Skip to main content

Dendritic Cells and Cancer: Development, Dysfunction and Therapeutic Targets

  • Chapter
  • First Online:
The Tumor Immunoenvironment

Abstract

Dendritic cells serve a unique and diverse role in cancer pathogenesis and therapy. On the one hand, dendritic cells are recruited to developing tumors and like many myeloid cells that infiltrate tumors, they exert immune-suppressive effects. On the other hand, dendritic cells have been employed as a tool to initiate anti-tumor immune responses. This chapter discusses these seemingly opposing roles in cancer and identifies some potential strategies that may ensure more durable anti-tumor immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderson MR, Tough TW, Davis-Smith T, Braddy S, Falk B, Schooley KA et al (1995) Fas ligand mediates activation-induced cell death in human T lymphocytes. J Exp Med 181:71–77

    PubMed  CAS  Google Scholar 

  • Alessandrini A, De Haseth S, Fray M, Miyajima M, Colvin RB, Williams WW et al (2011) Dendritic cell maturation occurs through the inhibition of GSK-3beta. Cell Immunol 270:114–125

    PubMed  CAS  Google Scholar 

  • Allavena P, Piemonti L, Longoni D, Bernasconi S, Stoppacciaro A, Ruco L et al (1998) IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur J Immunol 28:359–369

    PubMed  CAS  Google Scholar 

  • Ambe K, Mori M, Enjoji M (1989) S-100 protein-positive dendritic cells in colorectal adenocarcinomas. Distribution and relation to the clinical prognosis. Cancer 63:496–503

    PubMed  CAS  Google Scholar 

  • Amiel E, Everts B, Freitas TC, King IL, Curtis JD, Pearce EL et al (2012) Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. J Immunol 189:2151–2158

    PubMed  CAS  Google Scholar 

  • Ananiev J, Gulubova MV, Manolova IM (2011) Prognostic significance of CD83 positive tumor-infiltrating dendritic cells and expression of TGF-beta 1 in human gastric cancer. Hepatogastroenterology 58:1834–1840

    PubMed  CAS  Google Scholar 

  • Andersson U, Tracey KJ (2011) HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol 29:139–162

    PubMed  CAS  Google Scholar 

  • Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    PubMed  CAS  Google Scholar 

  • Azuma M, Ebihara T, Oshiumi H, Matsumoto M, Seya T (2012) Cross-priming for antitumor CTL induced by soluble Ag+ polyI: C depends on the TICAM-1 pathway in mouse CD11c(+)/CD8alpha(+) dendritic cells. Oncoimmunology 1:581–592

    PubMed  Google Scholar 

  • Baban B, Hansen AM, Chandler PR, Manlapat A, Bingaman A, Kahler DJ et al (2005) A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type I IFN signaling following B7 ligation. Int Immunol 17:909–919

    PubMed  CAS  Google Scholar 

  • Bachem A, Guttler S, Hartung E, Ebstein F, Schaefer M, Tannert A et al (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c+ CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 207:1273–1281

    PubMed  CAS  Google Scholar 

  • Bell D, Chomarat P, Broyles D, Netto G, Harb GM, Lebecque S et al (1999) In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 190:1417–1426

    PubMed  CAS  Google Scholar 

  • Berthon A, Martinez A, Bertherat J, Val P (2012) Wnt/beta-catenin signalling in adrenal physiology and tumour development. Mol Cell Endocrinol 351:87–95

    PubMed  CAS  Google Scholar 

  • Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H et al (2004) In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 199:815–824

    PubMed  CAS  Google Scholar 

  • Bose A, Lowe DB, Rao A, Storkus WJ (2012) Combined vaccine+axitinib therapy yields superior antitumor efficacy in a murine melanoma model. Melanoma Res 22:236–243

    PubMed  CAS  Google Scholar 

  • Braun D, Longman RS, Albert ML (2005) A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 106:2375–2381

    PubMed  CAS  Google Scholar 

  • Bronte V, Serafini P, Apolloni E, Zanovello P (2001) Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J Immunother 24:431–446

    PubMed  CAS  Google Scholar 

  • Chaput N, Conforti R, Viaud S, Spatz A, Zitvogel L (2008) The Janus face of dendritic cells in cancer. Oncogene 27:5920–5931

    PubMed  CAS  Google Scholar 

  • Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM et al (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205:2235–2249

    PubMed  CAS  Google Scholar 

  • Chomarat P, Dantin C, Bennett L, Banchereau J, Palucka AK (2003) TNF skews monocyte differentiation from macrophages to dendritic cells. J Immunol 171:2262–2269

    PubMed  CAS  Google Scholar 

  • Chu CC, Ali N, Karagiannis P, Di Meglio P, Skowera A, Napolitano L et al (2012a) Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation. J Exp Med 209:935–945

