Skip to main content

Impact Ejecta and Fallout Units

  • Chapter
  • First Online:
The Asteroid Impact Connection of Planetary Evolution

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

  • 941 Accesses

Abstract

The discovery of altered glass spherules (microkrystites) formed by atmospheric condensation of impact-released vapor at the Cretaceous-Tertiary (K-T) impact boundary by Alvarez et al. (Science 208:1095–1108, 1980) opened the way to the identification of impact ejecta units in Archaean and Proterozoic terrains and thereby investigation of the impact history of the early Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez L, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108

    Article  Google Scholar 

  • Alvarez L, Alvarez W, Asaro F, Michel HV (1982) Iridium anomaly approximately synchronous with terminal Eocene extinctions. Science 216:886–888

    Article  Google Scholar 

  • Becker L, Poreda R, Bunch T (2000) Fullerenes: an extraterrestrial carbon carrier phase for noble gases. Proc Natl Acad Sci 97:2979–2983

    Article  Google Scholar 

  • Bekov GI, Letokhov VS, Radaev VN, Badyukov DD, Nazarov MA (1988) Rhodium distribution at the Cretaceous/Tertiary boundary analyzed by ultrasensitive laser photoionization. Nature 332:146–148

    Article  Google Scholar 

  • Bohor BF, Foord EE, Modreski PJ, Triplehorn DM (1984) Mineralogic evidence for an impact event at the Cretaceous-Tertiary boundary. Science 224:867–869

    Article  Google Scholar 

  • Byerly GR, Lowe DR (1994) Spinels from Archaean impact spherules. Geochim et Cosmochim Acta 58:3469–3486

    Article  Google Scholar 

  • Byerly GR, Lowe DR, Wooden JL, Xie X (2002) A meteorite impact layer 3470 Ma from the Pilbara and Kaapvaal cratons. Science 297:1325–1327

    Article  Google Scholar 

  • Carlisle DB, Braman DR (1991) Nanometre-size diamonds in the Cretaceous-Tertiary boundary clay of Alberta. Nature 352:708–709

    Article  Google Scholar 

  • Claeys P, Casier JG, Margolis SV (1992) Microtektites and mass extinctions evidence for a late Devonian asteroid impact. Science 257:1102–1104

    Article  Google Scholar 

  • Farley KA, Montanari A, Hoemaker EM, Shoemaker C (1998) Geochemical evidence for a comet shower in the Late Eocene. Science 280:1250–1253

    Article  Google Scholar 

  • French BM (1998) Traces of catastrophe—a handbook of shock metamorphic effects in terrestrial meteorite impact structures. Lunar Planet Sci Inst Contrib 954:120

    Google Scholar 

  • Glass BP, Burns CA (1988) Microkrystites: a new term for impact-produced glassy spherules containing primary crystallites. In: Proceedings of lunar planet science conference, vol 18. pp 455–458

    Google Scholar 

  • Glass BP, Wu J (1993) Coesite and shocked quartz discovered in the Australasian and North American microtektite layers. Geology 21:435–438

    Article  Google Scholar 

  • Glikson AY (2004) Bedout: a possible end-permian impact crater offshore of northwestern Australia. Science 306:613

    Article  Google Scholar 

  • Glikson AY (2005a) Geochemical and isotopic signatures of Archaean to early Proterozoic extraterrestrial impact ejecta/fallout units. Aust J Earth Sci 52:785–799

    Article  Google Scholar 

  • Glikson AY (2005b) Geochemical signatures of Archaean to early Proterozoic Mare-scale oceanic impact basins. Geology 133:125–128

    Article  Google Scholar 

  • Glikson AY, Allen C (2004) Iridium anomalies and fractionated siderophile element patterns in impact ejecta, Brockman Iron Formation, Hamersley Basin, Western Australia: evidence for a major asteroid impact in simatic crustal regions of the early Proterozoic earth. Earth Planet Sci Lett 20:247–264

    Article  Google Scholar 

  • Gostin VA, Keays RR, Wallace MW (1989) Iridium anomaly from the Acraman ejecta horizon: impacts can produce sedimentary iridium peaks. Nature 340:542–544

    Article  Google Scholar 

  • Gostin VA, McKirdy DM, Webster LJ, Williams GE (2010) Ediacaran ice-rafting and coeval asteroid impact, South Australia: insights into the terminal Proterozoic environment. Aust J Earth Sci 57(7):859–869

    Article  Google Scholar 

  • Grieve RAF, Dence MR (1979) The terrestrial cratering record: II the crater production rate. Icarus 38:230–242

