Skip to main content

Thyroid Cancer Stem Cells – Strategies for Therapeutic Targeting

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 10

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 10))

  • 1454 Accesses

Abstract

Thyroid cancer stem cells are capable of sustaining neoplastic growth. Because they are often resistant to chemotherapy and radiation therapy, they present a major obstacle to effective thyroid cancer treatment. This review discusses the recent discovery of cancer stem cells in many subtypes of thyroid cancer, including papillary, follicular, medullary and anaplastic. It emphasizes potential new therapeutic strategies targeting multi-drug resistance, DNA repair and oncogenic signaling pathways activated in the stem cells during cancer progression. These new, targeted therapies, if realized, may improve the efficacy of current therapeutic treatments against advanced thyroid cancer, prevent disease relapse and enhance patient survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbosh PH, Li X, Li L, Gardner TA, Kao C, Nephew KP (2007) A conditionally replicative, Wnt/beta-catenin pathway-based adenovirus therapy for anaplastic thyroid cancer. Cancer Gene Ther 14:399–408

    Article  PubMed  CAS  Google Scholar 

  • Boman BM, Wicha MS (2008) Cancer stem cells: a step toward the cure. J Clin Oncol 26:2795–2799

    Article  PubMed  Google Scholar 

  • Bulgin D, Podtcheko A, Takakura S, Mitsutake N, Namba H, Saenko V, Ohtsuru A, Rogounovitch T, Palona I, Yamashita S (2006) Selective pharmacologic inhibition of c-Jun NH2-terminal kinase radiosensitizes thyroid anaplastic cancer cell lines via induction of terminal growth arrest. Thyroid 16:217–224

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Xu S, Renko K, Derwahl M (2012) Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. J Clin Endocrinol Metab 97:E510–E520

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Wu Q, Huang Z, Guryanova OA, Huang Q, Shou W, Rich JN, Bao S (2011) L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1. EMBO J 30:800–813

    Article  PubMed  CAS  Google Scholar 

  • Cho NL, Lin CI, Whang EE, Carothers AM, Moore FD Jr, Ruan DT (2010) Sulindac reverses aberrant expression and localization of beta-catenin in papillary thyroid cancer cells with the BRAFV600E mutation. Thyroid 20:615–622

    Article  PubMed  CAS  Google Scholar 

  • Chung HK, Yi YW, Jung NC, Kim D, Suh JM, Kim H, Park KC, Kim DW, Hwang ES, Song JH et al (2003) Gadd45gamma expression is reduced in anaplastic thyroid cancer and its reexpression results in apoptosis. J Clin Endocrinol Metab 88:3913–3920

    Article  PubMed  CAS  Google Scholar 

  • Gatzidou E, Michailidi C, Tseleni-Balafouta S, Theocharis S (2010) An epitome of DNA repair related genes and mechanisms in thyroid carcinoma. Cancer Lett 290:139–147

    Article  PubMed  CAS  Google Scholar 

  • Gimm O (2001) Thyroid cancer. Cancer Lett 163:143–156

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Yoshida H, Uruno T, Nakano K, Miya A, Kobayashi K, Yokozawa T, Matsuzuka F, Matsuura N, Kakudo K et al (2003) Survivin expression is significantly linked to the dedifferentiation of thyroid carcinoma. Oncol Rep 10:1337–1340

    PubMed  Google Scholar 

  • Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM, Hsu L, Hung MC, Hortobagyi GN, Gonzalez-Angulo AM (2009) Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 27:3297–3302

    Article  PubMed  CAS  Google Scholar 

  • Kaifi JT, Reichelt U, Quaas A, Schurr PG, Wachowiak R, Yekebas EF, Strate T, Schneider C, Pantel K, Schachner M et al (2007) L1 is associated with micrometastatic spread and poor outcome in colorectal cancer. Mod Pathol 20:1183–1190

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Min JK, Liang ZL, Lee K, Lee JU, Bae KH, Lee MH, Lee SE, Ryu MJ, Kim SJ et al (2012) Aberrant L1 cell adhesion molecule affects tumor behavior and chemosensitivity in anaplastic thyroid carcinoma. Clin Cancer Res 18:3071–3078

    Article  PubMed  CAS  Google Scholar 

  • Lin RY (2011) Thyroid cancer stem cells. Nat Rev Endocrinol 7:609–616

    Article  PubMed  CAS  Google Scholar 

  • Malaguarnera R, Frasca F, Garozzo A, Giani F, Pandini G, Vella V, Vigneri R, Belfiore A (2011) Insulin receptor isoforms and insulin-like growth factor receptor in human follicular cell precursors from papillary thyroid cancer and normal thyroid. J Clin Endocrinol Metab 96:766–774

    Article  PubMed  CAS  Google Scholar 

  • Meng Z, Mitsutake N, Nakashima M, Starenki D, Matsuse M, Takakura S, Namba H, Saenko V, Umezawa K, Ohtsuru A et al (2008) Dehydroxymethylepoxyquinomicin, a novel nuclear Factor-kappaB inhibitor, enhances antitumor activity of taxanes in anaplastic thyroid cancer cells. Endocrinology 149:5357–5365

    Article  PubMed  CAS  Google Scholar 

  • Moitra K, Lou H, Dean M (2011) Multidrug efflux pumps and cancer stem cells: insights into multidrug resistance and therapeutic development. Clin Pharmacol Ther 89:491–502

    Article  PubMed  CAS  Google Scholar 

  • Rao AS, Kremenevskaja N, von Wasielewski R, Jakubcakova V, Kant S, Resch J, Brabant G (2006) Wnt/beta-catenin signaling mediates antineoplastic effects of imatinib mesylate (gleevec) in anaplastic thyroid cancer. J Clin Endocrinol Metab 91:159–168

