Skip to main content

Coherent Diffraction and Holographic Imaging of Individual Biomolecules Using Low-Energy Electrons

  • Conference paper
  • First Online:
Advancing Methods for Biomolecular Crystallography

Abstract

Modern microscopy techniques are aimed at imaging an individual molecule at atomic resolution. Here we show that low-energy electrons with kinetic energies of 50–250 eV offer a possibility of overcome the problem of radiation damage, and obtaining images of individual biomolecules. Two experimental schemes for obtaining images of individual molecules – holography and coherent diffraction imaging – are discussed and compared. Images of individual molecules obtained by both techniques, using low-energy electrons, are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308(5954):32–36

    Article  CAS  Google Scholar 

  2. Bergh M, Huldt G, Timneanu N, Maia F, Hajdu J (2008) Feasibility of imaging living cells at subnanometer resolutions by ultrafast X-ray diffraction. Q Rev Biophys 41(3–4):181–204

    Article  CAS  Google Scholar 

  3. Eisele A, Voelkel B, Grunze M, Golzhauser A (2008) Nanometer resolution holography with the low energy electron point source microscope. Z Phys Chem 222(5–6):779–787

    Article  CAS  Google Scholar 

  4. Fienup JR (1982) Phase retrieval algorithms – a comparison. Appl Optics 21(15):2758–2769

    Article  CAS  Google Scholar 

  5. Fink H-W, Stocker W, Schmid H (1990) Holography with low-energy electrons. Phys Rev Lett 65(10):1204–1206

    Article  CAS  Google Scholar 

  6. Fink H-W, Schmid H, Ermantraut E, Schulz T (1997) Electron holography of individual DNA molecules. J Opt Soc Am A Opt Image Sci Vis 14(9):2168–2172

    Article  CAS  Google Scholar 

  7. Gabor D (1949) Microscopy by reconstructed wave-fronts. Proc Phys Soc Lond Ser A 197(1051):454–487

    Article  Google Scholar 

  8. Gerchberg RW, Saxton WO (1972) A practical algorithm for determination of phase from image and diffraction plane pictures. Optik 35(2):237–246

    Google Scholar 

  9. Germann M, Latychevskaia T, Escher C, Fink H-W (2010) Nondestructive imaging of individual biomolecules. Phys Rev Lett 104(9):095501

    Article  Google Scholar 

  10. Giewekemeyer K, Thibault P, Kalbfleisch S, Beerlink A, Kewish CM, Dierolf M, Pfeiffer F, Salditt T (2010) Quantitative biological imaging by ptychographic x-ray diffraction microscopy. Proc Natl Acad Sci U S A 107(2):529–534

    Article  CAS  Google Scholar 

  11. Golzhauser A, Volkel B, Jager B, Zharnikov M, Kreuzer HJ, Grunze M (1998) Holographic imaging of macromolecules. J Vac Sci Technol A Vac Surf Films 16(5):3025–3028

    Article  CAS  Google Scholar 

  12. Henderson R (2004) Realizing the potential of electron cryo-microscopy. Q Rev Biophys 37(1):3–13

    Article  CAS  Google Scholar 

  13. Howells MR, Beetz T, Chapman HN, Cui C, Holton JM, Jacobsen CJ, Kirz J, Lima E, Marchesini S, Miao H, Sayre D, Shapiro DA, Spence JCH, Starodub D (2009) An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. J Electron Spectrosc 170(1–3):4–12

    Article  CAS  Google Scholar 

  14. Huang X, Nelson J, Kirz J, Lima E, Marchesini S, Miao H, Neiman AM, Shapiro D, Steinbrener J, Stewart A, Turner JJ, Jacobsen C (2009) Soft X-ray diffraction microscopy of a frozen hydrated yeast cell. Phys Rev Lett 103(19):198101

    Article  Google Scholar 

  15. Latychevskaia T, Longchamp J-N, Fink H-W (2012) When holography meets coherent diffraction imaging. Optics Express 20(27):28871–28892

    Google Scholar 

  16. Longchamp J-N, Latychevskaia T, Escher C, Fink H-W (2012) Non-destructive imaging of an individual protein. Appl Phys Lett 101(9):093701

    Article  Google Scholar 

  17. Miao JW, Sayre D (2000) On possible extensions of X-ray crystallography through diffraction-pattern oversampling. Acta Crystallogr A 56:596–605

    Article  Google Scholar 

  18. Miao JW, Sayre D, Chapman HN (1998) Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J Opt Soc Am A Opt Image Sci Vis 15(6):1662–1669

    Article  Google Scholar 

  19. Miao JW, Charalambous P, Kirz J, Sayre D (1999) Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400(6742):342–344

    Article  CAS  Google Scholar 

  20. Miao JW, Hodgson KO, Ishikawa T, Larabell CA, LeGros MA, Nishino Y (2003) Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction. Proc Natl Acad Sci U S A 100(1):110–112

    Article  CAS  Google Scholar 

  21. Miao JW, Ishikawa T, Anderson EH, Hodgson KO (2003) Phase retrieval of diffraction patterns from noncrystalline samples using the oversampling method. Phys Rev B 67(17)

