Skip to main content

The Metastatic Microenvironment

  • Chapter
  • First Online:
The Tumor Immunoenvironment

Abstract

Metastasis is the major killer of cancer patients. Although increased understanding of the metastatic process was achieved in recent years, the mechanisms underlying the progression of cancer cells to form site-specific metastasis are still awaiting complete elucidation. The current consensus is that circulating tumor cells disseminate into future metastatic sites and that these disseminated tumor cells form micrometastasis in these sites. The micrometastases remain in a state of dormancy in these sites until “awakened” to progress towards overt metastases. Whereas the evidence implicating chemokine–chemokine receptor interactions as the mechanism responsible for the targeted migration of tumor cells to future metastatic sites is quite strong, the mechanisms that maintain dormancy of disseminated tumor cells and the mechanisms that awaken these dormant micrometastases, driving their progression towards frank metastasis, are still obscure. It is clear, however, that the metastatic microenvironment plays a major role in these events. Three topics are discussed in this review: Mechanisms that are involved in the targeted migration of tumor cells to future metastatic sites; Specific molecular signatures expressed by metastases and micrometastases and interactions between metastatic and micrometastatic cells with the metastatic microenvironment. In reviewing these topics we focused on studies performed in our lab with neuroblatoma lung and melanoma brain metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TME:

Tumor microenvironment

CAF:

cancer-associated fibroblast

CXCL:

chemokine (C-X-C motif) ligand

SDF:

Stromal cell-derived actor

CCL:

Chemokine (C–C motif) ligand

TNF:

Tumor necrosis factor

MCP:

Monocyte chemotactic protein

CXCR:

Chemokine (C-X-C motif) receptor

IFN:

Interferon

TEM:

Transendothelial migration

CCR:

Chemokine (C–C) motif receptor

CTC:

Circulating tumor cells

DTC:

Disseminated tumor cells

PHOX:

Paired-like homeobox

MMP:

Matrix metalloproteinase

ERK:

Extracellular Signal-Regulated Kinase

PCR:

Polymerase chain reaction

References

  • Achyut BR, Yang L (2011) Transforming growth factor-beta in the gastrointestinal and hepatic tumor microenvironment. Gastroenterology 141:1167–1178

    PubMed  CAS  Google Scholar 

  • Adler AS, Chang HY (2006) From description to causality: mechanisms of gene expression signatures in cancer. Cell Cycle 5:1148–1151

    PubMed  CAS  Google Scholar 

  • Agostini C, Calabrese F, Rea F, Facco M, Tosoni A, Loy M et al (2001) Cxcr3 and its ligand CXCL10 are expressed by inflammatory cells infiltrating lung allografts and mediate chemotaxis of T cells at sites of rejection. Am J Pathol 158:1703–1711

    PubMed  CAS  Google Scholar 

  • Albini A, Mirisola V, Pfeffer U (2008) Metastasis signatures: genes regulating tumor-microenvironment interactions predict metastatic behavior. Cancer Metastasis Rev 27:75–83

    PubMed  CAS  Google Scholar 

  • Alix-Panabieres C, Riethdorf S, Pantel K (2008) Circulating tumor cells and bone marrow micrometastasis. Clin Cancer Res 14:5013–5021

    PubMed  CAS  Google Scholar 

  • Allen M, Louise Jones J (2011) Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J Pathol 223:162–176

    PubMed  CAS  Google Scholar 

  • Bafaloukos D, Gogas H (2004) The treatment of brain metastases in melanoma patients. Cancer Treat Rev 30:515–520

    PubMed  CAS  Google Scholar 

  • Balic M, Williams A, Dandachi N, Cote RJ (2010) Micrometastasis: detection methods and clinical importance. Cancer Biomark 9:397–419

    PubMed  Google Scholar 

  • Bar-Eli M (1999) Role of interleukin-8 in tumor growth and metastasis of human melanoma. Pathobiology 67:12–18

    PubMed  CAS  Google Scholar 

  • Ben-Baruch A (2003a) Host microenvironment in breast cancer development: inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor-microenvironment interactions. Breast Cancer Res: BCR 5:31–36

    PubMed  CAS  Google Scholar 

  • Ben-Baruch A (2003b) Host microenvironment in breast cancer development: inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor-microenvironment interactions. Breast Cancer Res 5:31–36

    PubMed  CAS  Google Scholar 

  • Ben-Baruch A (2008) Organ selectivity in metastasis: regulation by chemokines and their receptors. Clin Exp Metastasis 25:345–356

    PubMed  CAS  Google Scholar 

  • Bidard FC, Pierga JY, Vincent-Salomon A, Poupon MF (2008) A “class action” against the microenvironment: do cancer cells cooperate in metastasis? Cancer Metastasis Rev 27:5–10

    PubMed  CAS  Google Scholar 

  • Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17:320–329

    PubMed  CAS  Google Scholar 

  • Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX et al (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009

    PubMed  CAS  Google Scholar 

  • Braun S, Naume B (2005) Circulating and disseminated tumor cells. J Clin Oncol 23:1623–1626