    PubMed  CAS  Google Scholar 

  • Chu CS, Boyer J, Schullery DS, Gimotty PA, Gamerman V, Bender J et al (2012b) Phase I/II randomized trial of dendritic cell vaccination with or without cyclophosphamide for consolidation therapy of advanced ovarian cancer in first or second remission. Cancer Immunol Immunother: CII 61:629–641

    PubMed  CAS  Google Scholar 

  • Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    PubMed  CAS  Google Scholar 

  • Cools N, Van TV, Smits EL, Lenjou M, Nijs G, Van Bockstaele DR et al (2008) Immunosuppression induced by immature dendritic cells is mediated by TGF-beta/IL-10 double-positive CD4+ regulatory T cells. J Cell Mol Med 12:690–700

    PubMed  CAS  Google Scholar 

  • Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    PubMed  CAS  Google Scholar 

  • Curtsinger JM, Lins DC, Mescher MF (2003) Signal 3 determines tolerance versus full activation of naive CD8 T cells: dissociating proliferation and development of effector function. J Exp Med 197:1141–1151

    PubMed  CAS  Google Scholar 

  • Dejean AS, Beisner DR, Ch’en IL, Kerdiles YM, Babour A, Arden KC et al (2009) Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat Immunol 10:504–513

    PubMed  CAS  Google Scholar 

  • Delale T, Paquin A, Asselin-Paturel C, Dalod M, Brizard G, Bates EE et al (2005) MyD88-dependent and -independent murine cytomegalovirus sensing for IFN-alpha release and initiation of immune responses in vivo. J Immunol 175:6723–6732

    PubMed  CAS  Google Scholar 

  • Dhodapkar MV, Steinman RM (2002) Antigen-bearing immature dendritic cells induce peptide-specific CD8(+) regulatory T cells in vivo in humans. Blood 100:174–177

    PubMed  CAS  Google Scholar 

  • Diehl L, den Boer AT, Schoenberger SP, van der Voort EI, Schumacher TN, Melief CJ et al (1999) CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat Med 5:774–779

    PubMed  CAS  Google Scholar 

  • Drobits B, Holcmann M, Amberg N, Swiecki M, Grundtner R, Hammer M et al (2012) Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J Clin Invest 122:575–585

    PubMed  CAS  Google Scholar 

  • Duan F, Lin Y, Liu C, Engelhorn ME, Cohen AD, Curran M et al (2009) Immune rejection of mouse tumors expressing mutated self. Cancer Res 69:3545–3553

    PubMed  CAS  Google Scholar 

  • Eng CP, Gullo-Brown J, Chang JY, Sehgal SN (1991) Inhibition of skin graft rejection in mice by rapamycin: a novel immunosuppressive macrolide. Transpl Proc 23:868–869

    CAS  Google Scholar 

  • Enk AH (2006) DCs and cytokines cooperate for the induction of tregs. Ernst Schering Research Foundation workshop, pp 97-106

    Google Scholar 

  • Esashi E, Liu YJ (2008) E-box protein E2–2 is a crucial regulator of plasmacytoid DC development. Eur J Immunol 38:2386–2388

    PubMed  CAS  Google Scholar 

  • Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R et al (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4:1206–1212

    PubMed  CAS  Google Scholar 

  • Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    PubMed  CAS  Google Scholar 

  • Fu C, Jiang A (2010) Generation of tolerogenic dendritic cells via the E-cadherin/beta-catenin-signaling pathway. Immunol Res 46:72–78

    PubMed  CAS  Google Scholar 

  • Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM (2004) The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199:1607–1618

    PubMed  CAS  Google Scholar 

  • Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP (1999) Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res: J Am Assoc Cancer Res 5:2963–2970

    CAS  Google Scholar 

  • Geissmann F, Revy P, Regnault A, Lepelletier Y, Dy M, Brousse N et al (1999) TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. J Immunol 162:4567–4575

    PubMed  CAS  Google Scholar 

  • Gerlini G, Urso C, Mariotti G, Di Gennaro P, Palli D, Brandani P et al (2007) Plasmacytoid dendritic cells represent a major dendritic cell subset in sentinel lymph nodes of melanoma patients and accumulate in metastatic nodes. Clin Immunol 125:184–193

    PubMed  CAS  Google Scholar 

  • Ghiringhelli F, Puig PE, Roux S, Parcellier A, Schmitt E, Solary E et al (2005) Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+ CD25+ regulatory T cell proliferation. J Exp Med 202:919–929

    PubMed  CAS  Google Scholar 

  • Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C et al (2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30:377–386

    PubMed  CAS  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    PubMed  CAS  Google Scholar 

  • Grohmann U, Belladonna ML, Bianchi R, Orabona C, Ayroldi E, Fioretti MC et al (1998) IL-12 acts directly on DC to promote nuclear localization of NF-kappaB and primes DC for IL-12 production. Immunity 9:315–323

