Skip to main content

The Human Experiment: How We Won’t Win the Rat Race. What Can We Learn from Brain Stimulation in Humans and Rats About Enhancing the Functional Neurobiology of Higher Cognitive Functions?

  • Chapter
  • First Online:
Book cover Cognitive Enhancement

Part of the book series: Trends in Augmentation of Human Performance ((TAHP,volume 1))

Abstract

This chapter addresses neuroenhancement and is divided into three parts. Firstly, neuroenhancement is considered in terms of the current societal context of a growing reliance on high level cognitive functions for economic competition. Then, specific research examples involving an increasingly popular neuroenhancement method, transcranial direct current brain stimulation, are discussed regarding what contributions enhancement technologies can make to these higher level cognitive functions. Speculations are made about the dynamics of relationships between brain structures and functions. The complexity of the involved brain mechanisms is discussed to highlight the intricacy of neural engagement to support these functions. And finally, the indications from empirical research are re-applied to the current state of the systems that employ higher level cognitive functions. Questions are presented about the viability of the so-called “More is Better” (MiB) model, in relation to neuroenhancement and for supporting cognitive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MiB:

“More is Better” (model)

BOLD:

Blood Oxygenation Level Dependent

NE:

neuroenhancement

ADHD:

Attention Deficit Hyper Activity Disorder

tDCS:

Transcranial direct current stimulation

EF:

Executive functions

PFC:

prefrontal cortex

TOL:

Tower of London test

DLPFC:

dorsolateral prefrontal cortex

RT:

reaction times

ACC:

accuracy

rTMS:

transcranial magnetic stimulation

PET:

positron-emission tomography

DA:

dopamine

PISA:

Programme for International Student Assessment

References

  • Aalto S, Bruck A, Laine M, Nagren K, Rinne JO (2005) Frontal and temporal dopamine release during working memory and attention tasks in healthy humans: a positron emission tomography study using the high-affinity dopamine D2 receptor ligand [11C]FLB 457. J Neurosci 25:2471–2477

    Article  PubMed  CAS  Google Scholar 

  • Accornero N, Li Voti P, La Riccia M, Gregori B (2007) Visual evoked potentials modulation during direct current cortical polarization. Exp Brain Res 178:261–266

    Article  PubMed  Google Scholar 

  • Baker SC, Rogers RD, Owen AM, Frith CD, Dolan RJ, Frackowiak RS, Robbins TW (1996) Neural systems engaged by planning: a PET study of the Tower of London task. Neuropsychologia 34:515–526

    Article  PubMed  CAS  Google Scholar 

  • Baldi E, Bucherelli C (2005) The inverted “u-shaped” dose-effect relationships in learning and memory: modulation of arousal and consolidation. Nonlinear Biol Toxicol Med 3:9–21

    Article  CAS  Google Scholar 

  • Beauchamp MH, Dagher A, Panisset M, Doyon J (2008) Neural substrates of cognitive skill learning in Parkinson’s disease. Brain Cogn 68:134–143

    Article  PubMed  CAS  Google Scholar 

  • Braver TS, Cohen JD (2000) On the control of control: the role of dopamine in regulating prefrontal function and working memory. In: Monsell S, Driver J (eds) Attention and performance XVIII; control of cognitive processes. MIT Press, Cambridge, pp 713–737

    Google Scholar 

  • Brenes GA (2003) Cognitive training may improve targeted cognitive functions in older adults. Evid Based Ment Health 6:54

    Article  PubMed  Google Scholar 

  • Bubenikova-Valesova V, Stuchlik A, Svoboda J, Bures J, Vales K (2008) Risperidone and ritanserin but not haloperidol block effect of dizocilpine on the active allothetic place avoidance task. Proc Natl Acad Sci USA 105:1061–1066

    Article  PubMed  CAS  Google Scholar 

  • Cerella J, Onyper SV, Hoyer WJ (2006) The associative-memory basis of cognitive skill learning: adult age differences. Psychol Aging 21:483–498

    Article  PubMed  Google Scholar 

  • Chiesa A, Calati R, Serretti A (2011) Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clin Psychol Rev 31:449–464

    Article  PubMed  Google Scholar 

  • Cho SS, Strafella AP (2009) rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS One 4:e6725

