Skip to main content

Precambrian Asteroid Impacts

  • Chapter
  • First Online:
The Asteroid Impact Connection of Planetary Evolution

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

Abstract

Further to the few very large Precambrian impact structures identified (Maniitsoq, Yarrabubba, Vredefort, Sudbury), the application of geochemical, mineralogical and isotopic criteria to the study of impact ejecta allows documentation of large part of the early terrestrial impact record, yet it is suggested the known impacts constitute the ‘tip of the iceberg’ relative to the complete impact record.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addison WD, Brumpton GR, Vallini DA, McNaughton NJ, Davis DW, Kissin SA, Fralick PW, Hammond AL (2005) Discovery of distal ejecta from the 1,850 Ma sudbury impact event. Geol 33:193–196

    Article  Google Scholar 

  • Arndt NT, Nelson DR, Compston W, Trendall AF, Thorne AM (1991) The age of the fortescue group hamersley basin Western Australia from ion microprobe zircon U-Pb results. Aust J Earth Sci 38:261–281

    Article  Google Scholar 

  • Brauhart C, Groves DI, Morant P (1998) Regional alteration systems associated with volcanogenic massive sulphide mineralization at panorama Pilbara Western Australia. Econ Geol 93:292–302

    Article  Google Scholar 

  • Buick R, Brauhart CAW, Morant P, Thornett JR, Maniew JG, Archibald JG, Doepel MG, Fletcher IR, Pickard AL, Smith JB, Barley MB, McNaughton NJ, Groves DI (2002) Geochronology and stratigraphic relations of the Sulphur Springs Group and Strelley Granite: a temporally distinct igneous province in the Archaean Pilbara Craton Australia. Precamb Res 114:87–120

    Article  Google Scholar 

  • BVTP (1981) Basaltic volcanism of the terrestrial planets. Pergamon, New York

    Google Scholar 

  • Byerly GR (1999) Komatiites of the Mendon Formation: late stage ultramafic volcanism in the Barberton greenstone belt. Spec Pap Geol Soc Am 329:1–29

    Google Scholar 

  • Byerly GR, Lowe DR (1994) Spinels from Archaean impact spherules. Geochim et Cosmochim Acta 58:3469–3486

    Article  Google Scholar 

  • Byerly GR, Lowe DR, Wooden JL, Xie X (2002) A meteorite impact layer 3470 Ma from the Pilbara and Kaapvaal Cratons. Science 297:1325–1327

    Article  Google Scholar 

  • Cannon WF, Schulz KJ, Wright J, Horton D, Kring A (2010) The Sudbury impact layer in the Paleoproterozoic iron ranges of northern Michigan, USA. Geol Soc Am Bull 122:50–75

    Article  Google Scholar 

  • Chadwick B, Claeys P, Simonson BM (2000) New evidence for a large Palaeoproterozoic impact Spherules in a dolomite layer in the Ketilidian orogen South Greenland. J Geol Soc London 158:331–340

    Article  Google Scholar 

  • Culler TS, Becker TA, Muller RA, Renne PR (2000) Lunar impact history from 39Ar/40Ar dating of glass spherules. Science 287:1785–1789

    Article  Google Scholar 

  • Dunlop JSR, Buick R (1981) Archaean epiclastic sediments derived from mafic volcanics North Pole Pilbara Block Western Australia. Geol Soc Aust Sp Publ 7:225–233

    Google Scholar 

  • Glass BP, Burns CA (1988) In: Microkrystites: a new term for impact-produced glassy spherules containing primary crystallites Proceedings of Lunar Planet Sci Conference XVIII pp 455–458

    Google Scholar 

  • Glikson AY (1979) Early precambrian tonalite—trondhjemite sialic nuclei. Earth Sci Rev 15:1–73

    Article  Google Scholar 

  • Glikson AY (1984) Significance of early Archaean mafic–ultramafic xenolith patterns. In: Kroner A, Goodwin AM, Hanson GN (eds) Archaean geochemistry. Springer, Berlin pp 263–280

    Google Scholar 

  • Glikson AY (2001) The astronomical connection of terrestrial evolution crustal effects of post-3.8 Ga mega-impact clusters and evidence for major 3.2 Ga bombardment of the Earth-Moon system. J Geodyn 32:205–229

    Article  Google Scholar 

  • Glikson AY, Allen C (2004) Iridium anomalies and fractionated siderophile element patterns in impact ejecta, Brockman Iron Formation, Hamersley Basin, Western Australia: evidence for a major asteroid impact in simatic crustal regions of the early Proterozoic earth. Earth Planet Sci Lett 20:247–264