    Article  Google Scholar 

  • Grieve RAF, Pesonen LJ (1996) Terrestrial impact craters: their spatial and temporal distribution and impacting bodies. Earth Moon Planets 72:357–376

    Article  Google Scholar 

  • Grieve RAF, Pilkington M (1996) The signature of terrestrial impacts. Aust Geol Surv J Aust Geol Geophys 16:399–420

    Google Scholar 

  • Grieve RAF, Shoemaker EM (1994) The record of past impacts on Earth. University of Arizona Press, Tucson, pp 417–462

    Google Scholar 

  • Hassler SW, Robey HF, Simonson BM (2000) Bedforms produced by impact-generated tsunami, ~2.6 Ga Hamersley Basin, Western Australia. Geology 135:283–294

    Google Scholar 

  • Heymann D, Chibante LPF, Brooks RR, Wolbach WS, Smalley RE (1994) Fullerenes in the Cretaceous-Tertiary boundary layer. Science 265:645–647

    Article  Google Scholar 

  • Hildebrand A, Boynton WV (1990) Proximal Cretaceous-Tertiary boundary impact deposits in the Caribbean. Science 248:843–847

    Article  Google Scholar 

  • Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo ZA, Jacobsen SB, Boynton WV (1991) A possible Cretaceous-Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology 19:867–871

    Article  Google Scholar 

  • Izett GA, Maurrasse FJ-MR, Lichte FE, Meeker GP, Bates R (1990) Tektites in Cretaceous-Tertiary boundary rocks on Haiti. US Geological Survey Open-File Report 90–635

    Google Scholar 

  • Kelley SP, Gurov E (2002) The Boltysh another end-Cretaceous impact. Meteor Planet Sci 37:1031–1044

    Article  Google Scholar 

  • Kyte FT, Smit J (1986) Regional variations in spinel compositions: an important key to the Cretaceous/Tertiary event. Geology 14:485–487

    Article  Google Scholar 

  • Kyte FT, Zhou Z, Wasson JT (1980) Siderophile enriched sediments from the Cretaceous-Tertiary boundary. Nature 288:651–656

    Article  Google Scholar 

  • Kyte FT, Shukolyukov A, Lugmair GW, Lowe DR, Byerly GR (2003) Early Archaean spherule beds: chromium isotopes confirm origin through multiple impacts of projectiles of carbonaceous chondrite type. Geology 31:283–286

    Article  Google Scholar 

  • Lowe DR, Byerly GR (1986) Early Archean silicate spherules of probable impact origin South Africa and Western Australia. Geology 14:83–86

    Article  Google Scholar 

  • Luck JM, Turekian KK (1983) 187-osmium-186/osmium in manganese nodules and the Cretaceous-Tertiary boundary. Science 222:613–615

    Article  Google Scholar 

  • McHone JF, Nieman RA, Lewis CF, Yates AM (1989) Stishovite at the Cretaceous-Tertiary boundary, Raton, New Mexico. Science 243:1182–1184

    Article  Google Scholar 

  • Melosh HJ, Vickery AM (1991) Melt droplet formation in energetic impact events. Nature 350:494–497

    Article  Google Scholar 

  • Robin E, Boclet D, Bonte P, Froget L, Jehanno C, Rocchia R (1991) The stratigraphic distribution of Ni-rich spinels in Cretaceous-Tertiary boundary rocks at El-Kef (Tunisia) Caravaca, Spain, and Hole-761C (Leg-122). Earth Planet Sci Lett 107:715–721

    Article  Google Scholar 

  • Scheffers A, Kelleat D (2002) Sedimentologic and geomorphologic tsunami imprints worldwide—a review. Earth Sci Rev 63:83–92

    Article  Google Scholar 

  • Shoemaker EM, Shoemaker CS (1996) The Proterozoic impact record of Australia. Aust Geol Surv Org J Aust Geol Geophys 16:379–398

    Google Scholar 

  • Shukolyukov A, Kyte FT, Lugmair GW, Lowe DR, Byerly GR (2000) The oldest impact deposits on Earth. In: Koeberl C, Gilmour I (eds) Lecture notes in Earth science 92: impacts and the early Earth. Springer, Berlin, pp 99–116

    Google Scholar 

  • Simonson BM (1992) Geological evidence for an early Precambrian microtektite strewn field in the Hamersley Basin of Western Australia. Geol Soc Am Bull 104:829–839