    PubMed  Google Scholar 

  • Brodeur GM, Castleberry RP (1997) Neuroblastoma. In: Pizzo PA, Poplack DG (eds) Principles and practice of pediatric oncology, 3rd edn. Lippincott-Raven Publishers, Philadelphia, pp 761–783

    Google Scholar 

  • Budhu AS, Zipser B, Forgues M, Ye QH, Sun Z, Wang XW (2005) The molecular signature of metastases of human hepatocellular carcinoma. Oncology 69(Suppl 1):23–27

    PubMed  CAS  Google Scholar 

  • Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107:1761–1767

    PubMed  CAS  Google Scholar 

  • Cairns RA, Khokha R, Hill RP (2003) Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr Mol Med 3:659–671

    PubMed  CAS  Google Scholar 

  • Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331:1559–1564

    PubMed  CAS  Google Scholar 

  • Chakraborty K, Bose A, Pal S, Sarkar K, Goswami S, Ghosh D et al (2008) Neem leaf glycoprotein restores the impaired chemotactic activity of peripheral blood mononuclear cells from head and neck squamous cell carcinoma patients by maintaining CXCR3/CXCL10 balance. Int Immunopharmacol 8:330–340

    PubMed  CAS  Google Scholar 

  • Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    PubMed  CAS  Google Scholar 

  • Chaput N, Conforti R, Viaud S, Spatz A, Zitvogel L (2008) The Janus face of dendritic cells in cancer. Oncogene 27:5920–5931

    PubMed  CAS  Google Scholar 

  • Cirri P, Chiarugi P (2012) Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev 31:195–208

    PubMed  Google Scholar 

  • Coghlin C, Murray GI (2010) Current and emerging concepts in tumour metastasis. J Pathol 222:1–15

    PubMed  CAS  Google Scholar 

  • Cote RJ, Rosen PP, Lesser ML, Old LJ, Osborne MP (1991) Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol 9:1749–1756

    PubMed  CAS  Google Scholar 

  • Cowie F, Corbett R, Pinkerton CR (1997) Lung involvement in neuroblastoma: incidence and characteristics. Med Pediatr Oncol 28:429–432

    PubMed  CAS  Google Scholar 

  • Croci DO, Zacarias Fluck MF, Croci DO, Rico MJ, Matar P, Rabinovich GA, Scharovsky OG (2007) Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment. Cancer Immunol Immunother 56:1687–1700

    PubMed  Google Scholar 

  • Cuiffo BG, Karnoub AE (2012) Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adhes Migr 6:220–230

    Google Scholar 

  • Cunha GR, Hayward SW, Wang YZ (2002) Role of stroma in carcinogenesis of the prostate. Differentiation; Res Biol Divers 70:473–485

    Google Scholar 

  • Cunha GR, Hayward SW, Wang YZ, Ricke WA (2003) Role of the stromal microenvironment in carcinogenesis of the prostate. Int j Cancer J Int du Cancer 107:1–10

    CAS  Google Scholar 

  • Dai CY, Haqq CM, Puzas JE (2006) Molecular correlates of site-specific metastasis. Semin Radiat Oncol 16:102–110

    PubMed  CAS  Google Scholar 

  • Dearnaley DP, Sloane JP, Ormerod MG, Steele K, Coombes RC, Clink HM et al (1981) Increased detection of mammary carcinoma cells in marrow smears using antisera to epithelial membrane antigen. Br J Cancer 44:85–90

    PubMed  CAS  Google Scholar 

  • Denkins Y, Reiland J, Roy M, Sinnappah-Kang ND, Galjour J, Murry BP et al (2004) Brain metastases in melanoma: roles of neurotrophins. Neuro Oncol 6:154–165

    PubMed  CAS  Google Scholar 

  • DiMeo TA, Kuperwasser C (2006) The evolving paradigm of tissue-specific metastasis. Breast Cancer Res 8:301

    PubMed  Google Scholar 

  • Edry Botzer L, Maman S, Sagi-Assif O, Meshel T, Nevo I, Bauerle T et al (2011) Lung-residing metastatic and dormant neuroblastoma cells. Am J Pathol 179:524–536

    PubMed  Google Scholar 

  • Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18:884–901

    PubMed  CAS  Google Scholar 

  • Eshel R, Neumark E, Sagi-Assif O, Witz IP (2002) Receptors involved in microenvironment-driven molecular evolution of cancer cells. Semin Cancer Biol 12:139–147

    PubMed  CAS  Google Scholar 

  • Fidler IJ (2001) Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. Surgical oncology clinics of North America 10:257–69, vii-viiii

    Google Scholar 

  • Fidler IJ (2002) Critical determinants of metastasis. Semin Cancer Biol 12:89–96

    PubMed  Google Scholar 

  • Fidler IJ (2011) The role of the organ microenvironment in brain metastasis. Semin Cancer Biol 21:107–112

    PubMed  Google Scholar 

  • Fingleton B (2007) Molecular targets in metastasis: lessons from genomic approaches. Cancer Genomics Proteomics 4:211–221

