Skip to main content

Model-Building and Reduction of Model Bias in Electron Density Maps

  • Conference paper
  • First Online:

Abstract

Model-building is a key element of interpretation of electron density maps. Once a model is built it can then be used to further improve the map and hence improve the quality of a new model. It is helpful in this process to have effective methods for automated model-building and for ensuring that the resulting maps are minimally biased by the model. Many powerful methods for automatic interpretation of macromolecular electron density maps have been developed recently. Here we describe one method based on the identification of regular secondary structure and extension with fragments from known structures. We then describe the use of density modification procedures (“prime-and-switch”) to reduce the model bias in maps calculated from models. Finally we describe how these prime-and-switch maps can be used as part of procedures to improve molecular replacement models just after initial placement and how this can extend the range of molecular replacement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66:213–221

    Article  Google Scholar 

  2. Baker ML, Ju T, Chiu W (2007) Identification of secondary structure elements in intermediate-resolution density maps. Structure 15:7–19

    Article  CAS  Google Scholar 

  3. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Wiessig IN, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  4. Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  CAS  Google Scholar 

  5. Bhat TN (1988) Calculation of an OMIT map. J Appl Crystallogr 21:279–281

    Article  Google Scholar 

  6. Cowtan K (2006) Buccaneer software for automated model building. Acta Crystallogr D 62:1002–1011

    Article  Google Scholar 

  7. DePristo MA, de Bakker PIW, Johnson RJK, Blundell TL (2005) Crystallographic refinement by knowledge-based exploration of complex energy landscapes. Structure 13:1311–1319

    Article  CAS  Google Scholar 

  8. DiMaio F, Kondrashov DA, Bitto E, Soni A, Bingman CA, Phillips GN Jr, Shavlik JW (2007) Creating protein models from electron-density maps using particle-filtering methods. Bioinformatics 23:2851–2858

    Article  CAS  Google Scholar 

  9. DiMaio F, Terwilliger TC, Read RJ, Wlodawer A, Oberdorfer G, Wagner U, Valkov E, Alon A, Fass D, Axelrod HL, Das D, Vorobiev SM, Iwaï H, Pokkuluri PR, Baker D (2011) Improving molecular replacement by density- and energy-guided protein structure optimization. Nature 473:540–543

    Article  CAS  Google Scholar 

  10. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D 66:486–501

    Article  CAS  Google Scholar 

  11. Ioerger TR, Sacchettini JC (2003) TEXTAL system: artificial intelligence techniques for automated protein model building. Methods Enzymol 374:244–270

    Article  CAS  Google Scholar 

  12. Jones TA, Kjeldgaard M (1997) Electron-density map interpretation. Methods Enzymol 227:173–230

    Article  Google Scholar 

  13. Jones TA, Zou J-Y, Cowan SW, Kjeldgaard M (1991) Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr A 47:110–119

    Article  Google Scholar 

  14. Keating KS, Pyle AM (2010) Semiautomated model building for RNA crystallography using a directed rotameric approach. Proc Natl Acad Sci 107:8177–8182

    Article  CAS  Google Scholar 

  15. Kovalevsky AY, Liu F, Leshchenko S, Ghosh AK, Louis JM, Harrison RW, Webber IT (2006) Ultra-high resolution crystal structure of HIV-1 protease mutant reveals two binding sites for clinical inhibitor TMC114. J Mol Biol 363:161–173

    Google Scholar 

  16. Langer G, Cohen SX, Lamzin VS, Perrakis A (2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3:1171–1179

    Article  CAS  Google Scholar 

  17. Levitt DG (2001) A new software routine automates the fitting of protein X-ray crystallographic electron-density maps. Acta Crystallogr D 57:1013–1019

    Article  CAS  Google Scholar 

  18. Li M, DiMaio F, Zhou D, Gustchina A, Lubkowski J, Dauter Z, Baker D, Wlodawer A (2011) Crystal structure of XMRV protease differs from the structures of other retropepsins. Nat Struct Mol Biol 18:227–229

    Article  CAS  Google Scholar 

  19. Marek J, Vevodova J, Smatanova IK, Nagata Y, Svensson LA, Newman J, Takagi M, Damborsky J (2000) Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. Biochemistry 39:14082–14086

    Article  CAS  Google Scholar 

  20. McRee DE (1999) XtalView/Xfit – a versatile program for manipulating atomic coordinates and electron density. J Struct Biol 125:156–165