    Article  PubMed  CAS  Google Scholar 

  • Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5:374–381

    Article  PubMed  CAS  Google Scholar 

  • Cimadevilla JM, Wesierska M, Fenton AA, Bures J (2001) Inactivating one hippocampus impairs avoidance of a stable room-defined place during dissociation of arena cues from room cues by rotation of the arena. Proc Natl Acad Sci USA 98:3531–3536

    Article  PubMed  CAS  Google Scholar 

  • Clark VP, Coffman BA, Mayer AR, Weisend MP, Lane TD, Calhoun VD, Raybourn EM, Garcia CM, Wassermann EM (2010) TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage 59(1):117–128

    Article  PubMed  Google Scholar 

  • Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM (2002) Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain 125:584–594

    Article  PubMed  Google Scholar 

  • Cools R, Gibbs SE, Miyakawa A, Jagust W, D’Esposito M (2008) Working memory capacity predicts dopamine synthesis capacity in the human striatum. J Neurosci 28:1208–1212

    Article  PubMed  CAS  Google Scholar 

  • Costa RM (2007) Plastic corticostriatal circuits for action learning: what’s dopamine got to do with it? Ann N Y Acad Sci 1104:172–191

    Article  PubMed  CAS  Google Scholar 

  • Dockery CA, Wesierska MJ (2010) A spatial paradigm, the allothetic place avoidance alternation task, for testing visuospatial working memory and skill learning in rats. J Neurosci Methods 191:215–221

    Article  PubMed  Google Scholar 

  • Dockery CA, Hueckel-Weng R, Birbaumer N, Plewnia C (2009) Enhancement of planning ability by transcranial direct current stimulation. J Neurosci 29:7271–7277

    Article  PubMed  CAS  Google Scholar 

  • Dockery CA, Liebetanz D, Birbaumer N, Malinowska M, Wesierska MJ (2011) Cumulative benefits of frontal transcranial direct current stimulation on visuospatial working memory training and skill learning in rats. Neurobiol Learn Mem 96:452–460

    Article  PubMed  Google Scholar 

  • EEA (2010) Intensified global competition for resources. European Environment Agency, Copenhagen, pp 1–6

    Google Scholar 

  • Elliott R, Baker SC, Rogers RD, O’Leary DA, Paykel ES, Frith CD, Dolan RJ, Sahakian BJ (1997) Prefrontal dysfunction in depressed patients performing a complex planning task: a study using positron emission tomography. Psychol Med 27:931–942

    Article  PubMed  CAS  Google Scholar 

  • Farah MJ, Illes J, Cook-Deegan R, Gardner H, Kandel E, King P, Parens E, Sahakian B, Wolpe PR (2004) Neurocognitive enhancement: what can we do and what should we do? Nat Rev Neurosci 5:421–425

    Article  PubMed  CAS  Google Scholar 

  • Flower K, Li L, Chen CY, Baggott MJ, Galloway GP, Mendelson J (2010) Efficacy, safety, and ethics of cosmetic neurology far from settled. Clin Pharmacol Ther 88:461–463

    Article  PubMed  CAS  Google Scholar 

  • Franke AG, Bonertz C, Christmann M, Huss M, Fellgiebel A, Hildt E, Lieb K (2011) Non-medical use of prescription stimulants and illicit use of stimulants for cognitive enhancement in pupils and students in Germany. Pharmacopsychiatry 44:60–66

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Giavalisco P, Liu X, Catchpole G, Fu N, Ning ZB, Guo S, Yan Z, Somel M, Pääbo S, Zeng R, Willmitzer L, Khaitovich P (2011) Rapid metabolic evolution in human prefrontal cortex. Proc Natl Acad Sci USA 108:6181–6186

    Article  PubMed  CAS  Google Scholar 

  • Galert T, Bublitz JC, Heuser I, Merkel R, Repantis D, Schöne-Seifert B, Talbot D (2009) Das optimierte Gehirn. Ein Memorandum zu Chancen und Risiken des Neuroenhancements. Gehirn Geist 11:40–48

    Google Scholar 

  • Goethals I, Audenaert K, Jacobs F, Van de Wiele C, Ham H, Pyck H, Vandierendonck A, Van Heeringen C, Dierckx R (2005) Blunted prefrontal perfusion in depressed patients performing the Tower of London task. Psychiatry Res 139:31–40

    Article  PubMed  Google Scholar 

  • Goto Y, Grace AA (2005) Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat Neurosci 8:805–812