    Article  Google Scholar 

  • Simonson BM, Glass BP (2004) Spherule layers—records of ancient impacts. Ann Rev Earth Planet Sci 32:329–361

    Article  Google Scholar 

  • Simonson BM, Harnik P (2000) Have distal impact ejecta changed through geologic time? Geology 28:975–978

    Article  Google Scholar 

  • Simonson BM, Hassler SW (1997) Revised correlations in the early Precambrian Hamersley Basin based on a horizon of resedimented impact spherules. Aust J Earth Sci 44:37–48

    Article  Google Scholar 

  • Simonson BM, Davies D, Hassler SW (2000a) Discovery of a layer of probable impact melt spherules in the late Archaean Jeerinah Formation, Fortescue Group, Western Australia. Aust J Earth Sci 47:315–325

    Article  Google Scholar 

  • Simonson BM, Hornstein M, Hassler SW (2000b) Particles in late Archean Carawine Dolomite, Western Australia, resemble Muong Nong-type tektites. In: Gilmour I, Koeberl C (eds) Impacts and the early earth. Springer, Berlin, pp 181–214

    Chapter  Google Scholar 

  • Simonson BM, Koeberl C, McDonald I, Reimold WU (2000c) Geochemical evidence for an impact origin for a late Archean spherule layer Transvaal supergroup South Africa. Geology 28:1103–1106

    Article  Google Scholar 

  • Simonson BM, Cardiff M, Schubel KA (2001) New evidence that a spherule layer in the late Archaean Jeerinah Formation of Western Australia was produced by a major impact. In: 32nd lunar planetary science conference abstracts, lunar and planetary institute contribution 1080, Houston

    Google Scholar 

  • Smit J, Klaver G (1981) Sanidine spherules at the Cretaceous-Tertiary boundary indicate a large impact event. Nature 292:47–49

    Article  Google Scholar 

  • Smit J, Montanari A, Swinburne NHM, Alvarez W, Hildebrand AR, Margolis SV, Claeys P, Lowrie W, Asaro F (1992) Tektite-bearing deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico. Geology 20:99–103

    Article  Google Scholar 

  • Smit J, Roep TB, Alvarez W, Claeys P, Montanari A (1994a) Deposition of channel deposits near the Cretaceous-Tertiary boundary in northeastern Mexico catastrophic or normal sedimentary deposits and is there evidence for Cretaceous-Tertiary boundary-age deep-water deposits in the Caribbean and Gulf of Mexico?: comment. Geology 22:953–954

    Article  Google Scholar 

  • Smit J, Roep TB, Alvarez W, Claeys P, Montanari S, Grajales M (1994b) Impact tsunami-generated clastic beds at the KT boundary of the Gulf coastal plain A synthesis of old and new outcrops. In: New developments regarding the KT event and other catastrophes in Earth history. Lunar Planet Inst Houston Contrib 825:117–119

    Google Scholar 

  • Trendall AF, Nelson DR, deLaeter JR, Hassler SW (1998) Precise zircon U-Pb ages from the Marra Mamba Iron Formation and Wittenoom Formation, Hamersley Group, Western Australia. Aust J Earth Sci 45:137–142

    Article  Google Scholar 

  • Wallace MW, Gostin VA, Keays RR (1990) Spherules and shard-like clasts from the late Proterozoic Acraman impact ejecta horizon South Australia. Meteoritics 25:161–165

    Article  Google Scholar 

  • Wallace MW, Gostin VA, Keays RR (1996) Sedimentology of the Neoproterozoic Acraman impact-ejecta horizon South Australia. Aust Geol Surv Org J Aust Geol Geophys 16:443–451

    Google Scholar 

  • Wang K (1992) Glassy microspherules (microtektites) from an upper Devonian limestone. Science 256:1547–1550

    Article  Google Scholar 

  • Wdowiak TJ, Armendarez LP, Agresti DG, Wade ML, Wdowiak SY, Claeys P, Izett G (2001) Presence of an iron-rich nanophase material in the upper layer of the Cretaceous-Tertiary boundary clay. Meteor Planet Sci 36:123–133

    Article  Google Scholar 

  • Zhao M, Bada JL (1989) Extraterrestrial amino acids in Cretaceous/Tertiary boundary sediments at Stevns Klint, Denmark. Nature 339:463–465

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Y. Glikson .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Glikson, A.Y. (2013). Impact Ejecta and Fallout Units. In: The Asteroid Impact Connection of Planetary Evolution. SpringerBriefs in Earth Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6328-9_6

Download citation

Publish with us

Policies and ethics