    PubMed  CAS  Google Scholar 

  • Flaberg E, Markasz L, Petranyi G, Stuber G, Dicso F, Alchihabi N et al (2011) High-throughput live-cell imaging reveals differential inhibition of tumor cell proliferation by human fibroblasts. Int J Cancer J Int du Cancer 128:2793–2802

    CAS  Google Scholar 

  • Flaberg E, Guven H, Savchenko A, Pavlova T, Kashuba V, Szekely L (2012) et al. The architecture of fibroblast monolayers of different origin differentially influences tumor cell growth. Int J Cancer J Int du Cancer 131:2274–2283

    CAS  Google Scholar 

  • Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009

    PubMed  CAS  Google Scholar 

  • Fulton AM (2009) The chemokine receptors CXCR4 and CXCR3 in cancer. Curr Oncol Rep 11:125–131

    PubMed  CAS  Google Scholar 

  • Geminder H, Sagi-Assif O, Goldberg L, Meshel T, Rechavi G, Witz IP et al (2001) A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 167:4747–4757

    PubMed  CAS  Google Scholar 

  • Glinsky GV (2006) Genomic models of metastatic cancer: functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway. Cell Cycle 5:1208–1216

    PubMed  CAS  Google Scholar 

  • Goetz JG (2012) Tumor microenvironment indoctrination: An emerging hallmark of cancer. Cell Adhes Migr 6:190–192

    Google Scholar 

  • Goss PE, Chambers AF (2010) Does tumour dormancy offer a therapeutic target? Nat Rev Cancer 10:871–877

    PubMed  CAS  Google Scholar 

  • Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    PubMed  CAS  Google Scholar 

  • Gupta PB, Mani S, Yang J, Hartwell K, Weinberg RA (2005) The evolving portrait of cancer metastasis. Cold Spring Harb Symp Quant Biol 70:291–297

    PubMed  CAS  Google Scholar 

  • Hardy KM, Booth BW, Hendrix MJ, Salomon DS, Strizzi L (2010) ErbB/EGF signaling and EMT in mammary development and breast cancer. J Mammary Gland Biol Neoplasia 15:191–199

    PubMed  Google Scholar 

  • Harlozinska A (2005) Progress in molecular mechanisms of tumor metastasis and angiogenesis. Anticancer Res 25:3327–3333

    PubMed  CAS  Google Scholar 

  • Hart IR (1982) ‘Seed and soil’ revisited: mechanisms of site-specific metastasis. Cancer Metastasis Rev 1:5–16

    PubMed  CAS  Google Scholar 

  • Hart IR, Fidler IJ (1980) Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res 40:2281–2287

    PubMed  CAS  Google Scholar 

  • Hart IR, Talmadge JE, Fidler IJ (1981) Metastatic behavior of a murine reticulum cell sarcoma exhibiting organ-specific growth. Cancer Res 41:1281–1287

    PubMed  CAS  Google Scholar 

  • Hedley BD, Chambers AF (2009) Tumor dormancy and metastasis. Adv Cancer Res 102:67–101

    PubMed  CAS  Google Scholar 

  • Hendrix MJ, Seftor EA, Kirschmann DA, Quaranta V, Seftor RE (2003) Remodeling of the microenvironment by aggressive melanoma tumor cells. Ann NY Acad Sci 995:151–161

    PubMed  CAS  Google Scholar 

  • Hu M, Polyak K (2008) Microenvironmental regulation of cancer development. Curr Opin Genet Dev 18:27–34

    PubMed  CAS  Google Scholar 

  • Hunter KW (2004) Host genetics and tumour metastasis. Br J Cancer 90:752–755

    PubMed  CAS  Google Scholar 

  • Izraely S, Klein A, Sagi-Assif O, Meshel T, Tsarfaty G, Hoon DS et al (2010) Chemokine-chemokine receptor axes in melanoma brain metastasis. Immunol Lett 130:107–114

    PubMed  CAS  Google Scholar 

  • Izraely S, Sagi-Assif O, Klein A, Meshel T, Tsarfaty G, Pasmanik-Chor M et al (2012) The metastatic microenvironment: brain-residing melanoma metastasis and dormant micrometastasis. Int J Cancer J Int du Cancer 131:1071–1082

    CAS  Google Scholar 

  • Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    PubMed  CAS  Google Scholar 

  • Jung YD, Ahmad SA, Liu W, Reinmuth N, Parikh A, Stoeltzing O et al (2002) The role of the microenvironment and intercellular cross-talk in tumor angiogenesis. Semin Cancer Biol 12:105–112

    PubMed  CAS  Google Scholar 

  • Kakinuma T, Hwang ST (2006) Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol 79:639–651

    PubMed  CAS  Google Scholar 

  • Kammen BF, Matthay KK, Pacharn P, Gerbing R, Brasch RC, Gooding CA (2001) Pulmonary metastases at diagnosis of neuroblastoma in pediatric patients: CT findings and prognosis. AJR Am J Roentgenol 176:755–759

    PubMed  CAS  Google Scholar 

  • Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    PubMed  CAS  Google Scholar 

  • Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093

    PubMed  CAS  Google Scholar 

  • Khoo JJ, Forster S, Mansell A (2011) Toll-like receptors as interferon-regulated genes and their role in disease. J Interferon Cytokine Res: The Official J Int Soc Interferon Cytokine Res 31:13–25

