Skip to main content

Role of Stem Cell Niche in the Development of Bone Metastases (An Update)

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 10

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 10))

  • 1426 Accesses

Abstract

Metastases represent the “point of no return” for tumor bearing patients since their occurrence determines a drastic fall of the chance of survival. Given the inexorability of the fate of metastatic patients, many efforts are being made to improve their management and increase their life expectancy and quality. The prevalence of tumor relapse to bone appears to be increasing over the years, likely due to a longer overall survival of patients. A large body of evidence indicates that the preference of tumor cells to metastasize to bone is an addressed event, which relies on specific interactions among them, the bone cells and the bone marrow microenvironment. The bone/bone marrow compartment is unquestionably a “fertile soil” for tumor growth, characterized by a high blood supply and the presence of countless growth factors which are released and activated during bone resorption upon stimulation by tumor cells. In the attempt to identify the crucial mechanisms inducing tumor recurrence in distant organs, recent evidence has demonstrated the key role played by the so-called Cancer Stem Cells (CSCs), a very small cell population in the tumor displaying self-renewal competence, differentiation potential and ability to recapitulate the phenotype of the tumor from which it derives. Cancer cells harboring stem properties have been characterized in several tumors, including those metastasizing to bone, and a causative correlation between the presence of the CSC pool in the bone/marrow and the relapse in this site has been suggested. Emerging researches strongly support the notion that CSCs could compete with the normal stem cells to inhabit the physiologic niche in the bone marrow, being primed by this niche for their proliferation and invasiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H (2005) Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11:1154–1159

    PubMed  CAS  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. PNAS 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  • Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161

    Article  PubMed  CAS  Google Scholar 

  • Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G, Data RH, Cote RJ (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621

    Article  PubMed  CAS  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  • Capulli M, Angelucci A, Driouch K, Garcia T, Clement-Lacroix P, Martella F, Ventura L, Bologna M, Flamini S, Moreschinin O, Lidereau R, Ricevuto E, Muraca M, Teti A, Rucci N (2012) Increased expression of a set of genes enriched in oxygen binding function discloses a predisposition of breast cancer bone metastases to generate metastasis spread in multiple organs. J Bone Miner Res 27(11):2387–2398

    Article  PubMed  CAS  Google Scholar 

  • Clezardin P, Teti A (2007) Bone metastasis: pathogenesis and therapeutic implications. Clin Exp Metastasis 24:599–608

    Article  PubMed  CAS  Google Scholar 

  • Cohnheim J (1867) Ueber entzundung und eiterung. Path Anat Physiol Klein Med 40:1–797

    Google Scholar 

  • Coleman RE (2011) Bone cancer in 2011: prevention and treatment of bone metastases. Nat Rev Clin Oncol 9:76–78

    Article  PubMed  Google Scholar 

  • Collins TA, Berry PA, Hyde C, Stower MJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  PubMed  CAS  Google Scholar 

  • Colombel M, Eaton CL, Hamdy F, Ricci E, van der Pluijm G, Cecchini M, Mege-Lechevallier F, Clezardin P, Thalmann G (2012) Increased expression of putative cancer stem cell markers in primary prostate cancer is associated with progression of bone metastases. Prostate 72:713–720

    Article  PubMed  CAS  Google Scholar 

  • Eaton CL, Colombel M, van der Pluijm G, Cecchini M, Wetterwald A, Lippit J, Rehman I, Hamdy F, Thalman G (2010) Evaluation of the frequency of putative prostate cancer stem cells in the primary and metastatic prostate cancer. Prostate 70:875–882

    PubMed  Google Scholar 

  • Felsher DW (2006) Tumor dormancy. Cell Cycle 5:1808–1811

    Article  PubMed  CAS  Google Scholar 

  • Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    Article  PubMed  CAS  Google Scholar 

  • Guerrouahen BS, Al-Haijji I, Rafii Tabrizi A (2011) Osteoblastic and vascular endothelial niches, their control on normal hematopoietic stem cells and their consequences on the development of leukemia. Stem Cell Int 2011:1–8

