Skip to main content

Crystal Pathologies

  • Conference paper
  • First Online:
Advancing Methods for Biomolecular Crystallography
  • 1549 Accesses

Abstract

Truly ideal crystals are rarely realized in macromolecular crystallography. The conformational complexity of protein molecules and the promiscuity of their chance interactions often conspire to give crystals in which the molecules are present in alternative configurations. When the alternative configurations occur randomly throughout the crystal, one is faced by a case of static disorder (often indistinguishable from thermal motion), leading to limited resolution and potential challenges in modeling the underlying structural variations. Despite those challenges, the case of random disorder is arguably the simplest to understand and interpret. A variety of more complex categories of crystal disorder occur when alternative molecular configurations, orientations, or positions are not random, but correlated to each other in one way or another throughout the crystal specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barends TRM, de Jong RM, van Straaten KE, Thunnissen AWH, Dijkstra BW (2005) Escherichia coli MltA: MAD phasing and refinement of a tetartohedrally twinned protein crystal structure. Acta Crystallogr D 61:613–621

    Article  Google Scholar 

  2. Bragg WL, Howells ER (1954) X-ray diffraction by imidazole methaemoglobin. Acta Crystallogr 7:409–411

    Article  CAS  Google Scholar 

  3. Dauter Z (2003) Twinned crystals and anomalous phasing. Acta Crystallogr D 59:2004–2016

    Article  Google Scholar 

  4. Dumas P, Ennifar E, Walter P (1999) Detection and treatment of twinning: an improvement and new results. Acta Crystallogr D 55:1179–1187

    Article  CAS  Google Scholar 

  5. Fisher RG, Sweet RM (1980) Treatment of diffraction data from protein crystals twinned by merohedry. Acta Crystallogr A 36:755–760

    Article  Google Scholar 

  6. Gayathri P, Banerjee M, Vijayalakshmi A, Azeez S, Balaram H, Balaram P, Murthy MRN (2007) Structure of triophosphate isomerase (TIM) from Methanocaldococcus jannaschii. Acta Crystallogr D 63:206–220

    Article  CAS  Google Scholar 

  7. Hare S, Cherepanov P, Wang J (2009) Application of general formulas for the correction of a lattice-translocation defect in crystals of a lentiviral integrase in complex with LEDGF. Acta Crystallogr D 65:966–973

    Article  Google Scholar 

  8. Helliwell JR (2008) Macromolecular crystal twinning, lattice disorders and multiple crystals. Crystallogr Rev 14:189–250

    Article  CAS  Google Scholar 

  9. Lunin VY, Lunina NL, Baumstark MW (2007) Estimates of the twinning fraction for macromolecular crystals using statistical models accounting for experimental errors. Acta Crystallogr D 63:1129–1138

    Article  Google Scholar 

  10. Padilla JE, Yeates TO (2003) A statistic for local intensity differences: robustness to anisotropy and pseudo-centering and utility for detecting twinning. Acta Crystallogr D 59:1124–1130

    Article  Google Scholar 

  11. Parsons S (2003) Introduction to twinning. Acta Crystallogr D 59:1995–2003

    Article  Google Scholar 

  12. Pletnev S, Morozova KS, Verkhusha VV, Dauter Z (2009) Rotational order-disorder structure of fluorescent protein FP480. Acta Crystallogr D 65:906–912

    Article  Google Scholar 

  13. Porta J, Lovelace JJ, Schreurs AM, Kroon-Batenburg LM, Borgstahl GE (2011) Processing incommensurately modulated protein diffraction data with Eval15. Acta Crystallogr D 67: 628–638

    Article  Google Scholar 

  14. Rees DC (1980) The influence of twinning by merohedry on intensity statistics. Acta Crystallogr A 36:578–581

    Article  Google Scholar 

  15. Rees DC (1982) A general theory of x-ray intensity statistics for twins by merohedry. Acta Crystallogr A 38:201–207

    Article  Google Scholar 

  16. Rosendal KR, Sinning I, Wild K (2004) Crystallization of the crenarchaeal SRP core. Acta Crystallogr D 60:140–143

    Article  Google Scholar 

  17. Roversi P, Blanc E, Johnson S, Lea SM (2012) Tetartohedral twinning could happen to you. Acta Crystallogr D 68:418–424

    Article  Google Scholar 

  18. Stanley E (1972) The identification of twins from intensity statistics. J Appl Crystallogr 5: 191–194

    Article  CAS  Google Scholar 

  19. Tsai Y, Sawaya MR, Yeates TO (2009) Analysis of lattice-translocation disorder in the layered hexagonal structure of carboxysome shell protein CsoS1C. Acta Crystallogr D 65:980–988

    Article  Google Scholar 

  20. Wang J, Kamtekar S, Berman AJ, Steitz TA (2005a) Correction of x-ray intensities from single crystals containing lattice-translocation defects. Acta Crystallogr D 61:67–74

    Article  Google Scholar 

  21. Wang J, Rho S, Park HH, Eom SH (2005b) Correction of x-ray intensities from an HslV-HslU co-crystal containing lattice-translocation defects. Acta Crystallogr D 61:932–941

    Article  Google Scholar 

  22. Wilson AJC (1949) The probability distribution of x-ray intensities. Acta Crystallogr 2: 318–321

    Article  Google Scholar 

  23. Yeates TO (1988) Simple statistics for intensity data from twinned specimens. Acta Crystallogr A 44:142–144

    Article  Google Scholar 

  24. Yeates TO (1997) Detecting and overcoming crystal twinning. Methods Enzymol 276:344–358

    Article  CAS  Google Scholar 

  25. Yeates TO, Fam BC (1999) Protein crystals and their evil twins. Structure 7:R25–R29

    Article  CAS  Google Scholar 

  26. Yeates TO, Yu F (2008) Equations for determining tetartohedral twin fractions. Acta Crystallogr D 64:1158–1164

    Article  Google Scholar 

  27. Yeates TO, Sawaya MR (2011) Structure determination in the presence of twinning by merohedry. In: Arnold E, Himmel DM, Rossmann MG (eds) International tables for crystallography. Vol. F. Oxford, Wiley-Blackwell, pp 548–551

    Google Scholar 

  28. Yeates TO, Tsai Y (2011) Detecting twinning by merohedry. In: Arnold E, Himmel DM, Rossmann MG (eds) International tables for crystallography, vol F. Wiley-Blackwell, Oxford, pp 311–316

    Chapter  Google Scholar 

  29. Yu F, Song A, Xu C, Sun L, Li J, Tang L, Yu M, Yeates TO, Hu H, He J (2009) Determining the DUF55-domain structure of human thymocyte nuclear protein 1 from crystals partially twinned by tetartohedry. Acta Crystallogr D 65:212–219

    Article  Google Scholar 

  30. Zhu X, Xu X, Wilson IA (2008) Structure determination of the 1918 H1N1 neuraminidase from a crystal with lattice-translocation defects. Acta Crystallogr D 64:843–850

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd O. Yeates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Yeates, T.O. (2013). Crystal Pathologies. In: Read, R., Urzhumtsev, A., Lunin, V. (eds) Advancing Methods for Biomolecular Crystallography. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6232-9_3

Download citation

Publish with us

Policies and ethics