    CAS  Google Scholar 

  • Kim RS, Avivar-Valderas A, Estrada Y, Bragado P, Sosa MS, Aguirre-Ghiso JA et al (2012) Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS ONE 7:e35569

    PubMed  CAS  Google Scholar 

  • Klebanoff CA, Acquavella N, Yu Z, Restifo NP (2011) Therapeutic cancer vaccines: are we there yet? Immunol Rev 239:27–44

    PubMed  CAS  Google Scholar 

  • Klein G, Imreh S, Zabarovsky ER (2007) Why do we not all die of cancer at an early age? Adv Cancer Res 98:1–16

    PubMed  CAS  Google Scholar 

  • Klein A, Sagi-Assif O, Izraely S, Meshel T, Pasmanik-Chor M, Nahmias C, et al. (2012) The metastatic microenvironment: brain-derived soluble factors alter the malignant phenotype of cutaneous and brain-metastasizing melanoma cells. Int J Cancer 131:2509–2518

    PubMed  CAS  Google Scholar 

  • Koh BI, Kang Y (2012) The pro-metastatic role of bone marrow-derived cells: a focus on MSCs and regulatory T cells. EMBO Rep 13:412–422

    PubMed  CAS  Google Scholar 

  • Kopfstein L, Christofori G (2006) Metastasis: cell-autonomous mechanisms versus contributions by the tumor microenvironment. Cell Mol Life Sci: CMLS 63:449–468

    PubMed  CAS  Google Scholar 

  • Korkaya H, Liu S, Wicha MS (2011) Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Investig 121:3804–3809

    PubMed  CAS  Google Scholar 

  • Krishnan V, Stadick N, Clark R, Bainer R, Veneris JT, Khan S, et al. (2012) Using MKK4’s metastasis suppressor function to identify and dissect cancer cell-microenvironment interactions during metastatic colonization. Cancer Metastasis Rev 31:605–613

    PubMed  CAS  Google Scholar 

  • Kumar S, Weaver VM (2009) Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev 28:113–127

    PubMed  Google Scholar 

  • Kuo TH, Kubota T, Watanabe M, Furukawa T, Teramoto T, Ishibiki K et al (1995) Liver colonization competence governs colon cancer metastasis. Proc Natl Acad Sci USA 92:12085–12089

    PubMed  CAS  Google Scholar 

  • Langley RR, Fidler IJ (2007) Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr Rev 28:297–321

    PubMed  CAS  Google Scholar 

  • Langley RR, Fidler IJ (2011) The seed and soil hypothesis revisited–the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer J Int du Cancer 128:2527–2535

    CAS  Google Scholar 

  • Lawrence JA, Steeg PS (1996) Mechanisms of tumor invasion and metastasis. World J Urol 14:124–130

    PubMed  CAS  Google Scholar 

  • Lin HJ, Zuo T, Chao JR, Peng Z, Asamoto LK, Yamashita SS et al (2009) Seed in soil, with an epigenetic view. Biochim Biophys Acta 1790:920–924

    PubMed  CAS  Google Scholar 

  • Lindemann F, Schlimok G, Dirschedl P, Witte J, Riethmuller G (1992) Prognostic significance of micrometastatic tumour cells in bone marrow of colorectal cancer patients. Lancet 340:685–689

    PubMed  CAS  Google Scholar 

  • Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379

    PubMed  CAS  Google Scholar 

  • Lorusso G, Ruegg C (2012) New insights into the mechanisms of organ-specific breast cancer metastasis. Semin Cancer Biol 22:226–233

    PubMed  CAS  Google Scholar 

  • Lukanidin E, Sleeman JP (2012) Building the niche: the role of the S100 proteins in metastatic growth. Semin Cancer Biol 22:216–225

    PubMed  CAS  Google Scholar 

  • Lynch CC, Matrisian LM (2002) Matrix metalloproteinases in tumor-host cell communication. Differ; Res Biol Divers 70:561–573

    CAS  Google Scholar 

  • Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L (1992) The origin and function of tumor-associated macrophages. Immunol Today 13:265–270

    PubMed  CAS  Google Scholar 

  • Mantovani A, Allavena P, Sica A (2004) Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer 40:1660–1667

    PubMed  CAS  Google Scholar 

  • Marchesi F, Locatelli M, Solinas G, Erreni M, Allavena P, Mantovani A (2010) Role of CX3CR1/CX3CL1 axis in primary and secondary involvement of the nervous system by cancer. J Neuroimmunol 224:39–44

    PubMed  CAS  Google Scholar 

  • Maru SV, Holloway KA, Flynn G, Lancashire CL, Loughlin AJ, Male DK et al (2008) Chemokine production and chemokine receptor expression by human glioma cells: role of CXCL10 in tumour cell proliferation. J Neuroimmunol 199:35–45

    PubMed  CAS  Google Scholar 

  • Mathot L, Stenninger J (2012) Behavior of seeds and soil in the mechanism of metastasis: a deeper understanding. Cancer Sci 103:626–631