    Article  PubMed  CAS  Google Scholar 

  • Grafman J, Litvan I, Massaquoi S, Stewart M, Sirigu A, Hallett M (1992) Cognitive planning deficit in patients with cerebellar atrophy. Neurology 42:1493–1496

    Article  PubMed  CAS  Google Scholar 

  • Greely H, Sahakian B, Harris J, Kessler RC, Gazzaniga M, Campbell P, Farah MJ (2008) Towards responsible use of cognitive-enhancing drugs by the healthy. Nature 456:702–705

    Article  PubMed  CAS  Google Scholar 

  • Gurría A (2010) Presentation of the PISA 2010 results. Organisation for Economic Co-operation and Development, Paris

    Google Scholar 

  • Jacobs R, Harvey AS, Anderson V (2007) Executive function following focal frontal lobe lesions: impact of timing of lesion on outcome. Cortex 43:792–805

    Article  PubMed  Google Scholar 

  • Jaeggi SM, Buschkuehl M, Jonides J, Perrig WJ (2008) Improving fluid intelligence with training on working memory. Proc Natl Acad Sci USA 105:6829–6833

    Article  PubMed  CAS  Google Scholar 

  • Jurado MB, Rosselli M (2007) The elusive nature of executive functions: a review of our current understanding. Neuropsychol Rev 17:213–233

    Article  PubMed  Google Scholar 

  • Kimberg DY, Aguirre GK, Lease J, D’Esposito M (2001) Cortical effects of bromocriptine, a D-2 dopamine receptor agonist, in human subjects, revealed by fMRI. Hum Brain Mapp 12:246–257

    Article  PubMed  CAS  Google Scholar 

  • Klingberg T (2010) Training and plasticity of working memory. Trends Cogn Sci 14:317–324

    Article  PubMed  Google Scholar 

  • Kroger JK, Sabb FW, Fales CL, Bookheimer SY, Cohen MS, Holyoak KJ (2002) Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity. Cereb Cortex 12:477–485

    Article  PubMed  Google Scholar 

  • Kroner S, Krimer LS, Lewis DA, Barrionuevo G (2007) Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons. Cereb Cortex 17:1020–1032

    Article  PubMed  Google Scholar 

  • Kuo MF, Paulus W, Nitsche MA (2008) Boosting focally-induced brain plasticity by dopamine. Cereb Cortex 18:648–651

    Article  PubMed  Google Scholar 

  • La Rue A (2010) Healthy brain aging: role of cognitive reserve, cognitive stimulation, and cognitive exercises. Clin Geriatr Med 26:99–111

    Article  PubMed  Google Scholar 

  • Lambourne K, Tomporowski P (2010) The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Res 1341:12–24

    Article  PubMed  CAS  Google Scholar 

  • Lang N, Siebner HR, Ernst D, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004) Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biol Psychiatry 56:634–639

    Article  PubMed  Google Scholar 

  • Larriviere D, Williams MA (2010) Neuroenhancement: wisdom of the masses or “false phronesis”? Clin Pharmacol Ther 88:459–461

    Article  PubMed  CAS  Google Scholar 

  • Larriviere D, Williams MA, Rizzo M, Bonnie RJ (2009) Responding to requests from adult patients for neuroenhancements: guidance of the Ethics, Law and Humanities Committee. Neurology 73:1406–1412

    Article  PubMed  Google Scholar 

  • Lazeron RH, Rombouts SA, Scheltens P, Polman CH, Barkhof F (2004) An fMRI study of planning-related brain activity in patients with moderately advanced multiple sclerosis. Mult Scler 10:549–555

    Article  PubMed  Google Scholar 

  • Leh SE, Petrides M, Strafella AP (2010) The neural circuitry of executive functions in healthy subjects and Parkinson’s disease. Neuropsychopharmacology 35:70–85

    Article  PubMed  Google Scholar 

  • Lemon N, Manahan-Vaughan D (2006) Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. J Neurosci 26:7723–7729

    Article  PubMed  CAS  Google Scholar 

  • Liebetanz D, Fregni F, Monte-Silva KK, Oliveira MB, Amancio-dos-Santos A, Nitsche MA, Guedes RC (2006a) After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression. Neurosci Lett 398:85–90

    Article  PubMed  CAS  Google Scholar 

  • Liebetanz D, Klinker F, Hering D, Koch R, Nitsche MA, Potschka H, Loscher W, Paulus W, Tergau F (2006b) Anticonvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. Epilepsia 47:1216–1224