    Article  Google Scholar 

  • Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M, Kopp HG, Shido K, Petit I, Yanger K, James D, Witte L, Zhu Z, Wu Y, Pytowski B, Rosenwaks Z, Mittal V, Sato TN, Rafii S (2009) Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4:263–274

    Article  PubMed  CAS  Google Scholar 

  • Joseph J, Shiozawa Y, Jung Y, Kim JK, Pedersen E, Mishra A, Zalucha JL, Wang J, Kellere ET, Pienta KJ, Taichman RS (2012) Disseminated prostate cancer cells can instruct hematopoietic stem and progenitor cells to regulate bone phenotype. Mol Cancer Res 10:282–289

    Article  PubMed  CAS  Google Scholar 

  • Lilly AJ, Johnson WE, Buance CM (2011) The hematopoietic stem cell niche: new insights into the mechanisms regulating hematopoietic stem cell behavior. Stem Cells Int 2011:1–10

    Article  Google Scholar 

  • Ninomiya M, Abe A, Katsumi A, Xu J, Ito M, Arai F, Suda T, Ito M, Kiyoi H, Kinoshita T, Naoe T (2007) Homing, proliferation and survival sites of human leukemia cells in vivo in immunodeficient mice. Leukemia 21:136–142

    Article  PubMed  CAS  Google Scholar 

  • Okamoto R, Ueno M, Yamada Y, Takahashi N, Sano H, Suda T, Takakura N (2005) Hematopoietic cells regulate the angiogenic switch during tumorigenesis. Blood 105:2757–2763

    Article  PubMed  CAS  Google Scholar 

  • Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573

    Article  Google Scholar 

  • Polyak K, Hahn WC (2006) Roots and stems: stem cells in cancer. Nat Med 11:296–300

    Article  Google Scholar 

  • Roodman GD (2004) Mechanism of bone metastases. N Engl J Med 350:1655–1664

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Kalikin LM, Mattos AC, Keller ET, Allen MJ, Pienta KJ, McCauley LK (2005) Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology 146:1727–1736

    Article  PubMed  CAS  Google Scholar 

  • Sethi N, Dai X, Winter CG, Kang Y (2011) Tumor–derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19:192–205

    Article  PubMed  CAS  Google Scholar 

  • Shiozawa Y, Havens AM, Jung Y, Ziegler AM, Pedersen EA, Wang J, Wang J, Lu G, Roodman GD, Loberg RD, Pienta KJ, Taichman RS (2008) Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J Cell Biochem 105:370–380

    Article  PubMed  CAS  Google Scholar 

  • Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM, Pienta MJ, Song J, Wang J, Loberg RD, Krebsbach PH, Pienta KJ, Teichman RS (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121:1298–1312

    Article  PubMed  CAS  Google Scholar 

  • Teti A (2011) Bone development: overview of bone cells and signaling. Curr Osteoporos Rep 9:264–273

    Article  PubMed  Google Scholar 

  • van den Hogen C, van der Host G, Cheung H, Bujis JT, Lippitt JM, Guzman-Ramirez N, Hamdy FC, Eaton CL, Thalmann GN, Cecchini MG, Pelger RCM, van der Pluijm G (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 70:5163–5173

    Article  Google Scholar 

  • Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S, Pear WS, Bernstein ID (2000) Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 6:1278–1281

    Article  PubMed  CAS  Google Scholar 

  • Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103:3258–3264

    Article  PubMed  CAS  Google Scholar 

  • Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea-a paradigm shift. Cancer Res 66:1883–1890

    Article  PubMed  CAS  Google Scholar 

  • Yin T, Li L (2006) The stem cell niche in bone. J Clin Invest 116:1195–1201

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Schuertz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter BcrpI/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted with Dr. Rita Di Massimo for the editing of this manuscript. The original work has been supported by grants from the “Associazione Italiana per la Ricerca sul Cancro” (AIRC) to NR and AT, and by the Swiss Bridge Award to AT.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rucci, N., Teti, A. (2013). Role of Stem Cell Niche in the Development of Bone Metastases (An Update). In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 10. Stem Cells and Cancer Stem Cells, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6262-6_21

Download citation

Publish with us

Policies and ethics