    PubMed  CAS  Google Scholar 

  • Grohmann U, Bianchi R, Belladonna ML, Silla S, Fallarino F, Fioretti MC et al (2000) IFN-gamma inhibits presentation of a tumor/self peptide by CD8 alpha- dendritic cells via potentiation of the CD8 alpha+ subset. J Immunol 165:1357–1363

    PubMed  CAS  Google Scholar 

  • Grohmann U, Fallarino F, Silla S, Bianchi R, Belladonna ML, Vacca C et al (2001) CD40 ligation ablates the tolerogenic potential of lymphoid dendritic cells. J Immunol 166:277–283

    PubMed  CAS  Google Scholar 

  • Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP (2005) Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65:3437–3446

    PubMed  CAS  Google Scholar 

  • Hagymasi AT, Slaiby AM, Mihalyo MA, Qui HZ, Zammit DJ, Lefrancois L et al (2007) Steady state dendritic cells present parenchymal self-antigen and contribute to, but are not essential for, tolerization of naive and Th1 effector CD4 cells. J Immunol 179:1524–1531

    PubMed  CAS  Google Scholar 

  • Hammar S, Bockus D, Remington F, Bartha M (1986) The widespread distribution of Langerhans cells in pathologic tissues: an ultrastructural and immunohistochemical study. Hum Pathol 17:894–905

    PubMed  CAS  Google Scholar 

  • Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA et al (2010) Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med 16:880–886

    PubMed  CAS  Google Scholar 

  • Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L et al (2009) Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115:3670–3679

    PubMed  CAS  Google Scholar 

  • Holcombe RF, Marsh JL, Waterman ML, Lin F, Milovanovic T, Truong T (2002) Expression of Wnt ligands and Frizzled receptors in colonic mucosa and in colon carcinoma. Mol Pathol: MP 55:220–226

    PubMed  CAS  Google Scholar 

  • Horna P, Sotomayor EM (2007) Cellular and molecular mechanisms of tumor-induced T-cell tolerance. Curr Cancer Drug Targets 7:41–53

    PubMed  CAS  Google Scholar 

  • Hou DY, Muller AJ, Sharma MD, DuHadaway J, Banerjee T, Johnson M et al (2007) Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res 67:792–801

    PubMed  CAS  Google Scholar 

  • Hoves S, Krause SW, Herfarth H, Halbritter D, Zhang HG, Mountz JD et al (2004) Elimination of activated but not resting primary human CD4+ and CD8+ T cells by Fas ligand (FasL/CD95L)-expressing Killer-dendritic cells. Immunobiology 208:463–475

    PubMed  CAS  Google Scholar 

  • Hurwitz AA, Watkins SK (2012) Immune suppression in the tumor microenvironment: a role for dendritic cell-mediated tolerization of T cells. Cancer Immunol Immunother: CII 61:289–293

    PubMed  Google Scholar 

  • Hurwitz AA, Yu TF, Leach DR, Allison JP (1998) CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci USA 95:10067–10071

    PubMed  CAS  Google Scholar 

  • Hurwitz AA, Foster BA, Kwon ED, Truong T, Choi EM, Greenberg NM et al (2000) Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res 60:2444–2448

    PubMed  CAS  Google Scholar 

  • Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA (2000) Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 164:3596–3599

    PubMed  CAS  Google Scholar 

  • Igney FH, Krammer PH (2002) Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 71:907–920

    PubMed  CAS  Google Scholar 

  • Imai Y, Yamakawa M (1993) Dendritic cells in esophageal cancer and lymph node tissues. In Vivo 7:239–248

    PubMed  CAS  Google Scholar 

  • Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S et al (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176:1693–1702

    PubMed  CAS  Google Scholar 

  • Ioachim HL, Decuseara R, Giancotti F, Dorsett BH (2005) FAS and FAS-L expression by tumor cells and lymphocytes in breast carcinomas and their lymph node metastases. Pathol Res Pract 200:743–751

    PubMed  Google Scholar 

  • Ishida T, Oyama T, Carbone DP, Gabrilovich DI (1998) Defective function of Langerhans cells in tumor-bearing animals is the result of defective maturation from hemopoietic progenitors. J Immunol 161:4842–4851

    PubMed  CAS  Google Scholar 

  • Iwamoto M, Shinohara H, Miyamoto A, Okuzawa M, Mabuchi H, Nohara T et al (2003) Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int J Cancer 104:92–97

    PubMed  CAS  Google Scholar 

  • Iwamura K, Kato T, Miyahara Y, Naota H, Mineno J, Ikeda H et al (2011) siRNA-mediated silencing of PD-1 ligands enhances tumor-specific human T-cell effector functions. Gene Ther 9(10):959–966

    Google Scholar 

  • Jenkins MK, Schwartz RH (1987) Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med 165:302–319

