Skip to main content

Uniformitarian Models and the Role of Asteroid Impacts in Earth Evolution

  • Chapter
  • First Online:
The Asteroid Impact Connection of Planetary Evolution

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

  • 936 Accesses

Abstract

The progressive identification of impact ejecta units in early greenstone belts, testifying to ongoing bombardment during the mid-Archaean and late-Archaean, raises questions regarding uniformitarian and plate tectonic models of early crustal evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alt AD, Sears JW, Hyndman DW (1988) Terrestrial mare: the origins of large basalt plateaus hotspot tracks and spreading ridges. J Geol 96:647–662

    Article  Google Scholar 

  • Anhaeusser CR (1973) The evolution of the early Precambrian crust of southern Africa. Phil Trans Roy Soc London A273:359–388

    Article  Google Scholar 

  • Bleeker W (2002) Archaean tectonics: a review with illustrations from the Slave Craton. In: The early Earth: physical chemical and biological development, Fowler CMR (ed). Geol Soc. London Spec Publ 199:151–181

    Article  Google Scholar 

  • Boslough MB, Chael EP, Trucano TG, Kipp PP, Crawford DA (1994) Axial focusing of impact energy in the Earth’s interior: proof-of-principle tests of a new hypothesis. In: new developments regarding the KT event and other catastrophes in earth history. Lunar Planet Sci Instit Contrib 825:14–16

    Google Scholar 

  • Bridgewater D, Collerson KD (1976) The major petrological and geochemical characters of the 3600 my Uivak gneisses from Labrador. Contrib Mineral Petrol 54:43–56

    Google Scholar 

  • Campbell IH, Davies GF (2006) Do mantle plumes exist? Episodes 29:162–168

    Google Scholar 

  • Card KD (1990) A review of the superior province of the Canadian Shield—a product of Archaean accretion. Precam Res 48:99–156

    Article  Google Scholar 

  • Chadwick B, Ramakrishna M, Viswanatha MN, Murthy VS (1978) Structural studies in the Archaean Sargur and Dharwar supracrustal rocks of the Karnataka Craton. J Geol Soc India 29:531–542

    Google Scholar 

  • Compston W, Kroner A (1988) Multiple zircon growth within early Archaean tonalitic gneiss from the ancient gneiss complex Swaziland. Earth Planet Sci Lett 87:13–28

    Article  Google Scholar 

  • Compston W, Williams IS, Campbell IH, Gresham JJ (1986) Zircon xenocrysts from the Kambalda volcanics: age constraints and direct evidence of an older continental crust below the Kambalda–Norseman greenstones. Earth Planet Sci Lett 76:299–311

    Article  Google Scholar 

  • Condie KC (1995) Episodic ages of greenstone: a key to mantle dynamics? Geophys Res Lett 22:2215–2218

    Article  Google Scholar 

  • Courtillot V, Jaupart C, Manughetti IT, Tapponnier P, Besse J (1999) On causal links between flood basalts and continental breakup. Earth Planet Sci Lett 166:177–196

    Article  Google Scholar 

  • Davies GF (1999) Dynamic Earth: plates plumes and mantle convection. Cambridge University Press, Cambridge 472 p

    Book  Google Scholar 

  • Dietz RS (1964) Sudbury structure as an astroblemes. J Geol 72:412–434

    Article  Google Scholar 

  • Engel AEJ (1966) The Barberton Mountain Land: clues to the differentiation of the Earth, vol 27. University of Witwatersrand Information Circle, South Africa

    Google Scholar 

  • Folinsbee RE, Baadsgaard H, Cumming GL, Green DC (1968) A very ancient island arc. Am Geophys Union Monogr 12:441–448

    Google Scholar 

  • Glikson AY (1972) Early Precambrian evidence of a primitive ocean crust and island nuclei of sodic granite. Geol Soc Am Bull 83:3323–3344

    Article  Google Scholar 

  • Glikson AY (1980) Uniformitarian assumptions plate tectonics and the Precambrian Earth. In: Kroner A (ed) Precambrian plate tectonics, Elsevier, Amsterdam, pp 91–104

