Skip to main content

Total Chemical Protein Synthesis for the Determination of Novel X-ray Structures by Racemic Protein Crystallography

  • Conference paper
  • First Online:
  • 1577 Accesses

Abstract

Total synthesis of proteins by modern chemical ligation methods enables the ready preparation of high purity protein molecules of typical size (up to ∼300 amino acid residues). This in turn enables the preparation of mirror image D-protein molecules not found in nature. Use of a racemic protein mixture (i.e. D-protein+L-protein) greatly facilitates the formation of diffraction-quality crystals of otherwise recalcitrant proteins. Facilitated crystallization is also observed for quasi-racemic protein mixtures. Centrosymmetric crystals of racemic proteins diffract to high resolution and offer enhanced possibilities for structure solution by direct computational methods. Racemic protein crystallography has been successfully applied to a number of recalcitrant protein molecules, and has been used to determine the structure of a 35kDa {L-protein target/D-protein ligand} complex.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  CAS  Google Scholar 

  2. Bang D, Pentelute BL, Kent SBH (2006) Kinetically-controlled ligation for the convergent chemical synthesis of proteins. Angew Chem Int Ed Eng 45:3985–3988

    Article  CAS  Google Scholar 

  3. Banigan JR, Mandal K, Sawaya MR, Thammavongsa V, Hendrickx A, Schneewind O, Yeates TO, Kent SBH (2010) Determination of the X-ray structure of the snake venom protein Omwaprin by total chemical synthesis and racemic protein crystallography. Protein Sci 9:1840–1849

    Article  Google Scholar 

  4. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  5. Branden C, Tooze J (1999) Introduction to protein structure, 2nd edn. Garland Science, New York

    Google Scholar 

  6. Chayen NE, Saridakis E (2008) Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods 5:147–153

    Article  CAS  Google Scholar 

  7. Dawson PE, Muir TW, Clark-Lewis I, Kent SBH (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  CAS  Google Scholar 

  8. Derewenda ZS (2004) Rational protein crystallization by mutational surface engineering. Structure 12:529–535

    Article  CAS  Google Scholar 

  9. Durek T, Torbeev YV, Kent SBH (2007) Convergent chemical synthesis and high resolution X-ray structure of human lysozyme. Proc Natl Acad Sci USA 104:4846–4851

    Article  CAS  Google Scholar 

  10. Eisler K, Kamber B, Riniker B, Rittel W, Sieber P, De Gasparo M, Marki F (1979) Synthesis and biological activity of five D-Cys analogs of human insulin. Bioorg Chem 8:443–450

    Article  CAS  Google Scholar 

  11. Graham LA, Davies PL (2005) Glycine-rich antifreeze proteins from snow fleas. Science 310:461

    Article  Google Scholar 

  12. Hannig G, Makrides S (1998) Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol 16:54–60

    Article  CAS  Google Scholar 

  13. Hutchison CA III, Phillips S, Edgell MH, Gillam S, Jahnke P, Smith M (1978) Mutagenesis at a specific position in a DNA sequence. J Biol Chem 253:6551–6560

    CAS  Google Scholar 

  14. Jelsch C, Teeter MM, Lamzin V, Pichon-Pesme V, Blessing RH, Lecomte C (2000) Accurate protein crystallography at ultra-high resolution: valence electron distribution in crambin. Proc Natl Acad Sci USA 97:3171–3176

    Article  CAS  Google Scholar 

  15. Kent SBH (1988) Chemical synthesis of peptides and proteins. Ann Rev Biochem 57:957–984

    Article  CAS  Google Scholar 

  16. Kent SBH (2009) Total chemical synthesis of proteins. Chem Soc Rev 38:338–351

    Article  CAS  Google Scholar 

  17. Kochendoerfer GG, Salom D, Lear JD, Kent SBH, DeGrado WF (1999) Total chemical synthesis of the integral membrane protein influenza A virus M2 proton channel: role of its cytoplasmic domain for pore assembly. Biochemistry 38:11905–11913

    Article  CAS  Google Scholar 

  18. Mackay AL (1989) Crystal enigma. Nature 342:133

    Article  Google Scholar 

  19. Mandal K, Kent SBH (2011) Total chemical synthesis of biologically active vascular endothelial growth factor. Angew Chem Int Ed 50:8029–8033