    Article  PubMed  Google Scholar 

  • Liebetanz D, Koch R, Mayenfels S, Konig F, Paulus W, Nitsche MA (2009) Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol 120:1161–1167

    Article  PubMed  Google Scholar 

  • Martinez-Aran A, Penades R, Vieta E, Colom F, Reinares M, Benabarre A, Salamero M, Gasto C (2002) Executive function in patients with remitted bipolar disorder and schizophrenia and its relationship with functional outcome. Psychother Psychosom 71:39–46

    Article  PubMed  CAS  Google Scholar 

  • McNab F, Varrone A, Farde L, Jucaite A, Bystritsky P, Forssberg H, Klingberg T (2009) Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science 323:800–802

    Article  PubMed  CAS  Google Scholar 

  • Merkel A (1998) The role of science in sustainable development. Science 281:336–337

    Article  CAS  Google Scholar 

  • Merkel A (2007) Opening address at the World Economic Forum, Report. Presidency of the European Union, Davos-Klosters

    Google Scholar 

  • Monte-Silva K, Kuo MF, Thirugnanasambandam N, Liebetanz D, Paulus W, Nitsche MA (2009) Dose-dependent inverted U-shaped effect of dopamine (D2-like) receptor activation on focal and nonfocal plasticity in humans. J Neurosci 29:6124–6131

    Article  PubMed  CAS  Google Scholar 

  • Monte-Silva K, Liebetanz D, Grundey J, Paulus W, Nitsche MA (2010) Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. J Physiol 588:3415–3424

    Article  PubMed  CAS  Google Scholar 

  • Nagano-Saito A, Liu J, Doyon J, Dagher A (2009) Dopamine modulates default mode network deactivation in elderly individuals during the Tower of London task. Neurosci Lett 458:1–5

    Article  PubMed  CAS  Google Scholar 

  • Newman SD, Carpenter PA, Varma S, Just MA (2003) Frontal and parietal participation in problem solving in the Tower of London: fMRI and computational modeling of planning and high-level perception. Neuropsychologia 41:1668–1682

    Article  PubMed  Google Scholar 

  • Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, Henning S, Tergau F, Paulus W (2003) Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 553:293–301

    Article  PubMed  CAS  Google Scholar 

  • Nitsche MA, Doemkes S, Karakose T, Antal A, Liebetanz D, Lang N, Tergau F, Paulus W (2007) Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol 97:3109–3117

    Article  PubMed  CAS  Google Scholar 

  • Nitsche MA, Boggio PS, Fregni F, Pascual-Leone A (2009) Treatment of depression with transcranial direct current stimulation (tDCS): a review. Exp Neurol 219:14–19

    Article  PubMed  Google Scholar 

  • Normann C, Boldt J, Maio G, Berger M (2010) Options, limits and ethics of pharmacological neuroenhancement. Nervenarzt 81:66–74

    Article  PubMed  CAS  Google Scholar 

  • OECD (2010) PISA 2009 results: what students know and can do – student performance in reading, mathematics and science, vol I. OECD, Paris

    Book  Google Scholar 

  • Olesen PJ, Westerberg H, Klingberg T (2004) Increased prefrontal and parietal activity after training of working memory. Nat Neurosci 7:75–79

    Article  PubMed  CAS  Google Scholar 

  • Ottowitz WE, Dougherty DD, Savage CR (2002) The neural network basis for abnormalities of attention and executive function in major depressive disorder: implications for application of the medical disease model to psychiatric disorders. Harv Rev Psychiatry 10:86–99

    Article  PubMed  Google Scholar 

  • Ouellet MC, Beauchamp MH, Owen AM, Doyon J (2004) Acquiring a cognitive skill with a new repeating version of the Tower of London task. Can J Exp Psychol 58:272–288

    Article  PubMed  Google Scholar 

  • Owen AM (1997) Cognitive planning in humans: neuropsychological, neuroanatomical and neuropharmacological perspectives. Prog Neurobiol 53:431–450

    Article  PubMed  CAS  Google Scholar 

  • Owen AM, Downes JJ, Sahakian BJ, Polkey CE, Robbins TW (1990) Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia 28:1021–1034

    Article  PubMed  CAS  Google Scholar 

  • Paffenbarger RS Jr, Hyde RT, Wing AL, Hsieh CC (1986) Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med 314:605–613