    Google Scholar 

  • Glikson AY (1984) Significance of early Archaean mafic–ultramafic xenolith patterns. In: Kroner A, Goodwin AM, Hanson GN (eds) Archaean geochemistry. Springer, Berlin, pp 263–280

    Google Scholar 

  • Glikson AY (1993) Asteroids and early Precambrian crustal evolution. Earth Sci Rev 35:285–319

    Article  Google Scholar 

  • Glikson AY (1994) Archaean spherule beds: impact or terrestrial origin? Earth Planet Sci Lett 26:493–496

    Article  Google Scholar 

  • Glikson AY (1996) Mega-impacts and mantle melting episodes: tests of possible correlations. AGSO J Aust Geol Geophys 16:587–608

    Google Scholar 

  • Glikson AY (1999) Oceanic mega-impacts and crustal evolution. Geology 27:341–387

    Article  Google Scholar 

  • Glikson AY (2001) The astronomical connection of terrestrial evolution crustal effects of post-3.8 Ga mega-impact clusters and evidence for major 3.2 Ga bombardment of the Earth–Moon system. J Geodynamics 32:205–229

    Article  Google Scholar 

  • Glikson AY (2005a) Geochemical and isotopic signatures of Archaean to early Proterozoic extraterrestrial impact ejecta/fallout units. Aust J Earth Sci 52:785–799

    Article  Google Scholar 

  • Glikson AY (2005b) Geochemical signatures of Archaean to early Proterozoic mare-scale oceanic impact basins. Geology 133:125–128

    Article  Google Scholar 

  • Glikson AY (2007) Early Archaean asteroid impacts on Earth: stratigraphic and isotopic age correlations and possible geodynamic consequences In: Van Kranendonk MJ, Smithies H, Bennett VC (eds) Earth’s oldest rocks. Developments in Precambrian geology, vol 15. Elsevier, Amsterdam, pp 1087–1103

    Google Scholar 

  • Glikson AY (2008) Field evidence of Eros-scale asteroids and impact-forcing of Precambrian geodynamic episodes Kaapvaal (South Africa) and Pilbara (Western Australia) Cratons. Earth Planet Sci Lett 267:558–570

    Article  Google Scholar 

  • Goodwin AM (1974) Precambrian belts plumes and shield development. Am J Sci 274:987–1028

    Article  Google Scholar 

  • Green DH (1972) Archaean greenstone belts may include terrestrial equivalents of lunar Mare? Earth Planet Sci Lett 15:263–270

    Article  Google Scholar 

  • Green DH (1981) Petrogenesis of Archaean ultramafic magmas and implications for Archaean tectonics. In: Kroner A (ed) Precambrian plate tectonics. Elsevier, Amsterdam, pp 469–489

    Google Scholar 

  • Grieve RAF (1980) Impact bombardment and its role in proto-continental growth of the early Earth. Precamb Res 10:217–248

    Article  Google Scholar 

  • Griffiths RW, Campbell IH (1991) Interaction of mantle plume heads with the Earth’s surface and onset of small-scale convection. J Geophys Res 96:18295–18310

    Article  Google Scholar 

  • Hamilton WB (1998) Archaean magmatism and deformation were not products of plate tectonics. Precamb Res 91:143–179

    Article  Google Scholar 

  • Harley SL, Kelley NM (2007) Ancient Antarctica: the Archaean of the East Antarctic shield In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks. Developments in Precambrian geology, vol 15. Elsevier Amsterdam, pp 149–186

    Google Scholar 

  • Harrison TM, Blichert-Toft J, Muller W, Albarede F, Holdren P, Mojzsis SJ (2005) Heterogeneous Hadean hafnium: evidence of continental crust by 4.4–4.5 Ga. Science 310:1947–1950

    Article  Google Scholar 

  • Hickman AH (1981) Crustal evolution of the Pilbara Block Western Australia. Geol Soc Aust Sp Publ 7:57–69

    Google Scholar 

  • Hickman AH (2004) Two contrasting granite–greenstone terrains in the Pilbara Craton Australia: evidence for vertical and horizontal tectonic regimes prior to 2900 Ma. Precam Res 131:153–172