    Google Scholar 

  • Glikson AY (2005) Asteroid/comet impact clusters flood basalts and mass extinctions: significance of isotopic age overlaps. Earth Planet Sci Lett 236:933–937

    Google Scholar 

  • Glikson AY (2004) Bedout: a possible end-permian impact crater offshore of northwestern Australia. Science 306:613

    Article  Google Scholar 

  • Glikson AY (2006) Asteroid impact ejecta units overlain by iron rich sediments in 3.5–2.4 Ga terrains Pilbara and Kaapvaal cratons: accidental or cause–effect relationships? Earth Planet Sci Lett 246:149–160

    Article  Google Scholar 

  • Glikson AY (2007) Early Archaean asteroid impacts on Earth: stratigraphic and isotopic age correlations and possible geodynamic consequences. In: Van Kranendonk MJ, Smithies H, Bennett VC (eds) Earth’s oldest rocks. Developments in precambrian geology 15

    Google Scholar 

  • Glikson AY (2007) Siderophile element patterns PGE nuggets and vapor condensation effects in Ni-rich quench chromite-bearing microkrystite spherules 3.24 Ga S3 impact unit. Barberton greenstone belt, Kaapvaal, Craton South Africa Earth Planet Sci Lett 253:1–16

    Google Scholar 

  • Glikson AY (2008) Field evidence of Eros-scale asteroids and impact-forcing of Precambrian geodynamic episodes Kaapvaal (South Africa) and Pilbara (Western Australia) cratons. Earth Planet Sci Lett 267:558–570

    Article  Google Scholar 

  • Glikson AY, Allen C, Vickers J (2004) Multiple 3.47 Ga-old asteroid impact fallout units Pilbara Craton, Western Australia. Earth Planet Sci Lett 221:383–396

    Article  Google Scholar 

  • Glikson AY, Hickman AH (1981) Geochemical stratigraphy of Archaean mafic–ultramafic volcanic successions eastern Pilbara Block Western Australia. In: Glover JE, Groves DI (eds) Archaean Geology. Geol Soc Aust Sp Publ 7:287–300

    Google Scholar 

  • Glikson AY, Vickers J (2005) The 3.26–3.24 Ga Barberton asteroid impact cluster: tests of tectonic and magmatic consequences Pilbara Craton Western Australia. Earth Planet Sci Lett 241:11–20

    Article  Google Scholar 

  • Glikson AY, Vickers J (2007) Asteroid mega-impacts and Precambrian banded iron formations: 2.63 Ga and 2.56 Ga impact ejecta/fallout at the base of BIF/argillite units Hamersley Basin Pilbara Craton Western Australia. Earth Planet Sci Lett 254:214–226

    Article  Google Scholar 

  • Hassler SW, Robey HF, Simonson BM (2000) Bedforms produced by impact-generated tsunami, ~2.6 Ga Hamersley Basin. West Austral Geo 135:283–294

    Google Scholar 

  • Hassler SW, Simonson BM (2001) The sedimentary record of extraterrestrial impacts in deep shelf environments Evidence from the early Precambrian. J Geol 109:1–19

    Article  Google Scholar 

  • Hassler SW, Simonson BM, Sumner DY, Bodin L (2011) Paraburdoo spherule layer, Hamersley Basin, Western Australia: Distal ejecta from a fourth large impact near the Archaean-Proterozoic boundary. Geology 39:307–310

    Article  Google Scholar 

  • Hickman AH (1981) Crustal evolution of the Pilbara Block Western Australia. Geol Soc Aust Sp Publ 7:57–69

    Google Scholar 

  • Jahn B, Simonson BM (1995) Carbonate Pb–Pb ages of the Wittenoom Formation and Carawine Dolomite Hamersley Basin Western Australia, with implications for their correlation with the Transvaal Dolomite of South Africa. Precambr Res 72:247–261

    Article  Google Scholar 

  • Jirsa MA, Weiblen PW, Vislova T, McSwiggen PL (2008) Sudbury impactite layer near Gunflint Lake, NE Minnesota. Instit Lake Superior Geol Proc 54:42–43

    Google Scholar 

  • Keller G (2005) Impacts volcanism and mass extinction: random coincidence or cause and effect? Aust J Earth Sci 52:725–757

    Article  Google Scholar 

  • Kyte FT, Zhou L, Lowe DR (1992) Noble metal abundances in an early Archaean impact deposit. Geochim Cosmochim Acta 56:1365–1372

