Skip to main content

Programming of MDSC: New Opportunities for Targeted Therapy

  • Chapter
  • First Online:
The Tumor Immunoenvironment
  • 2302 Accesses

Abstract

Myeloid-derived suppressor cells have recently been widely recognized as major players in tumor-mediated immunosuppression. MDSCs act to suppress antitumor immunity through increased production of Arginase, Reactive Oxygen Species (ROS), up regulation of inducible Nitric Oxide Synthase (iNOS), and expression of negative costimulatory molecules, leading to inhibition of both antigen-specific and bystander T cell responses. These immature myeloid precursors are recruited peripherally and to tumors by inflammation, which retards their differentiation into mature myeloid lineages. MDSCs can be subdivided into Granulocytic (G-MDSC) and Monocytic (M-MDSC) forms. Both lineages can further differentiate into phenotypic forms analogous to those previously described in macrophages and neutrophils, including a so-called Type 1 and Type 2 phenotypes, which are functionally tumoricidal or promote tumor growth and progression, respectively. While eliminating MDSCs or inducing their differentiation into conventional myeloid lineages are potential strategies to restore anti-tumor immunity, the existence of opposing functional phenotypes presents an opportunity to drive MDSC towards Type 1 polarization to reverse tumor-mediated immunosuppression. Interference with the PIR (paired immunoglobulin like receptor) pathway and TGF-β receptor signaling has been shown to cause such a reorientation of M-MDSCs and G-MDSCs in murine models. Exploitation of this principle in humans, including the use of small molecule inhibitors and biological therapies which alter the balance of Type 1 and Type 2 polarization may lead to novel therapeutic approaches, particularly, in combination with existing immunomodulatory strategies focused on enhancing antitumor T cell responses (such as vaccination and immune checkpoint blockade).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689

    PubMed  CAS  Google Scholar 

  • Angulo I, Rullas J, Campillo JA, Obregon E, Heath A, Howard M et al (2000) Early myeloid cells are high producers of nitric oxide upon CD40 plus IFN-gamma stimulation through a mechanism dependent on endogenous TNF-alpha and IL-1alpha. Eur J Immunol 30:1263–1271

    Article  PubMed  CAS  Google Scholar 

  • Bingisser RM, Tilbrook PA, Holt PG, Kees UR (1998) Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 160:5729–5734

    PubMed  CAS  Google Scholar 

  • Bronte V, Zanovello P (2005) Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 5:641–654

    Article  PubMed  CAS  Google Scholar 

  • Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A et al (2003) IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 170:270–278

    PubMed  CAS  Google Scholar 

  • Capuano G, Rigamonti N, Grioni M, Freschi M, Bellone M (2009) Modulators of arginine metabolism support cancer immunosurveillance. BMC Immunol 10:1

    Article  PubMed  Google Scholar 

  • Centuori SM, Trad M, Lacasse CJ, Alizadeh D, Larmonier CB, Hanke NT et al (2012) Myeloid-derived suppressor cells from tumor-bearing mice impair TGF-beta-induced differentiation of CD4+ CD25+ FoxP3+ Tregs from CD4+ CD25-FoxP3- T cells. J Eukocyte Biol 92:987

    Article  CAS  Google Scholar 

  • Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM et al (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205:2235–2249

    Article  PubMed  CAS  Google Scholar 

  • Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E et al (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182:5693–5701

    Article  PubMed  CAS  Google Scholar 

  • Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P et al (2010) HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207:2439–2453

    Article  PubMed  CAS  Google Scholar 

  • Dilek N (2012) Vuillefroy de Silly R, Blancho G, Vanhove B. Myeloid-derived suppressor cells: mechanisms of action and recent advances in their role in transplant tolerance. Front Immunol 3:208

    Article  PubMed  Google Scholar 

  • Dolcetti L, Peranzoni E, Ugel S, Marigo I (2010) Fernandez Gomez A, Mesa C, et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40:22–35

    Article  PubMed  CAS  Google Scholar 

  • Eruslanov E, Daurkin I, Ortiz J, Vieweg J, Kusmartsev S (2010) Pivotal Advance: Tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE(2) catabolism in myeloid cells. J Leukoc Biol 88:839–848