    PubMed  CAS  Google Scholar 

  • Jiang A, Bloom O, Ono S, Cui W, Unternaehrer J, Jiang S et al (2007) Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity 27:610–624

    PubMed  Google Scholar 

  • Jonasch E, Haluska FG (2001) Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist 6:34–55

    PubMed  CAS  Google Scholar 

  • Kaida M, Morita-Hoshi Y, Soeda A, Wakeda T, Yamaki Y, Kojima Y et al (2011) Phase 1 trial of Wilms tumor 1 (WT1) peptide vaccine and gemcitabine combination therapy in patients with advanced pancreatic or biliary tract cancer. J Immunother 34:92–99 (Hagerstown, Md: 1997)

    PubMed  CAS  Google Scholar 

  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF et al (2010a) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    PubMed  CAS  Google Scholar 

  • Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M et al (2010b) Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol: J Am Soc Clin Oncol 28:1099–1105

    CAS  Google Scholar 

  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    PubMed  CAS  Google Scholar 

  • Kim JH, Kang TH, Noh KH, Kim SH, Lee YH, Kim KW et al (2010) Enhancement of DC vaccine potency by activating the PI3 K/AKT pathway with a small interfering RNA targeting PTEN. Immunol Lett 134:47–54

    PubMed  CAS  Google Scholar 

  • Kim JH, Kang TH, Noh KH, Bae HC, Ahn YH, Lee YH et al (2011) Blocking the immunosuppressive axis with small interfering RNA targeting interleukin (IL)-10 receptor enhances dendritic cell-based vaccine potency. Clin Exp Immunol 165:180–189

    PubMed  CAS  Google Scholar 

  • Kuales MA, Wenzel J, Schmid-Wendtner MH, Bieber T, von Bubnoff D (2011) Myeloid CD11c+ S100+ dendritic cells express indoleamine 2,3-dioxygenase at the inflammatory border to invasive lower lip squamous cell carcinoma. Histol Histopathol 26:997–1006

    PubMed  CAS  Google Scholar 

  • Kuang DM, Zhao Q, Xu J, Yun JP, Wu C, Zheng L (2008) Tumor-educated tolerogenic dendritic cells induce CD3epsilon down-regulation and apoptosis of T cells through oxygen-dependent pathways. J Immunol 181:3089–3098

    PubMed  CAS  Google Scholar 

  • Kubic JD, Mascarenhas JB, Iizuka T, Wolfgeher D, Lang D (2012) GSK-3 Promotes Cell Survival, Growth, and PAX3 Levels in Human Melanoma Cells. Mol Cancer Res: MCR 10:1065–1076

    PubMed  CAS  Google Scholar 

  • Kuniyasu H, Yano S, Sasaki T, Sasahira T, Sone S, Ohmori H (2005) Colon cancer cell-derived high mobility group 1/amphoterin induces growth inhibition and apoptosis in macrophages. Am J Pathol 166:751–760

    PubMed  CAS  Google Scholar 

  • Labidi-Galy SI, Sisirak V, Meeus P, Gobert M, Treilleux I, Bajard A et al (2011) Quantitative and functional alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian cancer. Cancer Res 71:5423–5434

    PubMed  CAS  Google Scholar 

  • Lechmann M, Zinser E, Golka A, Steinkasserer A (2002) Role of CD83 in the immunomodulation of dendritic cells. Int Arch Allergy Immunol 129:113–118

    PubMed  CAS  Google Scholar 

  • Lemoine R, Velge-Roussel F, Herr F, Felix R, Nivet H, Lebranchu Y et al (2010) Interferon gamma licensing of human dendritic cells in T-helper-independent CD8+ alloimmunity. Blood 116:3089–3098

    PubMed  CAS  Google Scholar 

  • Li Y, Xu J, Zou H, Wang C (2010) 1-MT enhances potency of tumor cell lysate-pulsed dendritic cells against pancreatic adenocarcinoma by downregulating the percentage of tregs. J Huazhong Univ Sci Technol Med Sci=Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban=Huazhong keji daxue xuebao Yixue Yingdewen ban 30:344–348

    Google Scholar 

  • Liu X, Lu J, He ML, Li Z, Zhang B, Zhou LH et al (2012) Antitumor effects of interferon-alpha on cell growth and metastasis in human nasopharyngeal carcinoma. Curr Cancer Drug Targets 12:561–570

    PubMed  CAS  Google Scholar 

  • Loser K, Mehling A, Loeser S, Apelt J, Kuhn A, Grabbe S et al (2006) Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med 12:1372–1379

    PubMed  CAS  Google Scholar 

  • Ma F, Zhang J, Zhang J, Zhang C (2010) The TLR7 agonists imiquimod and gardiquimod improve DC-based immunotherapy for melanoma in mice. Cell Mol Immunol 7:381–388