    Article  PubMed  Google Scholar 

  • Penner MR, Roth TL, Barnes CA, Sweatt JD (2010) An epigenetic hypothesis of aging-related cognitive dysfunction. Front Aging Neurosci 2:9

    PubMed  Google Scholar 

  • Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, Sloan R, Gage FH, Brown TR, Small SA (2007) An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 104:5638–5643

    Article  PubMed  CAS  Google Scholar 

  • Phillips AG, Ahn S, Floresco SB (2004) Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task. J Neurosci 24:547–553

    Article  PubMed  CAS  Google Scholar 

  • Quednow BB (2010) Ethics of neuroenhancement: a phantom debate. BioSocieties 5:153–156

    Article  Google Scholar 

  • Rainville C, Amieva H, Lafont S, Dartigues JF, Orgogozo JM, Fabrigoule C (2002) Executive function deficits in patients with dementia of the Alzheimer’s type: a study with a Tower of London task. Arch Clin Neuropsychol 17:513–530

    PubMed  Google Scholar 

  • Rasser PE, Johnston P, Lagopoulos J, Ward PB, Schall U, Thienel R, Bender S, Toga AW, Thompson PM (2005) Functional MRI BOLD response to Tower of London performance of first-episode schizophrenia patients using cortical pattern matching. Neuroimage 26:941–951

    Article  PubMed  Google Scholar 

  • Rektorova I, Srovnalova H, Kubikova R, Prasek J (2008) Striatal dopamine transporter imaging correlates with depressive symptoms and tower of London task performance in Parkinson’s disease. Mov Disord 23:1580–1587

    Article  PubMed  Google Scholar 

  • Repantis D, Laisney O, Heuser I (2010a) Acetylcholinesterase inhibitors and memantine for neuroenhancement in healthy individuals: a systematic review. Pharmacol Res 61:473–481

    Article  PubMed  CAS  Google Scholar 

  • Repantis D, Schlattmann P, Laisney O, Heuser I (2010b) Modafinil and methylphenidate for neuroenhancement in healthy individuals: a systematic review. Pharmacol Res 62:187–206

    Article  PubMed  CAS  Google Scholar 

  • Ridding MC, Ziemann U (2010) Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J Physiol 588:2291–2304

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi A, Mandillo S, Oliverio A, Mele A (2007) D1 and D2 receptor antagonist injections in the prefrontal cortex selectively impair spatial learning in mice. Neuropsychopharmacology 32:309–319

    Article  PubMed  CAS  Google Scholar 

  • Rissman J, Gazzaley A, D’Esposito M (2008) Dynamic adjustments in prefrontal, hippocampal, and inferior temporal interactions with increasing visual working memory load. Cereb Cortex 18:1618–1629

    Article  PubMed  Google Scholar 

  • Salehi B, Cordero MI, Sandi C (2010) Learning under stress: the inverted-U-shape function revisited. Learn Mem 17:522–530

    Article  PubMed  Google Scholar 

  • Schlaug G, Renga V (2008) Transcranial direct current stimulation: a noninvasive tool to facilitate stroke recovery. Expert Rev Med Devices 5:759–768

    Article  PubMed  Google Scholar 

  • Seamans JK, Floresco SB, Phillips AG (1998) D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J Neurosci 18:1613–1621

    PubMed  CAS  Google Scholar 

  • Shallice T (1982) Specific impairments of planning. Philos Trans R Soc Lond B Biol Sci 298:199–209

    Article  PubMed  CAS  Google Scholar 

  • Shallice T, Burgess PW (1991) Deficits in strategy application following frontal lobe damage in man. Brain 114(Pt 2):727–741

    Article  PubMed  Google Scholar 

  • Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004) Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24:3379–3385

    Article  PubMed  CAS  Google Scholar 

  • Siebner HR, Hartwigsen G, Kassuba T, Rothwell JC (2009) How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. Cortex 45:1035–1042

    Article  PubMed  Google Scholar 

  • Stagg CJ, Nitsche MA (2011) Physiological basis of transcranial direct current stimulation. Neuroscientist 17:37–53

    Article  PubMed  Google Scholar 

  • Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kincses ZT, Morris PG, Matthews PM, Johansen-Berg H (2009) Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci 29:5202–5206

    Article  PubMed  CAS  Google Scholar 

  • Stefan K, Wycislo M, Gentner R, Schramm A, Naumann M, Reiners K, Classen J (2006) Temporary occlusion of associative motor cortical plasticity by prior dynamic motor training. Cereb Cortex 16:376–385

