Skip to main content

Proteolysis, Complex Formation and Conformational Changes Drive the Complement Pathways

  • Conference paper
  • First Online:
Advancing Methods for Biomolecular Crystallography

Abstract

The complement system is an important part of the mammalian immune defense in blood and interstitial fluids. This set of ~30 plasma proteins and receptors enables the host to recognize and clear invading pathogens and altered host cells, while protecting healthy host cells and tissues. Over the last 7 years, we have resolved the structural details of the central components of this system, which is referred to as the Alternative Pathway of complement activation, and deduced the molecular mechanisms that underlie the amplification and regulation of this protein network. In short, we revealed that large domain-domain rearrangements of these multi-domain proteins, upon proteolysis and complex formation, determine the specificity that provides a local and brief burst to mark targets cells for immune clearance. Most recently, we and others have revealed structural details of the Terminal Pathway that leads to pore formation by Membrane-Attack-Complexes in cell membranes yielding lysis.

This text is based on the research highlights of the Gros lab, see www.crystal.chem.uu.nl/~gros/researchhighlights.htm

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleshin AE, Discipio RG, Stec B, Liddington RC (2012) Crystal structure of c5b-6 suggests structural basis for priming assembly of the membrane attack complex. J Biol Chem 287:19642–19652

    Article  CAS  Google Scholar 

  2. Aleshin AE, Schraufstatter IU, Stec B, Bankston LA, Liddington RC, Discipio RG (2012) Structure of complement C6 suggests a mechanism for initiation and unidirectional, sequential assembly of the Membrane Attack Complex (MAC). J Biol Chem 287:10210–10222

    Article  CAS  Google Scholar 

  3. Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR et al (2010) The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 29:95–112

    Article  CAS  Google Scholar 

  4. Dunkelberger JR, Song WC (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20:34–35

    Article  CAS  Google Scholar 

  5. Forneris F, Ricklin D, Wu J, Tzekou A, Wallace RS, Lambris JD et al (2010) Structures of C3b in complex with factors B and D give insight into complement convertase formation. Science 330:1816–1820

    Article  CAS  Google Scholar 

  6. Garcia BL, Ramyar KX, Tzekou A, Ricklin D, McWhorter WJ, Lambris JD et al (2010) Molecular basis for complement recognition and inhibition determined by crystallographic studies of the staphylococcal complement inhibitor (SCIN) bound to C3c and C3b. J Mol Biol 402:17–29

    Article  CAS  Google Scholar 

  7. Hadders MA, Beringer DX, Gros P (2007) Structure of C8alpha-MACPF reveals mechanism of membrane attack in complement immune defense. Science 317:1552–1554

    Article  CAS  Google Scholar 

  8. Hadders MA, Bubeck D, Roversi P, Hakobyan S, Forneris F, Morgan BP et al (2012) Assembly and regulation of the membrane attack complex based on structures of C5b6 and sC5b9. Cell Rep 1:200–207

    Article  CAS  Google Scholar 

  9. Holers VM (2008) The spectrum of complement alternative pathway-mediated diseases. Immunol Rev 223:300–316

    Article  CAS  Google Scholar 

  10. Janssen BJ, Huizinga EG, Raaijmakers HC, Roos A, Daha MR, Nilsson-Ekdahl K et al (2005) Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437:505–511

    Article  CAS  Google Scholar 

  11. Janssen BJ, Christodoulidou A, McCarthy A, Lambris JD, Gros P (2006) Structure of C3b reveals conformational changes that underlie complement activity. Nature 444:213–216

    Article  CAS  Google Scholar 

  12. Janssen BJ, Halff EF, Lambris JD, Gros P (2007) Structure of compstatin in complex with complement component C3c reveals a new mechanism of complement inhibition. J Biol Chem 282:29241–29247

    Article  CAS  Google Scholar 

  13. Janssen BJ, Gomes L, Koning RI, Svergun DI, Koster AJ, Fritzinger DC et al (2009) Insights into complement convertase formation based on the structure of the factor B-cobra venom factor complex. EMBO J 28:2469–2478

    Article  CAS  Google Scholar 

  14. Krishnan V, Ponnuraj K, Xu Y, Macon K, Volanakis JE, Narayana SV (2009) The crystal structure of cobra venom factor, a cofactor for C3- and C5-convertase CVFBb. Structure 17:611–619

    Article  CAS  Google Scholar 

  15. Laursen NS, Gordon N, Hermans S, Lorenz N, Jackson N, Wines B et al (2010) Structural basis for inhibition of complement C5 by the SSL7 protein from Staphylococcus aureus. Proc Natl Acad Sci U S A 107:3681–3686

    Article  CAS  Google Scholar 

  16. Laursen NS, Andersen KR, Braren I, Spillner E, Sottrup-Jensen L, Andersen GR (2011) Substrate recognition by complement convertases revealed in the C5-cobra venom factor complex. EMBO J 30:606–616

    Article  CAS  Google Scholar 

  17. Law SK, Dodds AW (1997) The internal thioester and the covalent binding properties of the complement proteins C3 and C4. Protein Sci 6:263–274