    Article  PubMed  CAS  Google Scholar 

  • Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S et al (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92:4150–4166

    PubMed  CAS  Google Scholar 

  • Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP et al (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Investig 116:2777–2790

    Article  PubMed  CAS  Google Scholar 

  • Garcia MR, Ledgerwood L, Yang Y, Xu J, Lal G, Burrell B et al (2010) Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. J Clin Investig 120:2486–2496

    Article  PubMed  CAS  Google Scholar 

  • Greifenberg V, Ribechini E, Rossner S, Lutz MB (2009) Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development. Eur J Immunol 39:2865–2876

    Article  PubMed  CAS  Google Scholar 

  • Guruvayoorappan C (2008) Tumor versus tumor-associated macrophages: how hot is the link? Integr Cancer Ther 7:90–95

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  • Highfill SL, Rodriguez PC, Zhou Q, Goetz CA, Koehn BH, Veenstra R et al (2010) Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood 116:5738–5747

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J et al (2006) Gr-1+ CD115 + immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman P, Parikh F, Lopez-Rivera E, Hailemichael Y, Clark A, Ma G et al (2012) Tumor-expressed inducible nitric oxide synthase controls induction of functional myeloid-derived suppressor cells through modulation of vascular endothelial growth factor release. J Immunol 188:5365–5376

    Article  PubMed  CAS  Google Scholar 

  • Kang TW, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479:547–551

    Article  PubMed  CAS  Google Scholar 

  • Kao J, Ko EC, Eisenstein S, Sikora AG, Fu S, Chen SH (2011) Targeting immune suppressing myeloid-derived suppressor cells in oncology. Critical Rev Oncol/Hematol 77:12–19

    Article  Google Scholar 

  • Kim S, Buchlis G, Fridlender ZG, Sun J, Kapoor V, Cheng G et al (2008) Systemic blockade of transforming growth factor-beta signaling augments the efficacy of immunogene therapy. Cancer Res 68:10247–10256

    Article  PubMed  CAS  Google Scholar 

  • Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P et al (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clinical Cancer Res: Official J Am Assoc Cancer Res 15:2148–2157

    Article  CAS  Google Scholar 

  • Kodumudi KN, Woan K, Gilvary DL, Sahakian E, Wei S, Djeu JY (2010) A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clinical Cancer Res: Official J Am Assoc Cancer Res 16:4583–4594

    Article  CAS  Google Scholar 

  • Kubagawa H, Chen CC, Ho LH, Shimada TS, Gartland L, Mashburn C et al (1999) Biochemical nature and cellular distribution of the paired immunoglobulin-like receptors, PIR-A and PIR-B. J Exp Med 189:309–318

    Article  PubMed  CAS  Google Scholar 

  • Kusmartsev SA, Li Y, Chen SH (2000) Gr-1 + myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 165:779–785

    PubMed  CAS  Google Scholar 

  • Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8 + T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172:989–999

    PubMed  CAS  Google Scholar 

  • Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kubler H et al (2008) Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clinical Cancer Res: Official J Am Assoc Cancer Res 14:8270–8278

    Article  CAS  Google Scholar 

  • Lathers DM, Clark JI, Achille NJ, Young MR (2004) Phase 1B study to improve immune responses in head and neck cancer patients using escalating doses of 25-hydroxyvitamin D3. Cancer Immunol Immunother: CII 53:422–430

    Article  PubMed  CAS  Google Scholar 

  • Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    Article  PubMed  CAS  Google Scholar 

  • Ma G, Pan PY, Eisenstein S, Divino CM, Lowell CA, Takai T et al (2011) Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells. Immunity 34:385–395

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A, Allavena P, Garlanda C, Locati M (2009) Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 70:325–330

    Article  PubMed  CAS  Google Scholar 

  • Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V (2008) Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev 222:162–179

    Article  PubMed  CAS  Google Scholar 

  • Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  PubMed  CAS  Google Scholar 

  • Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P et al (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168:689–695

    PubMed  CAS  Google Scholar 

  • Medrek C, Ponten F, Jirstrom K, Leandersson K (2012) The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 12:306

    Article  PubMed  CAS  Google Scholar 

  • Melani C, Chiodoni C, Forni G, Colombo MP (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102:2138–2145