    PubMed  CAS  Google Scholar 

  • Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H (2002) Immature, but not inactive: the tolerogenic function of immature dendritic cells. ImmunolCell Biol 80:477–483

    Google Scholar 

  • Manicassamy S, Reizis B, Ravindran R, Nakaya H, Salazar-Gonzalez RM, Wang YC et al (2010) Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329:849–853

    PubMed  CAS  Google Scholar 

  • Marrack P, Kappler J, Mitchell T (1999) Type I interferons keep activated T cells alive. J Exp Med 189:521–530

    PubMed  CAS  Google Scholar 

  • Martin-Fontecha A, Baumjohann D, Guarda G, Reboldi A, Hons M, Lanzavecchia A et al (2008) CD40L+ CD4+ memory T cells migrate in a CD62P-dependent fashion into reactive lymph nodes and license dendritic cells for T cell priming. J Exp Med 205:2561–2574

    PubMed  CAS  Google Scholar 

  • Matta BM, Castellaneta A, Thomson AW (2010) Tolerogenic plasmacytoid DC. Eur J Immunol 40:2667–2676

    PubMed  CAS  Google Scholar 

  • Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celluzzi C, Falo LD et al (1995) Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1:1297–1302

    PubMed  CAS  Google Scholar 

  • McCarty MF, Bielenberg D, Donawho C, Bucana CD, Fidler IJ (2002) Evidence for the causal role of endogenous interferon-alpha/beta in the regulation of angiogenesis, tumorigenicity, and metastasis of cutaneous neoplasms. Clin Exp Metastasis 19:609–615

    PubMed  CAS  Google Scholar 

  • Merad M, Ginhoux F, Collin M (2008) Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 8:935–947

    PubMed  CAS  Google Scholar 

  • Michielsen AJ, Hogan AE, Marry J, Tosetto M, Cox F, Hyland JM et al (2011) Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer. PLoS ONE 6:e27944

    PubMed  CAS  Google Scholar 

  • Modur V, Nagarajan R, Evers BM, Milbrandt J (2002) FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem 277:47928–47937

    PubMed  CAS  Google Scholar 

  • Mohty M, Vialle-Castellano A, Nunes JA, Isnardon D, Olive D, Gaugler B (2003) IFN-alpha skews monocyte differentiation into Toll-like receptor 7-expressing dendritic cells with potent functional activities. J Immunol 171:3385–3393

    PubMed  CAS  Google Scholar 

  • Morson BC (1985) Precancer and cancer in inflammatory bowel disease. Pathology 17:173–180

    PubMed  CAS  Google Scholar 

  • Munn DH (2006) Indoleamine 2,3-dioxygenase, tumor-induced tolerance and counter-regulation. Curr Opin Immunol 18:220–225

    PubMed  CAS  Google Scholar 

  • Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ et al (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114:280–290

    PubMed  CAS  Google Scholar 

  • Murphy WJ, Welniak L, Back T, Hixon J, Subleski J, Seki N et al (2003) Synergistic anti-tumor responses after administration of agonistic antibodies to CD40 and IL-2: coordination of dendritic and CD8+ cell responses. J Immunol 170:2727–2733

    PubMed  CAS  Google Scholar 

  • Nakajima T, Kodama T, Tsumuraya M, Shimosato Y, Kameya T (1985) S-100 protein-positive Langerhans cells in various human lung cancers, especially in peripheral adenocarcinomas. Virchows Arch A Pathol Anat Histopathol 407:177–189

    PubMed  CAS  Google Scholar 

  • Nguyen LT, Elford AR, Murakami K, Garza KM, Schoenberger SP, Odermatt B et al (2002) Tumor growth enhances cross-presentation leading to limited T cell activation without tolerance. J Exp Med 195:423–435

    PubMed  CAS  Google Scholar 

  • Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17:1498–1503

    PubMed  CAS  Google Scholar 

  • Nonaka M, Ma BY, Murai R, Nakamura N, Baba M, Kawasaki N et al (2008) Glycosylation-dependent interactions of C-type lectin DC-SIGN with colorectal tumor-associated Lewis glycans impair the function and differentiation of monocyte-derived dendritic cells. J Immunol 180:3347–3356

    PubMed  CAS  Google Scholar 

  • Norian LA, Rodriguez PC, O’Mara LA, Zabaleta J, Ochoa AC, Cella M et al (2009) Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via l-arginine metabolism. Cancer Res 69:3086–3094

    PubMed  CAS  Google Scholar 

  • O’Callaghan DS, O’Donnell D, O’Connell F, O’Byrne KJ (2010) The role of inflammation in the pathogenesis of non-small cell lung cancer. J Thorac Oncol: Int Assoc Study Lung Cancer 5:2024–2036

