Skip to main content

Everything Happens at Once – Deconvolving Systematic Effects in X-ray Data Processing

  • Conference paper
  • First Online:

Abstract

Diffraction intensities measurements are influenced by random errors and complex patterns of systematic effects. The systematic effects can be physically modeled if their sources are known, resulting in deconvolution of experimental data into: the signal arising from crystal structure, other signals, for instance absorption or specific radiation-induced changes, and experimental errors. The systematic effects that are not properly modeled contribute to the error estimates, effectively decreasing the, already low, phasing signal-to-noise ratio. Data processing programs, for instance Denzo and Scalepack, have built-in hierarchy that allows for optimal deconvolution of signals and errors. Their analysis relies on comparing the intensities of symmetry-equivalent reflections using multivariate statistics methods. Multicomponent modeling of variance is particularly useful for correcting the diffraction data affected by radiation damage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Banumathi S, Zwart PH, Ramagopal UA, Dauter M, Dauter Z (2004) Structural effects of radiation damage and its potential for phasing. Acta Crystallogr D Biol Crystallogr 60:1085–1093

    Article  Google Scholar 

  2. Borek D, Minor W, Otwinowski Z (2003) Measurement errors and their consequences in protein crystallography. Acta Crystallogr D 59:2031–2038

    Article  Google Scholar 

  3. Borek D, Ginell SL, Cymborowski M, Minor W, Otwinowski Z (2007) The many faces of radiation-induced changes. J Synchrotron Radiat 14:24–33

    Article  CAS  Google Scholar 

  4. Bricogne G (1988) A Bayesian statistical-theory of the phase problem.1. A multichannel maximum-entropy formalism for constructing generalized joint probability-distributions of structure factors. Acta Crystallogr A 44:517–545

    Article  Google Scholar 

  5. Bricogne G (1997) Bayesian statistical viewpoint on structure determination: basic concepts and examples. Macromol Crystallogr A 276:361–423

    Article  CAS  Google Scholar 

  6. Bricogne G, Irwin J, de la Fortelle E (1997) The Bayesian programme in X-ray crystallography: unifying experimental and mathematical sources of phasing power. FASEB J 11:A1125–A1125

    Google Scholar 

  7. Burmeister WP (2000) Structural changes in a cryo-cooled protein crystal owing to radiation damage. Acta Crystallogr D 56:328–341

    Article  CAS  Google Scholar 

  8. Diederichs K, McSweeney S, Ravelli RBG (2003) Zero-dose extrapolation as part of macromolecular synchrotron data reduction. Acta Crystallogr D 59:903–909

    Article  Google Scholar 

  9. French S (1978) Bayesian 3-stage model in crystallography. Acta Crystallogr A 34:728–738

    Article  Google Scholar 

  10. French S, Wilson K (1978) Treatment of negative intensity observations. Acta Crystallogr A 34:517–525

    Article  Google Scholar 

  11. Futterer K, Ravelli RB, White SA, Nicoll AJ, Allemann RK (2008) Differential specific radiation damage in the Cu II-bound and Pd II-bound forms of an alpha-helical foldamer: a case study of crystallographic phasing by RIP and SAD. Acta Crystallogr D Biol Crystallogr 64:264–272

    Article  Google Scholar 

  12. Kmetko J, Husseini NS, Naides M, Kalinin Y, Thorne RE (2006) Quantifying X-ray radiation damage in protein crystals at cryogenic temperatures. Acta Crystallogr D 62:1030–1038

    Article  Google Scholar 

  13. Murray J, Garman E (2002) Investigation of possible free-radical scavengers and metrics for radiation damage in protein cryocrystallography. J Synchrotron Radiat 9:347–354

    Article  CAS  Google Scholar 

  14. Murray JW, Rudino-Pinera E, Owen RL, Grininger M, Ravelli RBG, Garman EF (2005) Parameters affecting the X-ray dose absorbed by macromolecular crystals. J Synchrotron Radiat 12:268–275

    Article  CAS  Google Scholar 

  15. O’Neill P, Stevens DL, Garman EF (2002) Physical and chemical considerations of damage induced in protein crystals by synchrotron radiation: a radiation chemical perspective. J Synchrotron Radiat 9:329–332

    Article  Google Scholar 

  16. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  17. Otwinowski Z, Minor W (2001) Denzo & Scalepack. In: Rossmann MG, Arnold E (eds) International tables for crystallography, vol F, Crystallography of biological macromolecules. Published for The International Union of Crystallography by Kluwer Academic Publishers, Dordrecht/Boston/London, pp 226–245

    Google Scholar 

  18. Otwinowski Z, Borek D, Majewski W, Minor W (2003) Multiparametric scaling of diffraction intensities. Acta Crystallogr A 59:228–234

    Article  Google Scholar 

  19. Ramagopal UA, Dauter Z, Thirumuruhan R, Fedorov E, Almo SC (2005) Radiation-induced site-specific damage of mercury derivatives: phasing and implications. Acta Crystallogr D 61:1289–1298

    Article  Google Scholar 

  20. Ravelli RBG, McSweeney SM (2000) The ‘fingerprint’ that X-rays can leave on structures. Structure 8:315–328

    Article  CAS  Google Scholar 

  21. Ravelli RBG, Leiros HKS, Pan BC, Caffrey M, McSweeney S (2003) Specific radiation damage can be used to solve macromolecular crystal structures. Structure 11:217–224

    Article  CAS  Google Scholar 

  22. Weik M, Ravelli RBG, Kryger G, McSweeney S, Raves ML, Harel M, Gros P, Silman I, Kroon J, Sussman JL (2000) Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc Natl Acad Sci U S A 97:623–628

    Article  CAS  Google Scholar 

  23. Yano J, Kern J, Irrgang KD, Latimer MJ, Bergmann U, Glatzel P, Pushkar Y, Biesiadka J, Loll B, Sauer K, Messinger J, Zouni A, Yachandra VK (2005) X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc Natl Acad Sci U S A 102:12047–12052

    Article  CAS  Google Scholar 

  24. Zwart PH, Banumathi S, Dauter M, Dauter Z (2004) Radiation-damage-induced phasing with anomalous scattering: substructure solution and phasing. Acta Crystallogr D 60:1958–1963

    Article  Google Scholar 

Download references

Acknowledgments

The National Institutes of Health supported this work with grant GM053163.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbyszek Otwinowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Borek, D., Otwinowski, Z. (2013). Everything Happens at Once – Deconvolving Systematic Effects in X-ray Data Processing. In: Read, R., Urzhumtsev, A., Lunin, V. (eds) Advancing Methods for Biomolecular Crystallography. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6232-9_10

Download citation

Publish with us

Policies and ethics