint lake, NE Minnesota. Instit Lake Superior Geol Proc 54:42–43

    Google Scholar 

  • Kamo SL, Reimold WU, Krogh TE, Colliston WP (1996) A 2.023 Ga age for the Vredefort impact event and a first report about shock metamorphosed zircons in pseudotachylitic breccias and granophyre. Earth Planet Sci Lett 144:369–388

    Article  Google Scholar 

  • Keller G (2005) Impacts volcanism and mass extinction: random coincidence or cause and effect? Aust J Earth Sci 52:725–757

    Article  Google Scholar 

  • Killick AM, Thaites AM, Germs GJB, Schoch AE (1988) Pseudotachylite associated with a bedding-parallel fault zone between the Witwatersrand and Ventersdorp supergroup South Africa. Geolo Rund 77:329–344

    Article  Google Scholar 

  • Koeberl C, Reimold WU, Shirley SB (1996) Re-Os isotope and geochemical study of the Vredefort granophyre: clues to the origin of the Vredefort structure South Africa. Geology 24:913–916

    Article  Google Scholar 

  • Krogh TE, Davis DW, Corfu F (1984) Precise U-Pb zircon and Baddeleyite ages for the Sudbury area.In: The geology and ore deposits of the Sudbury structure. Ontario Geol Surv Sp 1:431–448

    Google Scholar 

  • Lana C, Gibson RL, Reimold WU (2003) Impact tectonics in the core of the Vredefort Dome South Africa: implications for central uplift formation in very large impact structures. Meteor Planet Sci 38:1093–1107

    Article  Google Scholar 

  • Leroux H, Reimold WU, Doukhan JC (1994) A TEM investigation of shock metamorphism in quartz from the Vredefort Dome South Africa. Tectonophysics 230:223–239

    Article  Google Scholar 

  • Martini JEJ (1978) Coesite and stishovite in the Vredefort Dome South Africa. Nature 272:715–717

    Article  Google Scholar 

  • McCarthy TS, Charlesworth EG, Stanistreet IG (1986) Post-Transvaal structural features of the northern portion of the Witwatersrand basin. Trans Geol Soc S Afr 89:311–324

    Google Scholar 

  • McCarthy TS, Stanistreet IG, Rob LJ (1990) Geological studies related to the origin of the Witwatersrand basin and its mineralization—an introduction and a strategy for research and exploration. S Afr J Geol 93:1–4

    Google Scholar 

  • Morgan JV, Warner M, Chicxulub Working Group (1997) Size and morphology of the Chicxulub impact crater. Nature 390:472–476

    Article  Google Scholar 

  • Morgan JV, Warner MR, Collins GS, Melosh HJ, Christeson GL (2000) Peak ring formation in large impact craters. Earth Planet Sci Lett 183:347–354

    Article  Google Scholar 

  • Naldrett AJ (2003) From impact to riches: evolution of geological understanding as seen at Sudbury Canada. GSA Today 13:4–9

    Article  Google Scholar 

  • Naldrett AJ, Bray JG, Gasparrini EL, Podolsky T, Rucklidge JC (1970) Cryptic variation and petrology of the Sudbury Nickel irruptive economic. Geology 65:122–155

    Google Scholar 

  • Pilkington M, Hildebrand AR (2000) Three-dimensional magnetic imaging of the Chicxulub crater. J Geophys Res 105:23479–23491

    Article  Google Scholar 

  • Pilkington M, Hildebrand AR, Ortiz-Aleman C (1994) Gravity and magnetic field modeling and structure of the Chicxulub crater, Mexico. J Geophys Res 99:13147–13162

    Article  Google Scholar 

  • Pope KO, Ocampo AC, Duller CE (1993) Surficial geology of the Chicxulub impact crater Yucatán Mexico. Earth Moon Planets 63:93–104

    Article  Google Scholar 

  • Pye EG, Naldrett AJ, Giblin PE (eds) (1984) The geology and ore deposits of the Sudbury structure. Ontario Geol Surv Sp Vol 1 Toronto, 604 p

