Skip to main content

Genetic Identification of Human Embryonic Stem Cell-Derived Neural Cell Types Using Bacterial Artificial Chromosomes

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 10

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 10))

  • 1444 Accesses

Abstract

Human embryonic stem cells represent a renewable source of pluripotent cells which can give rise to endodermal, mesodermal and ectodermal lineages. Not surprisingly, they have received enormous attention in the context of regenerative medicine. However, harnessing their tremendous potential requires a thorough understanding of their biology and the mechanisms that govern their pluripotency. Directed in vitro differentiation of human embryonic stem cells is typically based on recapitulating biological processes that take place during normal mammalian development. Unfortunately, differentiation of human embryonic stem cells to specific cell types is plagued by low yields and heterogeneous cell populations. This chapter will describe how the differentiation of human embryonic stem cells can be tracked using recombinant bacterial artificial chromosomes expressing fluorescent reporters driven by developmentally regulated promoters. As an example, we will describe how this technology can be applied within the neural lineage to track differentiation to neural stem cells and spinal motor neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ables JL, Breunig JJ, Eisch AJ, Rakic P (2011) Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci 12:269–283

    Article  PubMed  CAS  Google Scholar 

  • Arber S, Han B, Mendelsohn M, Smith M, Jessell TM, Sockanathan S (1999) Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23:659–674

    Article  PubMed  CAS  Google Scholar 

  • Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–80

    Google Scholar 

  • Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L (2008) Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 22:152–165

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Maye P (2011) Engineering BAC reporter gene constructs for mouse transgenesis. Methods Mol Biol 693:163–179

    Article  PubMed  CAS  Google Scholar 

  • Goldman S (2005) Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 23:862–871

    Article  PubMed  CAS  Google Scholar 

  • Gong S, Yang XW, Li C, Heintz N (2002) Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kgamma origin of replication. Genome Res 12:1992–1998

    Article  PubMed  CAS  Google Scholar 

  • Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925

    Article  PubMed  CAS  Google Scholar 

  • Gong S, Kus L, Heintz N (2010) Rapid bacterial artificial chromosome modification for large-scale mouse transgenesis. Nat Protoc 5:1678–1696

    Article  PubMed  CAS  Google Scholar 

  • Hu BY, Zhang SC (2009) Differentiation of spinal motor neurons from pluripotent human stem cells. Nat Protoc 4:1295–1304

    Article  PubMed  CAS  Google Scholar 

  • Kageyama R, Ohtsuka T, Kobayashi T (2008) Roles of Hes genes in neural development. Dev Growth Differ 50(Suppl 1):S97–S103

    Article  PubMed  CAS  Google Scholar 

  • Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, Court DL, Jenkins NA, Copeland NG (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Shamy GA, Elkabetz Y, Schofield CM, Harrsion NL, Panagiotakos G, Socci ND, Tabar V, Studer L (2007) Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells 25:1931–1939

    Article  PubMed  CAS  Google Scholar 

  • Li X, Meng G, Krawetz R, Liu S, Rancourt DE (2008) The ROCK inhibitor Y-27632 enhances the survival rate of human embryonic stem cells following cryopreservation. Stem Cells Dev 17:1079–1085

    Article  PubMed  CAS  Google Scholar 

  • Peljto M, Wichterle H (2011) Programming embryonic stem cells to neuronal subtypes. Curr Opin Neurobiol 21:43–51

    Article  PubMed  CAS  Google Scholar 

  • Placantonakis DG, Tomishima MJ, Lafaille F, Desbordes SC, Jia F, Socci ND, Viale A, Lee H, Harrison N, Tabar V, Studer L (2009) BAC transgenesis in human embryonic stem cells as a novel tool to define the human neural lineage. Stem Cells 27:521–532

    Article  PubMed  CAS  Google Scholar 

  • Roy NS, Nakano T, Keyoung HM, Windrem M, Rashbaum WK, Alonso ML, Kang J, Peng W, Carpenter MK, Lin J, Nedergaard M, Goldman SA (2004) Telomerase immortalization of neuronally restricted progenitor cells derived from the human fetal spinal cord. Nat Biotechnol 22:297–305

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y, De Robertis EM (1997) Ectodermal patterning in vertebrate embryos. Dev Biol 182:5–20

    Article  PubMed  CAS  Google Scholar 

  • Shirasaki R, Pfaff SL (2002) Transcriptional codes and the control of neuronal identity. Annu Rev Neurosci 25:251–281

    Article  PubMed  CAS  Google Scholar 

  • Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89:8794–8797

    Article  PubMed  CAS  Google Scholar 

  • Smith JR, Vallier L, Lupo G, Alexander M, Harris WA, Pedersen RA (2008) Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol 313:107–117

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Tomishima MJ, Hadjantonakis AK, Gong S, Studer L (2007) Production of green fluorescent protein transgenic embryonic stem cells using the GENSAT bacterial artificial chromosome library. Stem Cells 25:39–45

    Article  PubMed  CAS  Google Scholar 

  • Vazin T, Freed WJ (2010) Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci 28:589–603

    PubMed  CAS  Google Scholar 

  • Wang Z, Engler P, Longacre A, Storb U (2001) An efficient method for high-fidelity BAC/PAC retrofitting with a selectable marker for mammalian cell transfection. Genome Res 11:137–142

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Longacre A, Engler P (2004) Retrofitting BACs with a selectable marker for transfection. Methods Mol Biol 256:69–76

    PubMed  CAS  Google Scholar 

  • Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686

    Article  PubMed  CAS  Google Scholar 

  • Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397

    Article  PubMed  CAS  Google Scholar 

  • Yang XW, Gong S (2005) An overview on the generation of BAC transgenic mice for neuroscience research. Curr Protoc Neurosci. 5.20.1-5.20.11

    Google Scholar 

  • Yang XW, Model P, Heintz N (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol 15:859–865

    Article  PubMed  CAS  Google Scholar 

  • Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, Hong DW, McManus PM, Katagiri T, Sachidanandan C, Kamiya N, Fukuda T, Mishina Y, Peterson RT, Bloch KD (2008) BMP type I receptor inhibition reduces heterotopic ossification. Nat Med 14:1363–1369

    Article  PubMed  CAS  Google Scholar 

  • Zhang SC, Wernig M, Duncan ID, Brüstle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19:1129–1133

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Aram Modrek for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris G. Placantonakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tokcaer-Keskin, Z., Placantonakis, D.G. (2013). Genetic Identification of Human Embryonic Stem Cell-Derived Neural Cell Types Using Bacterial Artificial Chromosomes. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 10. Stem Cells and Cancer Stem Cells, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6262-6_11

Download citation

Publish with us

Policies and ethics