    Google Scholar 

  • Kyte FT, Shukolyukov A, Lugmair GW, Lowe DR, Byerly GR (2003) Early Archaean spherule beds: chromium isotopes confirm origin through multiple impacts of projectiles of carbonaceous chondrite type. Geology 31:283–286

    Article  Google Scholar 

  • LaBerge GL (1966) Altered pyroclastic rocks in iron formation in the hamersley range Western Australia. Econ Geol 61:147–161

    Article  Google Scholar 

  • Lowe DR (1980) Archaean sedimentation. Ann Rev Earth Planet Sci 8:145–167

    Article  Google Scholar 

  • Lowe DR, Byerly GR (1986) Early Archean silicate spherules of probable impact origin South Africa and Western Australia. Geology 14:83–86

    Article  Google Scholar 

  • Lowe DR, Byerly GR (1990) Direct determination of the environmental effects of large meteorite impacts on the Archaean Earth. EOS (Trans Am Geophys Union) 71:1429–1430

    Google Scholar 

  • Lowe DR, Byerly GR (2010) Did the LHB end not with a bang but with a whimper? 41st Lunar Planet Sci Conf 2563pdf

    Google Scholar 

  • Lowe DR, Byerly GR (1999) Stratigraphy of the west-central part of the Barberton Greenstone Belt, South Africa. In: Lowe DR, Byerly GR (eds) Geologic evolution of the Barberton Greenstone Belt, South Africa, Geol Soc Am Sp Pap 329:1–36

    Google Scholar 

  • Lowe DR, Byerly GR, Asaro F, Kyte FJ (1989) Geological and geochemical record of 3400 million year old terrestrial meteorite impacts. Science 245:959–962

    Article  Google Scholar 

  • Lowe DR, Byerly GR, Kyte FT, Shukolyukov A, Asaro F, Krull A (2003) Spherule beds 3.47–3.24 billion years old in the barberton greenstone belt, South Africa: a record of large meteorite impacts and their influence on early crustal and biological evolution. Astrobiology 3:7–48

    Article  Google Scholar 

  • Melosh HJ, Vickery AM (1991) Melt droplet formation in energetic impact events. Nature 350:494–497

    Article  Google Scholar 

  • Mojzsis SJ, Harrison TM (2002) Establishment of a 3.83 Ga magmatic age for the akilia tonalite Southern West Greenland. Earth Planet Sci Lett 202:563–576

    Article  Google Scholar 

  • Nelson DR, Trendall AF, Altermann W (1999) Chronological relations between the Pilbara and Kaapvaal Cratons. Precam Res 97:165–189

    Article  Google Scholar 

  • Nutman AP, Friend CRL, Horie K, Hidaka H (2007) The Itsaq gneiss complex of southwestern Greenland and the construction of Eoarchaen crust at convergent plate boundaries. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks, Developments in Precambrian geologyvol 15. Elsevier, Amsterdam pp 187–218

    Google Scholar 

  • Pope KO, Baines KH, Ocampo AC, Ivanov BA (1997) Energy volatile production and climatic effects of the Chicxulub Cretaceous/Tertiary impact. J Geophys Res 102:21645–21664

    Article  Google Scholar 

  • Ringwood AE (1986) Origin of the Earth and Moon. Nature 322:323–328

    Article  Google Scholar 

  • Ryder G (1990) Lunar samples lunar accretion and the early bombardment of the Moon. Eos (Trans Am Geophys Union) 71:313–322

    Article  Google Scholar 

  • Ryder G (1991) Accretion and bombardment in the Earth–Moon system: the lunar record. Lunar Planet Sci Instit Contrib 746:42–43

    Google Scholar 

  • Ryder G (1997) Coincidence in the time of the imbrium basin impact and Apollo 15 Kreep volcanic series: impact induced melting? Lunar Planet Sci Instit Contrib 790:61–62

    Google Scholar 

  • Shukolyukov A, Kyte FT, Lugmair GW, Lowe DR, Byerly GR (2000) The oldest impact deposits on Earth. In: Koeberl C, Gilmour I (eds) Lecture notes in Earth science 92: impacts and the early Earth, Springer, Berlin pp 99–116

    Google Scholar 

  • Simonson BM (1992) Geological evidence for an early Precambrian microtektite strewn field in the Hamersley Basin of Western Australia. Geol Soc Am Bull 104:829–839