    Article  PubMed  CAS  Google Scholar 

  • Rice PL, Kelloff J, Sullivan H, Driggers LJ, Beard KS, Kuwada S, Piazza G, Ahnen DJ (2003) Sulindac metabolites induce caspase- and proteasome-dependent degradation of beta-catenin protein in human colon cancer cells. Mol Cancer Ther 2:885–892

    PubMed  CAS  Google Scholar 

  • Smallridge RC, Marlow LA, Copland JA (2009) Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocr Relat Cancer 16:17–44

    Article  PubMed  CAS  Google Scholar 

  • Smith ML, Chen IT, Zhan Q, Bae I, Chen CY, Gilmer TM, Kastan MB, O’Connor PM, Fornace AJ Jr (1994) Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266:1376–1380

    Article  PubMed  CAS  Google Scholar 

  • Smith ML, Ford JM, Hollander MC, Bortnick RA, Amundson SA, Seo YR, Deng CX, Hanawalt PC, Fornace AJ Jr (2000) p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 20:3705–3714

    Article  PubMed  CAS  Google Scholar 

  • Starenki D, Namba H, Saenko V, Ohtsuru A, Yamashita S (2004) Inhibition of nuclear factor-kappaB cascade potentiates the effect of a combination treatment of anaplastic thyroid cancer cells. J Clin Endocrinol Metab 89:410–418

    Article  PubMed  CAS  Google Scholar 

  • Stassi G, Todaro M, Zerilli M, Ricci-Vitiani L, Di Liberto D, Patti M, Florena A, Di Gaudio F, Di Gesu G, De Maria R (2003) Thyroid cancer resistance to chemotherapeutic drugs via autocrine production of interleukin-4 and interleukin-10. Cancer Res 63:6784–6790

    PubMed  CAS  Google Scholar 

  • Stoeck A, Schlich S, Issa Y, Gschwend V, Wenger T, Herr I, Marme A, Bourbie S, Altevogt P, Gutwein P (2006) L1 on ovarian carcinoma cells is a binding partner for Neuropilin-1 on mesothelial cells. Cancer Lett 239:212–226

    Article  PubMed  CAS  Google Scholar 

  • Sugawara I, Arai T, Yamashita T, Yoshida A, Masunaga A, Itoyama S (1994) Expression of multidrug resistance-associated protein (MRP) in anaplastic carcinoma of the thyroid. Cancer Lett 82:185–188

    Article  PubMed  CAS  Google Scholar 

  • Takekawa M, Saito H (1998) A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95:521–530

    Article  PubMed  CAS  Google Scholar 

  • Tartari CJ, Donadoni C, Manieri E, Mologni L, Mina PD, Villa A, Gambacorti-Passerini C (2011) Dissection of the RET/beta-catenin interaction in the TPC1 thyroid cancer cell line. Am J Cancer Res 1:716–725

    PubMed  CAS  Google Scholar 

  • Tirro E, Consoli ML, Massimino M, Manzella L, Frasca F, Sciacca L, Vicari L, Stassi G, Messina L, Messina A et al (2006) Altered expression of c-IAP1, survivin, and Smac contributes to chemotherapy resistance in thyroid cancer cells. Cancer Res 66:4263–4272

    Article  PubMed  CAS  Google Scholar 

  • Todaro M, Iovino F, Eterno V, Cammareri P, Gambara G, Espina V, Gulotta G, Dieli F, Giordano S, De Maria R et al (2010) Tumorigenic and metastatic activity of human thyroid cancer stem cells. Cancer Res 70:8874–8885

    Article  PubMed  CAS  Google Scholar 

  • Vairapandi M, Balliet AG, Fornace AJ Jr, Hoffman B, Liebermann DA (1996) The differentiation primary response gene MyD118, related to GADD45, encodes for a nuclear protein which interacts with PCNA and p21WAF1/CIP1. Oncogene 12:2579–2594

    PubMed  CAS  Google Scholar 

  • Vairapandi M, Azam N, Balliet AG, Hoffman B, Liebermann DA (2000) Characterization of MyD118, Gadd45, and proliferating cell nuclear antigen (PCNA) interacting domains. PCNA impedes MyD118 AND Gadd45-mediated negative growth control. J Biol Chem 275:16810–16819

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Watanabe M, Onodera M, Shimaoka K, Ito K, Fujimoto Y, Itoyama S, Sugawara I (1994) Multidrug resistance gene and P-glycoprotein expression in anaplastic carcinoma of the thyroid. Cancer Detect Prev 18:407–413

    PubMed  CAS  Google Scholar 

  • Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M (2006) Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 66:10269–10273

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Cui D, Xu S, Brabant G, Derwahl M (2010) Doxorubicin fails to eradicate cancer stem cells derived from anaplastic thyroid carcinoma cells: characterization of resistant cells. Int J Oncol 37:307–315

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Hai T, Ye L, Cote GJ (2010) Medullary thyroid carcinoma cell lines contain a self-renewing CD133+ population that is dependent on ret proto-oncogene activity. J Clin Endocrinol Metab 95:439–444

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of R.Y.L. is supported by grants from National Institute of Health (NIH) R01DK068057, the Washington University Institute of Clinical and Translational Sciences grant UL1TR000448 from the National Center for Advancing Translational Sciences (NCATS) of NIH, and the President’s Research Fund of Saint Louis University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reigh-Yi Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lin, RY., Sewell, W., Spradling, K., Reeb, A.N., Li, W. (2013). Thyroid Cancer Stem Cells – Strategies for Therapeutic Targeting. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 10. Stem Cells and Cancer Stem Cells, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6262-6_16

Download citation

Publish with us

Policies and ethics