    Article  PubMed  CAS  Google Scholar 

  • Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ et al (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66:9299–9307

    Article  PubMed  CAS  Google Scholar 

  • Montero AJ, Diaz-Montero CM, Kyriakopoulos CE, Bronte V, Mandruzzato S (2012) Myeloid-derived suppressor cells in cancer patients: a clinical perspective. J Immunother 35:107–115

    Article  PubMed  Google Scholar 

  • Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A et al (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111:4233–4244

    Article  PubMed  CAS  Google Scholar 

  • Mumprecht S, Matter M, Pavelic V, Ochsenbein AF (2006) Imatinib mesylate selectively impairs expansion of memory cytotoxic T cells without affecting the control of primary viral infections. Blood 108:3406–3413

    Article  PubMed  CAS  Google Scholar 

  • Mundy-Bosse BL, Thornton LM, Yang HC, Andersen BL, Carson WE (2011) Psychological stress is associated with altered levels of myeloid-derived suppressor cells in breast cancer patients. Cell Immunol 270:80–87

    Article  PubMed  CAS  Google Scholar 

  • Murad YM, Clay TM (2009) CpG oligodeoxynucleotides as TLR9 agonists: therapeutic applications in cancer. BioDrugs: Clinical Immunother Biopharmaceuticals Gene Ther 23:361–375

    Article  CAS  Google Scholar 

  • Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835

    Article  PubMed  CAS  Google Scholar 

  • Obermajer N, Muthuswamy R, Lesnock J, Edwards RP, Kalinski P (2011) Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 118:5498–5505

    Article  PubMed  CAS  Google Scholar 

  • Ochando JC, Chen SH (2012) Myeloid-derived suppressor cells in transplantation and cancer. Immunologic Res 54:275

    Article  Google Scholar 

  • Ochoa AC, Zea AH, Hernandez C, Rodriguez PC (2007) Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clinical Cancer Res: Official J Am Assoc Cancer Res 13:721s–726s

    Article  CAS  Google Scholar 

  • Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    Article  PubMed  CAS  Google Scholar 

  • Ostrand-Rosenberg S, Sinha P, Chornoguz O, Ecker C (2012) Regulating the suppressors: apoptosis and inflammation govern the survival of tumor-induced myeloid-derived suppressor cells (MDSC). Cancer Immunol Immunother: CII 61:1319

    Article  PubMed  CAS  Google Scholar 

  • Ozaki K, Leonard WJ (2002) Cytokine and cytokine receptor pleiotropy and redundancy. J Biol Chem 277:29355–29358

    Article  PubMed  CAS  Google Scholar 

  • Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M et al (2009) The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 69:2514–2522

    Article  PubMed  CAS  Google Scholar 

  • Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR (1995) Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clinical Cancer Res: Official J Am Assoc Cancer Res 1:95–103

    CAS  Google Scholar 

  • Pan PY, Ozao J, Zhou Z, Chen SH (2008a) Advancements in immune tolerance. Adv Drug Deliv Rev 60:91–105

    Article  PubMed  CAS  Google Scholar 

  • Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM et al (2008b) Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111:219–228

    Article  PubMed  CAS  Google Scholar 

  • Poschke I, Kiessling R (2012) On the armament and appearances of human myeloid-derived suppressor cells. Clin Immunol 144:250–268

    Article  PubMed  CAS  Google Scholar 

  • Raychaudhuri B, Rayman P, Ireland J, Ko J, Rini B, Borden EC et al (2011) Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro-oncology 13:591–599

    Article  PubMed  Google Scholar 

  • Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC (2002) Regulation of T cell receptor CD3zeta chain expression by l-arginine. J Biol Chem 277:21123–21129

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB et al (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64:5839–5849

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Quiceno DG, Ochoa AC (2007) l-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109:1568–1573

    Article  PubMed  CAS  Google Scholar 

  • Ruffell B, Affara NI, Coussens LM (2012) Differential macrophage programming in the tumor microenvironment. Trends Immunol 33:119–126

    Article  PubMed  CAS  Google Scholar 

  • Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  PubMed  CAS  Google Scholar 

  • Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W et al (2006) Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 203:2691–2702

    Article  PubMed  CAS  Google Scholar 

  • Shiroishi M, Tsumoto K, Amano K, Shirakihara Y, Colonna M, Braud VM et al (2003) Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci USA 100:8856–8861