    Article  Google Scholar 

  • Simonson BM, Cardiff M, Schubel KA (2001) New evidence that a spherule layer in the late Archaean jeerinah formation of Western Australia was produced by a major impact. 32nd Lunar Planet Sci Conf Abstracts, Lunar Planet Instit Contrib 1080, Houston

    Google Scholar 

  • Simonson BM, Davies D, Hassler SW (2000) Discovery of a layer of probable impact melt spherules in the late Archaean Jeerinah Formation, Fortescue Group, Western Australia. Aust J Earth Sci 47:315–325

    Article  Google Scholar 

  • Simonson BM, Davies D, Wallace M, Reeves S, Hassler SW (1998) Iridium anomaly but no shocked quartz from late Archaean microkrystite layer: oceanic impact ejecta? Geology 26:195–198

    Article  Google Scholar 

  • Simonson BM, Hassler SW (1997) Revised correlations in the early precambrian hamersley basin based on a horizon of resedimented impact spherules. Aust J Earth Sci 44:37–48

    Article  Google Scholar 

  • Simonson BM, Hassler SW, Beukes N (1999) Late Archaean impact spherule layer in South Africa that may correlate with a layer in Western Australia. In: Dressler BO, Sharpton VL (eds) Impact cratering planetary evolution. Geol Soc Am Sp Pap 339, Boulder CO, pp 249–262

    Google Scholar 

  • Simonson BM, Glass BP (2004) Spherule layers—records of ancient impacts. Ann Rev Earth Planet Sci 32:329–361

    Google Scholar 

  • Simonson BM, Sumner DY, Beukes NJ, Johnson S, Gutzmer J (2009) Correlating multiple Neoarchean–Paleoproterozoic impact spherule layers between South Africa and Western Australia. Precamb Res 169:100–111

    Google Scholar 

  • Simonson BM, Hassler SW, Beukes NJ, Sumner DY (2010) Large impacts around the Archaean-Proterozoic boundary—an update. 41st Lunar Planet Sci Conf, 2386.pdf

    Google Scholar 

  • Trendall AF, Blockley JG (1970) The iron formations of the precambrian hamersley group Western Australia. Geol Surv West Aust Bull 119:365

    Google Scholar 

  • Trendall AF, Compspton W, Nelson DR, deLaeter JR, Bennett VC (2004) SHRIMP zircon ages constraining the depositional chronology of the hamersley group Western Australia. Aust J Earth Sci 51:621–644

    Article  Google Scholar 

  • Trendall AF, Nelson DR, deLaeter JR, Hassler SW (1998) Precise zircon U-Pb ages from the marra mamba Iron formation and wittenoom formation, hamersley group, Western Australia. Aust J Earth Sci 45:137–142

    Article  Google Scholar 

  • Van Kranendonk MJ (2000) Geology of the North Shaw 1:100 000 Sheet. Geol Surv West Australia 1:100 000 Geol Series, p 86

    Google Scholar 

  • Van Kranendonk MJ, Hickman AH, Smithies RS, Nelson DR (2002) Geology and tectonic evolution of the Archaean North Pilbara Terrain Pilbara Craton, Western Australia. Econ Geol 97:695–732

    Google Scholar 

  • Vearncombe S, Vearncombe JR, Barley ME (1998) Fault and stratigraphic controls of volcanogenic massive sulphide deposits in the strelley belt, Pilbara Craton, Western Australia. Precamb Res 88:67–82

    Article  Google Scholar 

  • Wallace MW, Gostin VA, Keays RR (1996) Sedimentology of the Neoproterozoic Acraman impact-ejecta horizon South Australia. Aust Geol Surv Org J Aust Geol Geophys 16:443–451

    Google Scholar 

  • Warme JE, Kuehner HC (1998) Anatomy of an anomaly: the devonian catastrophic alamo impact breccia of Southern Nevada. Inter Geol Rev 40:189–216

    Article  Google Scholar 

  • Williams IR (2003) Geology of the Yilgalong 1100 000 Sheet, Western Australian. Geol Surv West Aust 1:100 000 map series

    Google Scholar 

  • Woodhead JD, Hergt JM, Simonson BM (1998) Isotopic dating of an Archaean bolide impact horizon, Hamersley Basin, Western Australia. Geology 26:47–50

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Y Glikson .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Glikson, A.Y. (2013). Precambrian Asteroid Impacts. In: The Asteroid Impact Connection of Planetary Evolution. SpringerBriefs in Earth Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6328-9_8

Download citation

Publish with us

Policies and ethics