    Google Scholar 

  • O’Donnell RK, Mick R, Feldman M, Hino S, Wang Y, Brose MS et al (2007) Distribution of dendritic cell subtypes in primary oral squamous cell carcinoma is inconsistent with a functional response. Cancer Lett 255:145–152

    PubMed  Google Scholar 

  • Oppenheim JJ, Tewary P, de la Rosa G, Yang D (2007) Alarmins initiate host defense. Adv Exp Med Biol 601:185–194

    PubMed  Google Scholar 

  • Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z et al (2007) FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128:309–323

    PubMed  CAS  Google Scholar 

  • Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12:265–277

    PubMed  CAS  Google Scholar 

  • Perez L, Shurin MR, Collins B, Kogan D, Tourkova IL, Shurin GV (2005) Comparative analysis of CD1a, S-100, CD83, and CD11c human dendritic cells in normal, premalignant, and malignant tissues. Histol Histopathol 20:1165–1172

    PubMed  CAS  Google Scholar 

  • Perrot I, Blanchard D, Freymond N, Isaac S, Guibert B, Pacheco Y et al (2007) Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage. J Immunol 178:2763–2769

    PubMed  CAS  Google Scholar 

  • Ponti G, Tomasi A, Pellacani G (2012) Overwhelming response to Dabrafenib in a patient with double BRAF mutation (V600E; V600M) metastatic malignant melanoma. J Hematol Oncol 5:60

    PubMed  CAS  Google Scholar 

  • Popovic PJ, DeMarco R, Lotze MT, Winikoff SE, Bartlett DL, Krieg AM et al (2006) High mobility group B1 protein suppresses the human plasmacytoid dendritic cell response to TLR9 agonists. J Immunol 177:8701–8707

    PubMed  CAS  Google Scholar 

  • Preynat-Seauve O, Schuler P, Contassot E, Beermann F, Huard B, French LE (2006) Tumor-infiltrating dendritic cells are potent antigen-presenting cells able to activate T cells and mediate tumor rejection. J Immunol 176:61–67

    PubMed  CAS  Google Scholar 

  • Qiu CH, Miyake Y, Kaise H, Kitamura H, Ohara O, Tanaka M (2009) Novel subset of CD8{alpha} + dendritic cells localized in the marginal zone is responsible for tolerance to cell-associated antigens. J Immunol 182:4127–4136

    PubMed  CAS  Google Scholar 

  • Quezada SA, Peggs KS, Simpson TR, Allison JP (2011) Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol Rev 241:104–118

    PubMed  CAS  Google Scholar 

  • Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    PubMed  CAS  Google Scholar 

  • Rao RR, Li Q, Odunsi K, Shrikant PA (2010) The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32:67–78

    PubMed  Google Scholar 

  • Roberts PJ, Usary JE, Darr DB, Dillon PM, Pfefferle AD, Whittle MC et al (2012) Combined PI3K/mTOR and MEK inhibition provides broad antitumor activity in faithful Murine cancer models. Clin Cancer Res: J Am Assoc Cancer Res 18(19):5290–5303

    CAS  Google Scholar 

  • Rodionova E, Conzelmann M, Maraskovsky E, Hess M, Kirsch M, Giese T et al (2007) GSK-3 mediates differentiation and activation of proinflammatory dendritic cells. Blood 109:1584–1592

    PubMed  CAS  Google Scholar 

  • Romani N, Koide S, Crowley M, Witmer-Pack M, Livingstone AM, Fathman CG et al (1989) Presentation of exogenous protein antigens by dendritic cells to T cell clones. Intact protein is presented best by immature, epidermal Langerhans cells. J Exp Med 169:1169–1178

    PubMed  CAS  Google Scholar 

  • Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD et al (2011) PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother 34:409–418

    PubMed  CAS  Google Scholar 

  • Saha A, Chatterjee SK (2010) Dendritic cells pulsed with an anti-idiotype antibody mimicking Her-2/neu induced protective antitumor immunity in two lines of Her-2/neu transgenic mice. Cell Immunol 263:9–21

    PubMed  CAS  Google Scholar 

  • Sathaliyawala T, O’Gorman WE, Greter M, Bogunovic M, Konjufca V, Hou ZE et al (2010) Mammalian target of rapamycin controls dendritic cell development downstream of Flt3 ligand signaling. Immunity 33:597–606

    PubMed  CAS  Google Scholar 

  • Scholler N, Hayden-Ledbetter M, Dahlin A, Hellstrom I, Hellstrom KE, Ledbetter JA (2002) Cutting edge: CD83 regulates the development of cellular immunity. J Immunol 168:2599–2602

    PubMed  CAS  Google Scholar 

  • Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    PubMed  CAS  Google Scholar 

  • Schuler G, Romani N, Steinman RM (1985) A comparison of murine epidermal Langerhans cells with spleen dendritic cells. J Invest Dermatol 85:99s–106s