    PubMed  CAS  Google Scholar 

  • Matsumiya T, Stafforini DM (2010) Function and regulation of retinoic acid-inducible gene-I. Crit Rev Immunol 30:489–513

    PubMed  CAS  Google Scholar 

  • McCawley LJ, Matrisian LM (2001) Tumor progression: defining the soil round the tumor seed. Curr Biol: CB 11:R25–R27

    PubMed  CAS  Google Scholar 

  • Mehlen P, Puisieux A (2006) Metastasis: a question of life or death. Nat Rev Cancer 6:449–458

    PubMed  CAS  Google Scholar 

  • Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF et al (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10:8152–8162

    PubMed  Google Scholar 

  • Meyer T, Hart IR (1998) Mechanisms of tumour metastasis. Eur J Cancer 34:214–221

    PubMed  CAS  Google Scholar 

  • Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al (2005a) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524

    PubMed  CAS  Google Scholar 

  • Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M et al (2005b) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115:44–55

    PubMed  CAS  Google Scholar 

  • Modak S, Cheung NK (2010) Neuroblastoma: therapeutic strategies for a clinical enigma. Cancer Treat Rev 36:307–317

    PubMed  CAS  Google Scholar 

  • Mueller MM, Fusenig NE (2002) Tumor-stroma interactions directing phenotype and progression of epithelial skin tumor cells. Differe; Res Biolo Divers 70:486–497

    Google Scholar 

  • Mullassery D, Dominici C, Jesudason EC, McDowell HP, Losty PD (2009) Neuroblastoma: contemporary management. Archives Dis Childhood Educ Pract Ed 94:177–185

    CAS  Google Scholar 

  • Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    PubMed  CAS  Google Scholar 

  • Nadal C, Maurel J, Gascon P (2007) Is there a genetic signature for liver metastasis in colorectal cancer? World J Gastroenterol: WJG 13:5832–5844

    PubMed  CAS  Google Scholar 

  • Navarini-Meury AA, Conrad C (2009) Melanoma and innate immunity–aActive inflammation or just erroneous attraction? Melanoma as the source of leukocyte-attracting chemokines. Semin Cancer Biol 19:84–91

    PubMed  CAS  Google Scholar 

  • Neumark E, Sagi-Assif O, Shalmon B, Ben-Baruch A, Witz IP (2003) Progression of mouse mammary tumors: MCP-1-TNFalpha cross-regulatory pathway and clonal expression of promalignancy and antimalignancy factors. Int J Cancer 106:879–886

    PubMed  CAS  Google Scholar 

  • Nevo I, Sagi-Assif O, Meshel T, Geminder H, Goldberg-Bittman L, Ben-Menachem S et al (2004) The tumor microenvironment: CXCR4 is associated with distinct protein expression patterns in neuroblastoma cells. Immunol Lett 92:163–169

    PubMed  CAS  Google Scholar 

  • Nevo I, Sagi-Assif O, Edry Botzer L, Amar D, Maman S, Kariv N et al (2008) Generation and characterization of novel local and metastatic human neuroblastoma variants. Neoplasia 10:816–827

    PubMed  Google Scholar 

  • Nevo I, Sagi-Assif O, Meshel T, Ben-Baruch A, Johrer K, Greil R et al (2009) The involvement of the fractalkine receptor in the transmigration of neuroblastoma cells through bone-marrow endothelial cells. Cancer Lett 273:127–139

    PubMed  CAS  Google Scholar 

  • Nevo I, Oberthuer A, Botzer E, Sagi-Assif O, Maman S, Pasmanik-Chor M et al (2010) Gene-expression-based analysis of local and metastatic neuroblastoma variants reveals a set of genes associated with tumor progression in neuroblastoma patients. Int J Cancer 126:1570–1581

    PubMed  CAS  Google Scholar 

  • Nguyen TH (2004) Mechanisms of metastasis. Clin Dermatol 22:209–216

    PubMed  Google Scholar 

  • Nguyen DX, Massague J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8:341–352

    PubMed  CAS  Google Scholar 

  • Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7:143–188

    PubMed  CAS  Google Scholar 

  • Nishimori H, Ehata S, Suzuki HI, Katsuno Y, Miyazono K (2012) Prostate cancer cells and bone stromal cells mutually interact with each other through bone morphogenetic protein-mediated signals. J Biol Chem 287:20037–20046

    PubMed  CAS  Google Scholar 

  • Oberthuer A, Berthold F, Warnat P, Hero B, Kahlert Y, Spitz R et al (2006) Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol 24:5070–5078

    PubMed  CAS  Google Scholar 

  • Onuigbo WI (1975) Human model for studying seed-soil factors in blood-borne metastasis. Arch Pathol 99:342–343

    PubMed  CAS  Google Scholar 

  • Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    PubMed  CAS  Google Scholar 

  • Paget S (1889) The distribution of secondary growths in cancer of the breast. The Lancet 133:571–573

    Google Scholar 

  • Palmieri D, Smith QR, Lockman PR, Bronder J, Gril B, Chambers AF et al (2006) Brain metastases of breast cancer. Breast Dis 26:139–147