    Article  PubMed  CAS  Google Scholar 

  • Shirota H, Klinman DM (2011) CpG-conjugated apoptotic tumor cells elicit potent tumor-specific immunity. Cancer Immunol Immunother: CII 60:659–669

    Article  PubMed  CAS  Google Scholar 

  • Shirota Y, Shirota H, Klinman DM (2012) Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J Immunol 188:1592–1599

    Article  PubMed  CAS  Google Scholar 

  • Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Investig 122:787–795

    Article  PubMed  CAS  Google Scholar 

  • Solito S, Bronte V, Mandruzzato S (2011) Antigen specificity of immune suppression by myeloid-derived suppressor cells. J Leukoc Biol 90:31–36

    Article  PubMed  CAS  Google Scholar 

  • Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1 +/CD11b + myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clinical Cancer Res: Official J Am Assoc Cancer Res 11:6713–6721

    Article  CAS  Google Scholar 

  • Suzuki E, Kim S, Cheung HK, Corbley MJ, Zhang X, Sun L et al (2007) A novel small-molecule inhibitor of transforming growth factor beta type I receptor kinase (SM16) inhibits murine mesothelioma tumor growth in vivo and prevents tumor recurrence after surgical resection. Cancer Res 67:2351–2359

    Article  PubMed  CAS  Google Scholar 

  • Takai T (2005) Paired immunoglobulin-like receptors and their MHC class I recognition. Immunology 115:433–440

    Article  PubMed  CAS  Google Scholar 

  • Umemura N, Saio M, Suwa T, Kitoh Y, Bai J, Nonaka K et al (2008) Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol 83:1136–1144

    Article  PubMed  CAS  Google Scholar 

  • Veltman JD, Lambers ME, van Nimwegen M, Hendriks RW, Hoogsteden HC, Aerts JG et al (2010) COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma celecoxib influences MDSC function. BMC cancer 10:464

    Article  PubMed  Google Scholar 

  • Verma VK, Singh V, Singh MP, Singh SM (2009) Effect of physical exercise on tumor growth regulating factors of tumor microenvironment: implications in exercise-dependent tumor growth retardation. Immunopharmacol Immunotoxicol 31:274–282

    Article  PubMed  CAS  Google Scholar 

  • Vollmer J, Krieg AM (2009) Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 61:195–204

    Article  PubMed  CAS  Google Scholar 

  • Wilcox RA (2010) Cancer-associated myeloproliferation: old association, new therapeutic target. Mayo Clinic Proc 85:656–663

    Article  Google Scholar 

  • Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y et al (2004) Expansion of myeloid immune suppressor Gr + CD11b + cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421

    Article  PubMed  CAS  Google Scholar 

  • Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802

    PubMed  CAS  Google Scholar 

  • Youn JI, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI (2012) Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91:167–181

    Article  PubMed  CAS  Google Scholar 

  • Younos I, Donkor M, Hoke T, Dafferner A, Samson H, Westphal S et al (2011) Tumor- and organ-dependent infiltration by myeloid-derived suppressor cells. Int Immunopharmacol 11:816–826

    Article  PubMed  CAS  Google Scholar 

  • Zaynagetdinov R, Sherrill TP, Polosukhin VV, Han W, Ausborn JA, McLoed AG et al (2011) A critical role for macrophages in promotion of urethane-induced lung carcinogenesis. J Immunol 187:5703–5711

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Rong L, Zhao X, Li X, Liu X, Deng J et al (2012) TNF signaling drives myeloid-derived suppressor cell accumulation. J Clin Investig 122:4094–4104

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Umikawa M, Cui C, Li J, Chen X, Zhang C et al (2012) Inhibitory receptors bind ANGPTLs and support blood stem cells and leukaemia development. Nature 485:656–660

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-Hsia Chen or Andrew G. Sikora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Svider, P., Chen, SH., Sikora, A.G., Yang, WC. (2013). Programming of MDSC: New Opportunities for Targeted Therapy. In: Shurin, M., Umansky, V., Malyguine, A. (eds) The Tumor Immunoenvironment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6217-6_24

Download citation

Publish with us

Policies and ethics