    Article  CAS  Google Scholar 

  21. Merritt EA, Bacon DJ (1997) Raster3D-Photorealistic molecular graphics. Methods Enzymol 277:505–524

    Article  CAS  Google Scholar 

  22. Murshudov GN, Skubák P, Lebedev A, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Fei L, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D 67:355–367

    Article  Google Scholar 

  23. Newman J, Peat TS, Richard R, Kan L, Swanson PE, Affholter JA, Holmes IH, Schindler JF, Unkefer CJ, Terwilliger TC (1999) Haloalkane dehalogenases: structure of a rhodococcus enzyme. Biochemistry 38:16105–16114

    Article  CAS  Google Scholar 

  24. Oldfield TJ (1994) In: Bailey S, Hubbard R, Waller DA (eds) Proceedings of the CCP4 study weekend from first map to final model. Daresbury Laboratory, Warrington, pp 15–16

    Google Scholar 

  25. Oldfield TJ (2002) Pattern-recognition methods to identify secondary structure within X-ray crystallographic electron-density maps. Acta Crystallogr D 58:487–493

    Article  Google Scholar 

  26. Oldfield TJ (2003) Automated tracing of electron-density maps of proteins. Acta Crystallogr D 59:483–491

    Article  Google Scholar 

  27. Pavelcik F, Schneider B (2008) Building of RNA and DNA double helices into electron density. Acta Crystallogr D 64:620–626

    Article  Google Scholar 

  28. Perrakis A, Morris R, Lamzin VS (1999) Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6:458–463

    Article  CAS  Google Scholar 

  29. Read RJ (1986) Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr A 42:140–149

    Article  Google Scholar 

  30. Schröder G, Levitt M, Brünger AT (2010) Super-resolution biomolecular crystallography with low-resolution data. Nature 464:1218–1222

    Article  Google Scholar 

  31. Skinner MM, Zhang H, Leschnitzer DH, Guan Y, Bellamy H, Sweet RM, Gray CW, Konings RNH, Wang AH-J, Terwilliger TC (1994) Structure of the gene V protein of bacteriophage f1 determined by multiwavelength X-ray diffraction on the selenomethionyl protein. Proc Natl Acad Sci USA 91:2071–2075

    Google Scholar 

  32. Sorensen TL-M, Molleer JV, Nissen P (2004) Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304:1672–1675

    Article  CAS  Google Scholar 

  33. Terwilliger TC (2001) Map-likelihood phasing. Acta Crystallogr D 57:1763–1775

    Article  CAS  Google Scholar 

  34. Terwilliger TC (2003) Automated main-chain model-building by template-matching and iterative fragment extension. Acta Crystallogr D 59:38–44

    Article  Google Scholar 

  35. Terwilliger TC (2003) Automated side-chain model building and sequence assignment by template-matching. Acta Crystallogr D 59:45–49

    Article  Google Scholar 

  36. Terwilliger TC (2003) Improving macromolecular atomic models at moderate resolution by automated iterative model building, statistical density modification and refinement. Acta Crystallogr D 59:1174–1182

    Article  Google Scholar 

  37. Terwilliger TC (2004) Using prime-and-switch phasing to reduce model bias in molecular replacement. Acta Crystallogr D 60:2144–2149

    Article  Google Scholar 

  38. Terwilliger TC (2010) Rapid model-building of α-helices in electron density maps. Acta Crystallogr D 66:268–275

    Article  Google Scholar 

  39. Terwilliger TC (2010) Rapid model-building of β-sheets in electron density maps. Acta Crystallogr D 66:276–284

    Article  Google Scholar 

  40. Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Adams PD, Read RJ, Zwart P, Hung L-W (2008) Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias. Acta Crystallogr D 64:515–524

    Article  Google Scholar 

  41. Turk D (1992) Weiterentwicklung eines Programms fuer Molekuelgraphik und Elektrondichte-Manipulation and Seine Anwendung auf Verschiedene Protein-Strukturaufklerungen, PhD thesis, Technische Universitaet Muenchen, Germany

    Google Scholar 

Download references

Acknowledgments

The author is most grateful to the entire crystallographic community for feedback on methods development and to the other members of the Phenix team for development of the algorithms and software that form a foundation for the methods described here, and to the NIH for generous support of the Phenix project (PI, Paul Adams).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Terwilliger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Terwilliger, T.C. (2013). Model-Building and Reduction of Model Bias in Electron Density Maps. In: Read, R., Urzhumtsev, A., Lunin, V. (eds) Advancing Methods for Biomolecular Crystallography. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6232-9_18

Download citation

Publish with us

Policies and ethics