    PubMed  CAS  Google Scholar 

  • Palmieri D, Chambers AF, Felding-Habermann B, Huang S, Steeg PS (2007) The biology of metastasis to a sanctuary site. Clin Cancer Res 13:1656–1662

    PubMed  CAS  Google Scholar 

  • Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4:448–456

    PubMed  CAS  Google Scholar 

  • Pantel K, Izbicki JR, Angstwurm M, Braun S, Passlick B, Karg O et al (1993a) Immunocytological detection of bone marrow micrometastasis in operable non-small cell lung cancer. Cancer Res 53:1027–1031

    PubMed  CAS  Google Scholar 

  • Pantel K, Braun S, Schlimok G, Riethmuller G (1993b) Micrometastatic tumour cells in bone marrow in colorectal cancer. Lancet 341:501

    PubMed  CAS  Google Scholar 

  • Park CC, Bissell MJ, Barcellos-Hoff MH (2000) The influence of the microenvironment on the malignant phenotype. Mol Med Today 6:324–329

    PubMed  CAS  Google Scholar 

  • Pass HI (2002) Biology of metastatic disease. Semin Thorac Cardiovasc Surg 14:10–17

    PubMed  Google Scholar 

  • Pauli BU, Lee CL (1988) Organ preference of metastasis. The role of organ-specifically modulated endothelial cells. Lab Invest; J Tech Methods Pathol 58:379–387

    CAS  Google Scholar 

  • Pauli BU, Augustin-Voss HG, Augustin-Voss HG, el-Sabban ME, Johnson RC, Hammer DA (1990) Organ-preference of metastasis. The role of endothelial cell adhesion molecules. Cancer Metastasis Rev 9:175–189

    PubMed  CAS  Google Scholar 

  • Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21:139–146

    PubMed  CAS  Google Scholar 

  • Pratap J, Lian JB, Stein GS (2011) Metastatic bone disease: role of transcription factors and future targets. Bone 48:30–36

    PubMed  CAS  Google Scholar 

  • Psaila B, Kaplan RN, Port ER, Lyden D (2006) Priming the ‘soil’ for breast cancer metastasis: the pre-metastatic niche. Breast Dis 26:65–74

    PubMed  CAS  Google Scholar 

  • Radinsky R (1995) Modulation of tumor cell gene expression and phenotype by the organ-specific metastatic environment. Cancer Metastasis Rev 14:323–338

    PubMed  CAS  Google Scholar 

  • Radinsky R, Fidler IJ (1992) Regulation of tumor cell growth at organ-specific metastases. In Vivo 6:325–331

    PubMed  CAS  Google Scholar 

  • Reddy BY, Lim PK, Silverio K, Patel SA, Won BW, Rameshwar P (2012) The microenvironmental effect in the progression, metastasis, and dormancy of breast cancer: a model system within bone marrow. Int J Breast Cancer 2012:721659

    PubMed  Google Scholar 

  • Richmond A, Yang J, Su Y (2009) The good and the bad of chemokines/chemokine receptors in melanoma. Pigment Cell Melanoma Res 22:175–186

    PubMed  CAS  Google Scholar 

  • Riethdorf S, Wikman H, Pantel K (2008) Review: Biological relevance of disseminated tumor cells in cancer patients. Int J Cancer 123:1991–2006

    PubMed  CAS  Google Scholar 

  • Riethmuller G, Johnson JP (1992) Monoclonal antibodies in the detection and therapy of micrometastatic epithelial cancers. Curr Opin Immunol 4:647–655

    PubMed  CAS  Google Scholar 

  • Ring BZ, Ross DT (2005) Predicting the sites of metastases. Genome Biol 6:241

    PubMed  Google Scholar 

  • Ringel MD (2011) Metastatic dormancy and progression in thyroid cancer: targeting cells in the metastatic frontier. Thyroid 21:487–492

    PubMed  Google Scholar 

  • Romsdahl MM, Potter JF, Malmgren RA, Chu EW, Brindley CO, Smith RR (1960) A clinical study of circulating tumor cells in malignant melanoma. Surg Gynecol Obstet 111:675–681

    PubMed  CAS  Google Scholar 

  • Rowley D, Barron DA (2012) The reactive stroma microenvironment and prostate cancer progression. Endocrine-related cancer 19:R187–204

    Google Scholar 

  • Rubin H (2001) Selected cell and selective microenvironment in neoplastic development. Cancer Res 61:799–807

    PubMed  CAS  Google Scholar 

  • Ruiz P, Gunthert U (1996) The cellular basis of metastasis. World J Urol 14:141–150

    PubMed  CAS  Google Scholar 

  • Russell HV, Hicks J, Okcu MF, Nuchtern JG (2004) CXCR4 expression in neuroblastoma primary tumors is associated with clinical presentation of bone and bone marrow metastases. J Pediatr Surg 39:1506–1511

    PubMed  Google Scholar 

  • Sabbah M, Emami S, Redeuilh G, Julien S, Prevost G, Zimber A et al (2008) Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy 11:123–151