    PubMed  CAS  Google Scholar 

  • Selenko-Gebauer N, Majdic O, Szekeres A, Hofler G, Guthann E, Korthauer U et al (2003) B7–H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. J Immunol 170:3637–3644

    PubMed  CAS  Google Scholar 

  • Seneschal J, Clark RA, Gehad A, Baecher-Allan CM, Kupper TS (2012) Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36:873–884

    PubMed  CAS  Google Scholar 

  • Shafer-Weaver KA, Watkins SK, Anderson MJ, Draper LJ, Malyguine A, Alvord WG et al (2009) Immunity to murine prostatic tumors: continuous provision of T-cell help prevents CD8 T-cell tolerance and activates tumor-infiltrating dendritic cells. Cancer Res 69:6256–6264

    PubMed  CAS  Google Scholar 

  • Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H et al (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117:2570–2582

    PubMed  CAS  Google Scholar 

  • Shibaki A, Katz SI (2001) Activation through CD40 ligation induces functional Fas ligand expression by Langerhans cells. Eur J Immunol 31:3006–3015

    PubMed  CAS  Google Scholar 

  • Shurin MR (1996) Dendritic cells presenting tumor antigen. Cancer Immunol Immunother 43:158–164

    PubMed  CAS  Google Scholar 

  • Shurin MR, Pandharipande PP, Zorina TD, Haluszczak C, Subbotin VM, Hunter O et al (1997) FLT3 ligand induces the generation of functionally active dendritic cells in mice. Cell Immunol 179:174–184

    PubMed  CAS  Google Scholar 

  • Shurin MR, Shurin GV, Lokshin A, Yurkovetsky ZR, Gutkin DW, Chatta G et al (2006) Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 25:333–356

    PubMed  CAS  Google Scholar 

  • Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S et al (1999) The nature of the principal type 1 interferon-producing cells in human blood. Science 284:1835–1837

    PubMed  CAS  Google Scholar 

  • Silk KM, Silk JD, Ichiryu N, Davies TJ, Nolan KF, Leishman AJ et al (2011) Cross-presentation of tumour antigens by human induced pluripotent stem cell-derived CD141(+)XCR1(+) dendritic cells. Gene Ther 10:1035–1040

    Google Scholar 

  • Silk KM, Leishman AJ, Nishimoto KP, Reddy A, Fairchild PJ (2012) Rapamycin conditioning of dendritic cells differentiated from human ES cells promotes a tolerogenic phenotype. J Biomed Biotechnol 2012:172420

    PubMed  Google Scholar 

  • Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388

    PubMed  CAS  Google Scholar 

  • Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181:4666–4675

    PubMed  CAS  Google Scholar 

  • Somasundaram R, Swoboda R, Caputo L, Otvos L, Weber B, Volpe P et al (2006) Human leukocyte antigen-A2-restricted CTL responses to mutated BRAF peptides in melanoma patients. Cancer Res 66:3287–3293

    PubMed  CAS  Google Scholar 

  • Sotomayor EM, Borrello I, Rattis FM, Cuenca AG, Abrams J, Staveley-O’Carroll K et al (2001) Cross-presentation of tumor antigens by bone marrow-derived antigen-presenting cells is the dominant mechanism in the induction of T-cell tolerance during B-cell lymphoma progression. Blood 98:1070–1077

    PubMed  CAS  Google Scholar 

  • Sriskandan K, Garner P, Watkinson J, Pettingale KW, Brinkley D, Calman FM et al (1986) A toxicity study of recombinant interferon-gamma given by intravenous infusion to patients with advanced cancer. Cancer Chemother Pharmacol 18:63–68

    PubMed  CAS  Google Scholar 

  • Stahl M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM et al (2002) The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol 168:5024–5031

    PubMed  CAS  Google Scholar 

  • Stauffer JK, Scarzello AJ, Jiang Q, Wiltrout RH (2012) Chronic inflammation, immune escape, and oncogenesis in the liver: A unique neighborhood for novel intersections. Hepatology 4:1567–1574 (Baltimore, Md)

    Google Scholar 

  • Staveley-O’Carroll K, Schell TD, Jimenez M, Mylin LM, Tevethia MJ, Schoenberger SP et al (2003) In vivo ligation of CD40 enhances priming against the endogenous tumor antigen and promotes CD8+ T cell effector function in SV40 T antigen transgenic mice. J Immunol 171:697–707

    PubMed  Google Scholar 

  • Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137:1142–1162

    PubMed  CAS  Google Scholar 

  • Steinman RM, Lustig DS, Cohn ZA (1974) Identification of a novel cell type in peripheral lymphoid organs of mice. 3. Functional properties in vivo. J Exp Med 139:1431–1445

    PubMed  CAS  Google Scholar 

  • Steinman RM, Hawiger D, Liu K, Bonifaz L, Bonnyay D, Mahnke K et al (2003) Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann NY Acad Sci 987:15–25