    Article  CAS  Google Scholar 

  20. Mandal K, Pentelute BL, Tereshko V, Kossiakoff AA, Kent SBH (2009a) Racemic crystallography of synthetic protein enantiomers used to determine the X-ray structure of plectasin by direct methods. Protein Sci 18:1146–1154

    Article  CAS  Google Scholar 

  21. Mandal K, Pentelute BL, Tereshko V, Kossiakoff AA, Kent SBH (2009b) X-ray structure of native scorpion toxin BmBKTx1 by racemic protein crystallography using direct methods. J Am Chem Soc 131:1362–1363

    Article  CAS  Google Scholar 

  22. Mandal K, Pentelute BL, Bang D, Gates ZP, Torbeev VY, Kent SBH (2012a) Design, total chemical synthesis, and X-ray structure of a protein having a novel linear-loop polypeptide chain topology. Angew Chem Int Ed 51:1481–1486

    Article  CAS  Google Scholar 

  23. Mandal K, Uppalapati M, Ault-Riché D, Kenney J, Lowitz J, Sidhu S, Kent SBH (2012b) Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography. Proc Natl Acad Sci USA 109:14779–14784

    Google Scholar 

  24. Nair DG, Fry BG, Alewood PF, Kumar PP, Kini RM (2007) Antimicrobial activity of om-waprin, a new member of the waprin family of snake venom proteins. Biochem J 402:93–104

    Article  CAS  Google Scholar 

  25. Okamoto R, Kajihara Y, Kent SBH (2012), paper in preparation

    Google Scholar 

  26. Pasteur L (1848) Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire. Comp Rend Paris 26:535–538

    Google Scholar 

  27. Pentelute BL, Gates ZP, Dashnau J, Vanderkooi JM, Kent SBH (2008a) Mirror image forms of snow flea antifreeze protein prepared by total chemical synthesis have identical antifreeze activities. J Am Chem Soc 130:9702–9707

    Article  CAS  Google Scholar 

  28. Pentelute BL, Gates ZP, Tereshko V, Dashnau J, Vanderkooi JM, Kossiakoff AA, Kent SBH (2008b) X-ray structure of snow flea antifreeze protein determined by racemic crystallization of synthetic protein enantiomers. J Am Chem Soc 130:9695–9701

    Article  CAS  Google Scholar 

  29. Pentelute BL, Mandal K, Gates ZP, Saway MR, Yeates TO, Kent SBH (2010) Total chemical synthesis and X-ray structure of kaliotoxin by racemic protein crystallography. Chem Commun 46:8174–8176

    Article  CAS  Google Scholar 

  30. Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, Schoolnik GK (2001) Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding α-crystallin. Proc Natl Acad Sci USA 98:7534–7539

    Article  CAS  Google Scholar 

  31. Torbeev VY, Kent SBH (2007) Convergent chemical synthesis and crystal structure of a 203 amino acid ‘covalent dimer’ HIV-1 protease enzyme molecule. Angew Chem Int Ed Eng 46:1667–1670

    Article  CAS  Google Scholar 

  32. Wells JA, Estell DA (1988) Subtilisin – an enzyme designed to be engineered. Trends Biochem Sci 13:291

    Article  CAS  Google Scholar 

  33. Wukovitz SW, Yeates TO (1995) Why protein crystals favor some space-groups over others. Nat Struct Biol 2:1062–1067

    Article  CAS  Google Scholar 

  34. Xie J, Schultz PG (2005) Adding amino acids to the genetic repertoire. Curr Opin Chem Biol 9:548–554

    Article  CAS  Google Scholar 

  35. Yeates TO, Kent SBH (2012) Racemic protein crystallography. Annu Rev Biophys 41:41–61

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Office of Science (BER), U.S. Department of Energy (grant no. DE-FG02 07ER64501 to S.B.H.K.) and by the National Institutes of Health (grant no. R01 GM075993 to S.B.H.K.). Use of NE-CAT beamline 24-ID at the Advanced Photon Source is supported by award RR-15301 from the National Center for Research Resources at the National Institutes of Health. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen B. H. Kent .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Mandal, K., Kent, S.B.H. (2013). Total Chemical Protein Synthesis for the Determination of Novel X-ray Structures by Racemic Protein Crystallography. In: Read, R., Urzhumtsev, A., Lunin, V. (eds) Advancing Methods for Biomolecular Crystallography. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6232-9_2

Download citation

Publish with us

Policies and ethics