    Google Scholar 

  • Reimold WU, Gibson RL (2006) The melt rocks of the Vredefort impact structure—Vredefort granophyre and pseudotachylitic breccias: implications for impact cratering and the evolution of the Witwatersrand Basin. Chemie der Erde Geochem 66:1–35

    Article  Google Scholar 

  • Riller U (2005) Structural characteristics of the Sudbury impact structure Canada: impact induced and orogenic deformation—A review. Meteor Planet Sci 40:1723–1740

    Article  Google Scholar 

  • Rousell DH (1984) Structural geology of the Sudbury basin. In: Pye E, Naldrett AJ, Giblin PE (eds) The geology and ore deposits of the Sudbury structure. Ontario Geol Surv Sp 1:83–96

    Google Scholar 

  • Sharpton VL, Burke K, Camargo Z, Hall SA, Lee DS, Marin LE, Suárez R, Quezada M, Spudis PD, Urrutia-Fucugauchi J (1993) Chicxulub multi-ring impact basin: size and other characteristics derived from gravity analysis. Science 261:1564–1567

    Article  Google Scholar 

  • Sharpton VL, Martin LE, Carney JL, Lees S, Ryder G, Schuraytz BC, Sikora P, Spudis PD (1996) A model of the Chicxulub impact basin based on the evaluation of geophysical data well logs and drill core samples. Geol Soc of Am Sp Pap 307:55–74

    Google Scholar 

  • Spray JG (1997) Superfaults. Geology 25:627–630

    Article  Google Scholar 

  • Spray JG, Butler HR, Thompson LM (2004) Tectonic influences on the morphometry of the Sudbury impact structure: implications for terrestrial cratering and modeling. Meteor Planet Sci 39:287–301

    Article  Google Scholar 

  • Stöffler D, Artemieva A, Ivanov B, Hecht L, Kenkmann T, Schmitt RT, Tagle RA, Wittmann A (2004) Origin and emplacement of the impact formations at Chicxulub Mexico as revealed by the ICDP deep drilling at Yaxcopoil-1 and by numerical modeling. Meteor Planet Sci 39:1035–1067

    Article  Google Scholar 

  • Swisher CC, Grahales-Nishimura JM, Montanari A, Margolis SV, Claeys Ph, Alvarez W, Renne P, Cedillo-Pardo E, Florentin JM, Maurasse R, Curtis GH, Smit J, McWilliams MO (1992) Coeval 39Ar/40Ar ages of 650 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites. Science 257:954–958

    Article  Google Scholar 

  • Therriault AM, Grieve RAF, Reimold WU (1997) Original size of the Vredefort Structure: implications for the geological evolution of the Witwatersrand Basin. Meteor Planet Sci 32:71–77

    Article  Google Scholar 

  • Therriault AM, Anthony D, Flower R, Grieve RAF (2002) The Sudbury igneous complex: a differentiated impact melt sheet. Econ Geol 97:1521–1540

    Article  Google Scholar 

  • Thompson LM, Spray JG, Kelley SP (1998) Laser probe argon-40/argon-39 dating of Pseudotachylite from the Sudbury structure: evidence for post-impact thermal overprinting in the North range. Meteor Planet Sci 33:1259–1269

    Article  Google Scholar 

  • Tuchscherer MG, Spray JG (2002) Geology mineralization and emplacement of the Foy offset dike, Sudbury. Econ Geol 97:1377–1398

    Google Scholar 

  • Vermeesch PM, Morgan JV (2004) Chicxulub central crater structure: Initial results from physical property measurements and combined velocity and gravity modeling. Meteor Planet Sci 39:1019–1034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Y. Glikson .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Glikson, A.Y. (2013). Large (>100 km Diameter) Impact Structures. In: The Asteroid Impact Connection of Planetary Evolution. SpringerBriefs in Earth Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6328-9_9

Download citation

Publish with us

Policies and ethics