    CAS  Google Scholar 

  • Sapoznik S, Ortenberg R, Galore-Haskel G, Kozlovski S, Levy D, Avivi C, et al. (2012) CXCR1 as a novel target for directing reactive T cells toward melanoma: implications for adoptive cell transfer immunotherapy. Cancer Immunol Immunother 61:1833–1847

    PubMed  CAS  Google Scholar 

  • Sarasin A, Kauffmann A (2008) Overexpression of DNA repair genes is associated with metastasis: a new hypothesis. Mutat Res 659:49–55

    PubMed  CAS  Google Scholar 

  • Schlimok G, Riethmuller G (1990) Detection, characterization and tumorigenicity of disseminated tumor cells in human bone marrow. Semin Cancer Biol 1:207–215

    PubMed  CAS  Google Scholar 

  • Schlimok G, Gottlinger H, Funke I, Swierkot S, Hauser H, Riethmuller G (1986) In vivo and in vitro labelling of epithelial tumor cells with anti 17–1A monoclonal antibodies in bone marrow of cancer patients. Hybridoma 5(Suppl 1):S163–S170

    PubMed  Google Scholar 

  • Schlimok G, Funke I, Bock B, Schweiberer B, Witte J, Riethmuller G (1990) Epithelial tumor cells in bone marrow of patients with colorectal cancer: immunocytochemical detection, phenotypic characterization, and prognostic significance. J Clin Oncol 8:831–837

    PubMed  CAS  Google Scholar 

  • Schlimok G, Funke I, Pantel K, Strobel F, Lindemann F, Witte J et al (1991) Micrometastatic tumour cells in bone marrow of patients with gastric cancer: methodological aspects of detection and prognostic significance. Eur J Cancer 27:1461–1465

    PubMed  CAS  Google Scholar 

  • Schmid MC, Varner JA (2010) Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation. J Oncol 2010:201026

    PubMed  Google Scholar 

  • Shibue T, Weinberg RA (2011) Metastatic colonization: settlement, adaptation and propagation of tumor cells in a foreign tissue environment. Semin Cancer Biol 21:99–106

    PubMed  CAS  Google Scholar 

  • Sleeman JP, Christofori G, Fodde R, Collard JG, Berx G, Decraene C et al (2012) Concepts of metastasis in flux: the stromal progression model. Semin Cancer Biol 22:174–186

    PubMed  CAS  Google Scholar 

  • Soffietti R, Ruda R, Mutani R (2002) Management of brain metastases. J Neurol 249:1357–1369

    PubMed  Google Scholar 

  • Somasundaram R, Herlyn D (2009) Chemokines and the microenvironment in neuroectodermal tumor-host interaction. Semin Cancer Biol 19:92–96

    PubMed  CAS  Google Scholar 

  • Soria G, Yaal-Hahoshen N, Azenshtein E, Shina S, Leider-Trejo L, Ryvo L et al (2008) Concomitant expression of the chemokines RANTES and MCP-1 in human breast cancer: a basis for tumor-promoting interactions. Cytokine 44:191–200

    PubMed  CAS  Google Scholar 

  • Soria G, Lebel-Haziv Y, Ehrlich M, Meshel T, Suez A, Avezov E et al (2012) Mechanisms regulating the secretion of the promalignancy chemokine CCL5 by breast tumor cells: CCL5’s 40 s loop and intracellular glycosaminoglycans. Neoplasia 14:1–19

    PubMed  CAS  Google Scholar 

  • Spano D, Zollo M (2012) Tumor microenvironment: a main actor in the metastasis process. Clin Exp Metastasis 29:381–395

    PubMed  CAS  Google Scholar 

  • Spano D, Heck C, De Antonellis P, Christofori G, Zollo M (2012) Molecular networks that regulate cancer metastasis. Semin Cancer Biol 22:234–249

    PubMed  CAS  Google Scholar 

  • St Hill CA (2011) Interactions between endothelial selectins and cancer cells regulate metastasis. Front Biosci: J Virtual Libr 16:3233–3251

    CAS  Google Scholar 

  • Steeg PS (2005) New insights into the tumor metastatic process revealed by gene expression profiling. Am J Pathol 166:1291–1294

    PubMed  CAS  Google Scholar 

  • Takeuchi H, Kitago M, Hoon DS (2007) Effects of chemokines on tumor metastasis. Cancer Treat Res 135:177–184

    PubMed  CAS  Google Scholar 

  • Taylor MA, Lee YH, Schiemann WP (2011) Role of TGF-beta and the tumor microenvironment during mammary tumorigenesis. Gene Expr 15:117–132

    PubMed  Google Scholar 

  • Timar J, Gyorffy B, Raso E (2010) Gene signature of the metastatic potential of cutaneous melanoma: too much for too little? Clin Exp Metastasis 27:371–387

    PubMed  CAS  Google Scholar 

  • Tlsty TD (2001) Stromal cells can contribute oncogenic signals. Semin Cancer Biol 11:97–104

    PubMed  CAS  Google Scholar 

  • Togo S, Shimada H, Kubota T, Moossa AR, Hoffman RM (1995) “Seed” to “soil” is a return trip in metastasis. Anticancer Res 15:791–794