    Article  Google Scholar 

  • Hickman AH, Van Kranendonk MJ (2004) Diapiric processes in the formation of the Archaean continental crust east Pilbara granite-greenstone terrain Australia. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian Earth: tempos and events. Developments in Precambrian geology, vol 27. Elsevier, Amsterdam, pp 54–75

    Google Scholar 

  • Hill RI (1991) Starting plumes and continental breakup. Earth Planet Sci Lett 104:398–416

    Article  Google Scholar 

  • Hughs HG, App FN, McGetchin TN (1977) Global seismic effects of basin-forming impacts. Physics Earth Planet Inter 15:251–263

    Article  Google Scholar 

  • Hunter DR (1970) The ancient gneiss complex in Swaziland. Trans Geol Soc South Afr 73:105–107

    Google Scholar 

  • Hunter DR (1974) Crustal development in the Kaapvaal Craton: part 1—the Archaean. Precamb Res 1:259–294

    Article  Google Scholar 

  • Iizuka T, Komiya AT, Maruyama S (2007) The early Archaean Acasta gneiss complex: geological geochronological and isotopic studies and implications for early crustal evolution. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks. Developments in Precambrian geology, vol 15. Elsevier, Amsterdam, pp 127–148

    Google Scholar 

  • James DE, Fouch MJ (2002) Formation and evolution of Archaean cratons: insights from southern Africa. In: Fowler CMR (ed) The early earth: physical chemical and biological development. Geol Soc of London Sp Publ 199:91–103

    Google Scholar 

  • Jones AG (1987) Are impact-generated lower crustal faults observable? Earth Planet Sci Lett 85:248–252

    Article  Google Scholar 

  • Kamber BS (2007) The enigma of the terrestrial protocrust: evidence for its former existence and importance of its complete disappearance In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks. Developments in Precambrian geology, vol 15. Elsevier, Amsterdam, pp 75–90

    Google Scholar 

  • Kroner A, Hegner E, Wendt JI, Byerly GR (1996) The oldest part of the Barberton granitoid–greenstone terrain South African: evidence for crust formation between 3.5 and 3.7 Ga Precamb Res 78:105–124

    Google Scholar 

  • Lowe DR, Byerly GR (2010) Did the LHB end not with a bang but with a whimper? 41st Lunar Planet Sci Conf 2563pdf

    Google Scholar 

  • Lyell C (1830) The principles of geology, Vol 2. Murray, London

    Google Scholar 

  • Macgregor AM (1952) Some milestones in the Precambrian of southern Rhodesia: anniversary address by the President. Proc Geol Soc South Afr IIV:xxvii–lxxiv

    Google Scholar 

  • Marvin UB (1990) Impact and its revolutionary implications for geology. In: Sharpton VL, Ward PD (eds) Global catastrophes in Earth history: an interdisciplinary conference on impacts volcanism and mass mortality. Geol Soc of Am Sp Pap 247:147–154

    Google Scholar 

  • McCulloch MT, Bennett VC (1994) Progressive growth of the Earth’s continental crust and depleted mantle: geochemical constraints. Geochim et Cosmochim Acta 58:4717–4738

    Article  Google Scholar 

  • Moorbath S (1975) Evolution of Precambrian crust from strontium isotopic evidence. Nature 254:395–398

    Article  Google Scholar 

  • Moorbath S (1977) Ages isotopes and the evolution of the Precambrian continental crust. Chem Geol 20:151–187

    Article  Google Scholar 

  • Morgan WJ (1981) Hotspot tracks and the opening of the Atlantic and Indian oceans In: Emiliani E (ed) The sea, vol 7. Wiley Interscience, New York, pp 443–487

    Google Scholar 

  • Myers JS (1995) The generation and assembly of an Archaean supercontinents: evidence from the Yilgarn craton Western Australia. Geol Soc London Sp Publ 95:1439–1454

    Google Scholar 

  • Naqvi SM (1976) Physical-chemical conditions during the Archaean as indicated by Dharwar geochemistry. In: Windley BF (ed) Early history of the Earth. Wiley, London, pp 289–298

    Google Scholar 

  • Nelson DR (2008) Geochronology of the Archaean of Australia In: De Laeter JR, Gleadow AJW, McDougall I (eds) Geochronology in Australia. Aust J Earth Sci 55:779–793