    Article  CAS  Google Scholar 

  18. Lovelace LL, Cooper CL, Sodetz JM, Lebioda L (2011) Structure of human C8 protein provides mechanistic insight into membrane pore formation by complement. J Biol Chem 286:17585–17592

    Article  CAS  Google Scholar 

  19. Martinez-Barricarte R, Heurich M, Valdes-Canedo F, Vazquez-Martul E, Torreira E, Montes T et al (2010) Human C3 mutation reveals a mechanism of dense deposit disease pathogenesis and provides insights into complement activation and regulation. J Clin Invest 120:3702–3712

    Article  CAS  Google Scholar 

  20. Milder FJ, Raaijmakers HC, Vandeputte MD, Schouten A, Huizinga EG, Romijn RA et al (2006) Structure of complement component C2A: implications for convertase formation and substrate binding. Structure 14:1587–1597

    Article  CAS  Google Scholar 

  21. Milder FJ, Gomes L, Schouten A, Janssen BJ, Huizinga EG, Romijn RA et al (2007) Factor B structure provides insights into activation of the central protease of the complement system. Nat Struct Mol Biol 14:224–228

    Article  CAS  Google Scholar 

  22. Muller-Eberhard HJ (1986) The membrane attack complex of complement. Annu Rev Immunol 4:503–528

    Article  CAS  Google Scholar 

  23. Narayana SV, Carson M, el-Kabbani O, Kilpatrick JM, Moore D, Chen X et al (1994) Structure of human factor D. A complement system protein at 2.0 A resolution. J Mol Biol 235:695–708

    Article  CAS  Google Scholar 

  24. Pangburn MK (2000) Host recognition and target differentiation by factor H, a regulator of the alternative pathway of complement. Immunopharmacology 49:149–157

    Article  CAS  Google Scholar 

  25. Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797

    Article  CAS  Google Scholar 

  26. Rooijakkers SH, Milder FJ, Bardoel BW, Ruyken M, van Strijp JA, Gros P (2007) Staphylococcal complement inhibitor: structure and active sites. J Immunol 179:2989–2998

    CAS  Google Scholar 

  27. Rooijakkers SH, Wu J, Ruyken M, van Domselaar R, Planken KL, Tzekou A et al (2009) Structural and functional implications of the alternative complement pathway C3 convertase stabilized by a staphylococcal inhibitor. Nat Immunol 10:721–727

    Article  CAS  Google Scholar 

  28. Rosado CJ, Buckle AM, Law RH, Butcher RE, Kan WT, Bird CH et al (2007) A common fold mediates vertebrate defense and bacterial attack. Science 317:1548–1551

    Article  CAS  Google Scholar 

  29. Roversi P, Johnson S, Caesar JJ, McLean F, Leath KJ, Tsiftsoglou SA et al (2011) Structural basis for complement factor I control and its disease-associated sequence polymorphisms. Proc Natl Acad Sci U S A 108:12839–12844

    Article  CAS  Google Scholar 

  30. Sjoberg AP, Trouw LA, Blom AM (2009) Complement activation and inhibition: a delicate balance. Trends Immunol 30:83–90

    Article  CAS  Google Scholar 

  31. Slade DJ, Lovelace LL, Chruszcz M, Minor W, Lebioda L, Sodetz JM (2008) Crystal structure of the MACPF domain of human complement protein C8 alpha in complex with the C8 gamma subunit. J Mol Biol 379:331–342

    Article  CAS  Google Scholar 

  32. Springer TA (2006) Complement and the multifaceted functions of VWA and integrin I domains. Structure 14:1611–1616

    Article  CAS  Google Scholar 

  33. Torreira E, Tortajada A, Montes T, Rodriguez de Cordoba S, Llorca O (2009) 3D structure of the C3bB complex provides insights into the activation and regulation of the complement alternative pathway convertase. Proc Natl Acad Sci U S A 106:882–887

    Article  CAS  Google Scholar 

  34. Torreira E, Tortajada A, Montes T, Rodriguez de Cordoba S, Llorca O (2009) Coexistence of closed and open conformations of complement factor B in the alternative pathway C3bB(Mg2+) proconvertase. J Immunol 183:7347–7351

    Article  CAS  Google Scholar 

  35. Wiesmann C, Katschke KJ, Yin J, Helmy KY, Steffek M, Fairbrother WJ et al (2006) Structure of C3b in complex with CRIg gives insights into regulation of complement activation. Nature 444:217–220

    Article  CAS  Google Scholar 

  36. Wu J, Wu YQ, Ricklin D, Janssen BJ, Lambris JD, Gros P (2009) Structure of complement fragment C3b-factor H and implications for host protection by complement regulators. Nat Immunol 10:728–733

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the help of many lab members and collaborators throughout the years and financial support from NWO-CW, NIH and ERC. Special thanks to Bert Janssen, Fin Milder, Jin Wu and Michael Hadders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piet Gros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gros, P., Forneris, F. (2013). Proteolysis, Complex Formation and Conformational Changes Drive the Complement Pathways. In: Read, R., Urzhumtsev, A., Lunin, V. (eds) Advancing Methods for Biomolecular Crystallography. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6232-9_25

Download citation

Publish with us

Policies and ethics