    Google Scholar 

  22. Nelson J, Huang XJ, Steinbrener J, Shapiro D, Kirz J, Marchesini S, Neiman AM, Turner JJ, Jacobsen C (2010) High-resolution x-ray diffraction microscopy of specifically labeled yeast cells. Proc Natl Acad Sci U S A 107(16):7235–7239

    Article  CAS  Google Scholar 

  23. Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J (2000) Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406(6797):752–757

    Article  CAS  Google Scholar 

  24. Nishino Y, Takahashi Y, Imamoto N, Ishikawa T, Maeshima K (2009) Three-dimensional visualization of a human chromosome using coherent X-ray diffraction. Phys Rev Lett 102(1):018101

    Article  Google Scholar 

  25. Sayre D (1952) Some implications of a theorem due to Shannon. Acta Crystallogr 5(6):843–843

    Article  Google Scholar 

  26. Seibert MM, Ekeberg T, Maia FRNC, Svenda M, Andreasson J, Jonsson O, Odic D, Iwan B, Rocker A, Westphal D, Hantke M, DePonte DP, Barty A, Schulz J, Gumprecht L, Coppola N, Aquila A, Liang M, White TA, Martin A, Caleman C, Stern S, Abergel C, Seltzer V, Claverie J-M, Bostedt C, Bozek JD, Boutet S, Miahnahri AA, Messerschmidt M, Krzywinski J, Williams G, Hodgson KO, Bogan MJ, Hampton CY, Sierra RG, Starodub D, Andersson I, Bajt S, Barthelmess M, Spence JCH, Fromme P, Weierstall U, Kirian R, Hunter M, Doak RB, Marchesini S, Hau-Riege SP, Frank M, Shoeman RL, Lomb L, Epp SW, Hartmann R, Rolles D, Rudenko A, Schmidt C, Foucar L, Kimmel N, Holl P, Rudek B, Erk B, Homke A, Reich C, Pietschner D, Weidenspointner G, Struder L, Hauser G, Gorke H, Ullrich J, Schlichting I, Herrmann S, Schaller G, Schopper F, Soltau H, Kuhnel K-U, Andritschke R, Schroter C-D, Krasniqi F, Bott M, Schorb S, Rupp D, Adolph M, Gorkhover T, Hirsemann H, Potdevin G, Graafsma H, Nilsson B, Chapman HN, Hajdu J (2011) Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470(7332):78–81

    Article  CAS  Google Scholar 

  27. Shapiro D, Thibault P, Beetz T, Elser V, Howells M, Jacobsen C, Kirz J, Lima E, Miao H, Neiman AM, Sayre D (2005) Biological imaging by soft x-ray diffraction microscopy. Proc Natl Acad Sci U S A 102(43):15343–15346

    Article  CAS  Google Scholar 

  28. Song CY, Jiang HD, Mancuso A, Amirbekian B, Peng L, Sun R, Shah SS, Zhou ZH, Ishikawa T, Miao JW (2008) Quantitative imaging of single, unstained viruses with coherent X-rays. Phys Rev Lett 101(15):158101

    Article  Google Scholar 

  29. Spence JCH, Qian W, Silverman MP (1994) Electron source brightness and degeneracy from Fresnel fringes in-field emission point projection microscopy. J Vac Sci Technol A Vac Surf Films 12(2):542–547

    Article  CAS  Google Scholar 

  30. Steinwand E, Longchamp J-N, Fink H-W (2011) Coherent low-energy electron diffraction on individual nanometer sized objects. Ultramicroscopy 111(4):282–284

    Article  CAS  Google Scholar 

  31. Stevens GB, Krüger M, Latychevskaia T, Lindner P, Plückthun A, Fink H-W (2011) Individual filamentous phage imaged by electron holography. Eur Biophys J 40:1197–1201

    Article  Google Scholar 

  32. van Heel M, Gowen B, Matadeen R, Orlova EV, Finn R, Pape T, Cohen D, Stark H, Schmidt R, Schatz M, Patwardhan A (2000) Single-particle electron cryo-microscopy: towards atomic resolution. Q Rev Biophys 33(4):307–369

    Article  Google Scholar 

  33. Weierstall U, Spence JCH, Stevens M, Downing KH (1999) Point-projection electron imaging of tobacco mosaic virus at 40 eV electron energy. Micron 30(4):335–338

    Article  Google Scholar 

  34. Williams GJ, Hanssen E, Peele AG, Pfeifer MA, Clark J, Abbey B, Cadenazzi G, de Jonge MD, Vogt S, Tilley L, Nugent KA (2008) High-resolution X-ray imaging of plasmodium falciparum-infected red blood cells. Cytom Part A 73A(10):949–957

    Article  Google Scholar 

  35. www.pdb.org Protein Data Bank

  36. Zuo JM, Vartanyants I, Gao M, Zhang R, Nagahara LA (2003) Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science 300(5624):1419–1421

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Swiss National Science Foundation for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Latychevskaia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Latychevskaia, T., Longchamp, JN., Escher, C., Fink, HW. (2013). Coherent Diffraction and Holographic Imaging of Individual Biomolecules Using Low-Energy Electrons. In: Read, R., Urzhumtsev, A., Lunin, V. (eds) Advancing Methods for Biomolecular Crystallography. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6232-9_29

Download citation

Publish with us

Policies and ethics