    Article  PubMed  Google Scholar 

  • Sussman S, Pentz MA, Spruijt-Metz D, Miller T (2006) Misuse of “study drugs”: prevalence, consequences, and implications for policy. Subst Abuse Treat Prev Policy 1:15

    Article  PubMed  Google Scholar 

  • Takano Y, Yokawa T, Masuda A, Niimi J, Tanaka S, Hironaka N (2011) A rat model for measuring the effectiveness of transcranial direct current stimulation using fMRI. Neurosci Lett 491:40–43

    Article  PubMed  CAS  Google Scholar 

  • Thirugnanasambandam N, Grundey J, Paulus W, Nitsche MA (2011) Dose-dependent nonlinear effect of L-DOPA on paired associative stimulation-induced neuroplasticity in humans. J Neurosci 31:5294–5299

    Article  PubMed  CAS  Google Scholar 

  • Tyson PJ, Laws KR, Roberts KH, Mortimer AM (2004) Stability of set-shifting and planning abilities in patients with schizophrenia. Psychiatry Res 129:229–239

    Article  PubMed  Google Scholar 

  • Ungvari GS, Xiang YT, Tang WK, Shum D (2008) Prospective memory and its correlates and predictors in schizophrenia: an extension of previous findings. Arch Clin Neuropsychol 23:613–622

    Article  PubMed  Google Scholar 

  • Unterrainer JM, Owen AM (2006) Planning and problem solving: from neuropsychology to functional neuroimaging. J Physiol Paris 99:308–317

    Article  PubMed  Google Scholar 

  • Utz KS, Dimova V, Oppenlander K, Kerkhoff G (2010) Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology – a review of current data and future implications. Neuropsychologia 48:2789–2810

    Article  PubMed  Google Scholar 

  • van den Heuvel OA, Veltman DJ, Groenewegen HJ, Cath DC, van Balkom AJ, van Hartskamp J, Barkhof F, van Dyck R (2005) Frontal-striatal dysfunction during planning in obsessive-compulsive disorder. Arch Gen Psychiatry 62:301–309

    Article  PubMed  Google Scholar 

  • Vines BW, Nair DG, Schlaug G (2006) Contralateral and ipsilateral motor effects after transcranial direct current stimulation. Neuroreport 17:671–674

    Article  PubMed  Google Scholar 

  • Wilens TE, Adler LA, Adams J, Sgambati S, Rotrosen J, Sawtelle R, Utzinger L, Fusillo S (2008) Misuse and diversion of stimulants prescribed for ADHD: a systematic review of the literature. J Am Acad Child Adolesc Psychiatry 47:21–31

    Article  PubMed  Google Scholar 

  • Wilkinson LS, Humby T, Killcross AS, Torres EM, Everitt BJ, Robbins TW (1998) Dissociations in dopamine release in medial prefrontal cortex and ventral striatum during the acquisition and extinction of classical aversive conditioning in the rat. Eur J Neurosci 10:1019–1026

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa H, Dan I, Tsuzuki D, Kato M, Okamoto M, Kyutoku Y, Soya H (2010) Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage 50:1702–1710

    Article  PubMed  Google Scholar 

  • Yerkes RM, Dodson JD (1908) The relation of strength of stimulus to rapidity of habit-formation. J Comp Neurol Psychol 18:459–482

    Article  Google Scholar 

  • Ziemann U, Ilic TV, Pauli C, Meintzschel F, Ruge D (2004) Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J Neurosci 24:1666–1672

    Article  PubMed  CAS  Google Scholar 

  • Zimerman M, Hummel FC (2010) Non-invasive brain stimulation: enhancing motor and cognitive functions in healthy old subjects. Front Aging Neurosci 2:149

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

I thank Andrzej Wichrowski, Linda van der Heiden and Malgorzata Wesierska for critical reading of this manuscript. Thanks to Petr Cempirek for the illustrations in Figs. 8.2 and 8.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen A. Dockery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dockery, C.A. (2013). The Human Experiment: How We Won’t Win the Rat Race. What Can We Learn from Brain Stimulation in Humans and Rats About Enhancing the Functional Neurobiology of Higher Cognitive Functions?. In: Hildt, E., Franke, A. (eds) Cognitive Enhancement. Trends in Augmentation of Human Performance, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6253-4_8

Download citation

Publish with us

Policies and ethics