    PubMed  CAS  Google Scholar 

  • Umansky V, Sevko A (2012) Melanoma-induced immunosuppression and its neutralization. Semin Cancer Biol 22:319–326

    PubMed  CAS  Google Scholar 

  • Unger M, Weaver VM (2003) The tissue microenvironment as an epigenetic tumor modifier. Methods Mol Biol 223:315–347

    PubMed  CAS  Google Scholar 

  • Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292

    PubMed  CAS  Google Scholar 

  • van Kempen LC, Rhee JS, Dehne K, Lee J, Edwards DR, Coussens LM (2002) Epithelial carcinogenesis: dynamic interplay between neoplastic cells and their microenvironment. Differ; Res Biol Divers 70:610–623

    Google Scholar 

  • Vera-Ramirez L, Sanchez-Rovira P, Ramirez-Tortosa CL, Quiles JL, Ramirez-Tortosa MC, Alvarez JC et al (2010) Gene-expression profiles, tumor microenvironment, and cancer stem cells in breast cancer: latest advances towards an integrated approach. Cancer Treat Rev 36:477–484

    PubMed  CAS  Google Scholar 

  • Wang J, Loberg R, Taichman RS (2006) The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev 25:573–587

    PubMed  CAS  Google Scholar 

  • Weil RJ, Palmieri DC, Bronder JL, Stark AM, Steeg PS (2005) Breast cancer metastasis to the central nervous system. American J Pathol 167:913–920

    CAS  Google Scholar 

  • Weinberg RA (1995) Prospects for cancer genetics. Cancer Surv 25:3–12

    PubMed  CAS  Google Scholar 

  • Weinberg RA (2008) Coevolution in the tumor microenvironment. Nat Genet 40:494–495

    PubMed  CAS  Google Scholar 

  • Weiss L, Voit A, Lane WW (1984) Metastatic patterns in patients with carcinomas of the lower esophagus and upper rectum. Invasion Metastasis 4:47–60

    PubMed  CAS  Google Scholar 

  • Weiss L, Harlos JP, Torhorst J, Gunthard B, Hartveit F, Svendsen E et al (1988) Metastatic patterns of renal carcinoma: an analysis of 687 necropsies. J Cancer Res Clin Oncol 114:605–612

    PubMed  CAS  Google Scholar 

  • Witz IP (2008a) Yin-Yang activities and vicious cycles in the tumor microenvironment. Cancer Res 68:9–13

    CAS  Google Scholar 

  • Witz IP (2008b) Tumor-microenvironment interactions: dangerous liaisons. Adv Cancer Res 100:203–229

    CAS  Google Scholar 

  • Witz IP, Levy-Nissenbaum O (2006) The tumor microenvironment in the post-PAGET era. Cancer Lett 242:1–10

    PubMed  CAS  Google Scholar 

  • Woo HG, Park ES, Thorgeirsson SS, Kim YJ (2011) Exploring genomic profiles of hepatocellular carcinoma. Mol Carcinog 50:235–243

    PubMed  CAS  Google Scholar 

  • Yokota J (2000) Tumor progression and metastasis. Carcinogenesis 21:497–503

    PubMed  CAS  Google Scholar 

  • Yokoyama N, Otani T, Hashidate H, Maeda C, Katada T, Sudo N et al (2012) Real-time detection of hepatic micrometastases from pancreatic cancer by intraoperative fluorescence imaging: preliminary results of a prospective study. Cancer 118:2813–2819

    PubMed  CAS  Google Scholar 

  • Zhang J, Lu Y, Pienta KJ (2010) Multiple roles of chemokine (C–C motif) ligand 2 in promoting prostate cancer growth. J Natl Cancer Inst 102:522–528

    PubMed  CAS  Google Scholar 

  • Zigrino P, Loffek S, Mauch C (2005) Tumor-stroma interactions: their role in the control of tumor cell invasion. Biochimie 87:321–328

    PubMed  CAS  Google Scholar 

  • Zipin-Roitman A, Meshel T, Sagi-Assif O, Shalmon B, Avivi C, Pfeffer RM et al (2007) CXCL10 promotes invasion-related properties in human colorectal carcinoma cells. Cancer Res 67:3396–3405

    PubMed  CAS  Google Scholar 

  • Zlotnik A, Burkhardt AM, Homey B (2011) Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol 11:597–606

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The studies performed in Dr. Witz’s laboratory are generously supported by the following foundations and individuals: The Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (Needham, MA, USA); Bonnie and Steven Stern (New York, NY, USA); The Deutsche Forschungsgemeinschaft (DFG); The Fred August and Adele Wolpers Charitable Fund (Clifton, NJ, USA); the late Natan Blutinger (West Orange, NJ, USA); The Pikovsky Fund (Jerusalem, Israel); and James J. Leibman and Rita S. Leibman Endowment Fund for Cancer Research (New York, NY, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac P. Witz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maman, S., Witz, I.P. (2013). The Metastatic Microenvironment . In: Shurin, M., Umansky, V., Malyguine, A. (eds) The Tumor Immunoenvironment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6217-6_2

Download citation

Publish with us

Policies and ethics