    Google Scholar 

  • O’Reilly SY, Griffin WL, Pearson NJ, Jackson SE, Belousova EA, Alard O, Saeed A (2008) Taking the pulse of the Earth: linking crustal and mantle events In: De Laeter JR, Gleadow AJW, McDougall I (eds) Geochronology in Australia. Aust J Earth Sci 55:983–996

    Google Scholar 

  • Oberbeck VR, Marshall JR, Aggarval H (1992) Impacts tillites and the breakdown of Gondwanaland. J Geol 101:1–19

    Article  Google Scholar 

  • Oversby VM (1975) Lead isotopic systematics and ages of Archaean acid intrusives in the Kalgoorlie-Norseman area Western Australia. Geochim et Cosmochim Acta 40:1107–1125

    Article  Google Scholar 

  • Pietranik AB, Hawkesworoth CJ, Storey CD, Kemp TI, Sircombe KN, Whitehouse MJ, Bleeker RW (2008) Episodic mafic crust formation from 4.5 to 2.8 Ga: new evidence from detrital zircons Slave craton Canada. Geology 36:875–878

    Article  Google Scholar 

  • Poujol M, Robb LJ, Anhaeusser CR, Gericke B (2003) A review of the geochronological constraints on the evolution of the Kaapvaal Craton South Africa. Precamb Res 127:181–213

    Article  Google Scholar 

  • Richards MA, Duncan RA, Courtillot V (1989) Flood basalts and hot spot tracks: plume heads and tails. Science 246:103–107

    Article  Google Scholar 

  • Ryder G (1990) Lunar samples lunar accretion and the early bombardment of the Moon. Eos (Trans Am Geophys Union) 71:313–322

    Article  Google Scholar 

  • Ryder G (1991) Accretion and bombardment in the Earth–Moon system: the Lunar record. Lunar Planet Sci Instit Contrib 746:42–43

    Google Scholar 

  • Ryder G (1997) Coincidence in the time of the Imbrium Basin impact and Apollo 15 Kreep volcanic series: impact induced melting? Lunar Planet Sci Instit Contrib 790:61–62

    Google Scholar 

  • Smithies RH, Champion DC, Cassidy KF (2003) Formation of Earth’s early Archaean continental crust. Precamb Res 127:89–101

    Article  Google Scholar 

  • Smithies RH, Van Kranendonk MJ, Champion DC (2005) It started with a plume: early Archaean basaltic proto-continental crust. Earth Planet Sci Lett 238:284–297

    Article  Google Scholar 

  • Sun SS, Nesbitt RW (1978) Petrogenesis of Archaean ultrabasic and basic volcanics: evidence from rare earth elements. Contrib Mineral Petrol 65:301–325

    Article  Google Scholar 

  • Sutton J (1971) Some developments in the crust. In: Glover J (ed) Proceedings of symposium on Archaean rocks, Perth. Geol Soc Austr Sp Publ 3:1–10

    Google Scholar 

  • Tarney J, Dalziel IWD, DeWitt (1976) Marginal Basin ‘Rocas Verdes’ complex from south Chile: a model for Archaean greenstone belt formation. In: Windley BF (ed) The early history of the Earth. Wiley, New York, pp 131–146

    Google Scholar 

  • Valley JW (2008) The origin of habitats. Geology 36:911–912

    Article  Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC (2007) Paleoarchaean development of a continental nucleus: the east Pilbara terrain of the Pilbara Craton Western Australia. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks. Developments in Precambrian geology, vol 15. Elsevier, Amsterdam, pp 307–338

    Google Scholar 

  • Viljoen RP, Viljoen MJ (1971) The geological and geochemical evolution of the Onverwacht Group in the Barberton Mountain Land South Africa. In: Glover J (ed) Proceedings of symposium on Archaean rocks, Perth, Geol Soc of Australia Sp Publ 3:133–151

    Google Scholar 

  • Windley BF (1977) The evolving continents. Wiley, London 385 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Y. Glikson .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Glikson, A.Y. (2013). Uniformitarian Models and the Role of Asteroid Impacts in Earth Evolution. In: The Asteroid Impact Connection of Planetary Evolution. SpringerBriefs in Earth Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6328-9_13

Download citation

Publish with us

Policies and ethics