    PubMed  CAS  Google Scholar 

  • Stepkowski SM, Chen H, Daloze P, Kahan BD (1991) Rapamycin, a potent immunosuppressive drug for vascularized heart, kidney, and small bowel transplantation in the rat. Transplantation 51:22–26

    PubMed  CAS  Google Scholar 

  • Stoitzner P, Green LK, Jung JY, Price KM, Atarea H, Kivell B et al (2008) Inefficient presentation of tumor-derived antigen by tumor-infiltrating dendritic cells. Cancer Immunol Immunother 57:1665–1673

    PubMed  CAS  Google Scholar 

  • Suss G, Shortman K (1996) A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis. J Exp Med 183:1789–1796

    PubMed  CAS  Google Scholar 

  • Tacken PJ, Zeelenberg IS, Cruz LJ, van Hout-Kuijer MA, van de Glind G, Fokkink RG et al (2011) Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood 118:6836–6844

    PubMed  CAS  Google Scholar 

  • Tang H, Guo Z, Zhang M, Wang J, Chen G, Cao X (2006) Endothelial stroma programs hematopoietic stem cells to differentiate into regulatory dendritic cells through IL-10. Blood 108:1189–1197

    PubMed  CAS  Google Scholar 

  • Topalian SL, Drake CG, Pardoll DM (2012a) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–212

    PubMed  CAS  Google Scholar 

  • Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012b) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    PubMed  CAS  Google Scholar 

  • Tsujitani S, Kakeji Y, Watanabe A, Kohnoe S, Maehara Y, Sugimachi K (1990) Infiltration of dendritic cells in relation to tumor invasion and lymph node metastasis in human gastric cancer. Cancer 66:2012–2016

    PubMed  CAS  Google Scholar 

  • Tsukamoto N, Okada S, Onami Y, Sasaki Y, Umezawa K, Kawakami Y (2009) Impairment of plasmacytoid dendritic cells for IFN production by the ligand for immunoglobulin-like transcript 7 expressed on human cancer cells. Clin Cancer Res: J Am Assoc Cancer Res 15:5733–5743

    CAS  Google Scholar 

  • Turnquist HR, Raimondi G, Zahorchak AF, Fischer RT, Wang Z, Thomson AW (2007) Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol 178:7018–7031

    PubMed  CAS  Google Scholar 

  • Ureta G, Osorio F, Morales J, Rosemblatt M, Bono MR, Fierro JA (2007) Generation of dendritic cells with regulatory properties. Transpl Proc 39:633–637

    CAS  Google Scholar 

  • Vacca C, Fallarino F, Perruccio K, Orabona C, Bianchi R, Gizzi S et al (2005) CD40 ligation prevents onset of tolerogenic properties in human dendritic cells treated with CTLA-4-Ig. Microbes Infect 7:1040–1048

    PubMed  CAS  Google Scholar 

  • Valencia J, Hernandez-Lopez C, Martinez VG, Hidalgo L, Zapata AG, Vicente A et al (2011) Wnt5a skews dendritic cell differentiation to an unconventional phenotype with tolerogenic features. J Immunol 187:4129–4139

    PubMed  CAS  Google Scholar 

  • Vicari AP, Chiodoni C, Vaure C, Ait-Yahia S, Dercamp C, Matsos F et al (2002) Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J Exp Med 196:541–549

    PubMed  CAS  Google Scholar 

  • Villadangos JA, Shortman K (2010) Found in translation: the human equivalent of mouse CD8+ dendritic cells. J Exp Med 207:1131–1134

    PubMed  CAS  Google Scholar 

  • von Bergwelt-Baildon MS, Popov A, Saric T, Chemnitz J, Classen S, Stoffel MS et al (2006) CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition. Blood 108:228–237

    Google Scholar 

  • von Marschall Z, Scholz A, Cramer T, Schafer G, Schirner M, Oberg K et al (2003) Effects of interferon alpha on vascular endothelial growth factor gene transcription and tumor angiogenesis. J Natl Cancer Inst 95:437–448

    Google Scholar 

  • Wang JM, Deng X, Gong W, Su S (1998) Chemokines and their role in tumor growth and metastasis. J Immunol Methods 220:1–17

    PubMed  CAS  Google Scholar 

  • Wang L, Pino-Lagos K, de Vries VC, Guleria I, Sayegh MH, Noelle RJ (2008) Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3+ CD4+ regulatory T cells. Proc Natl Acad Sci USA 105:9331–9336

    PubMed  CAS  Google Scholar 

  • Wang C, Gao D, Guo K, Kang X, Jiang K, Sun C et al (2012) Novel synergistic antitumor effects of rapamycin with bortezomib on hepatocellular carcinoma cells and orthotopic tumor model. BMC Cancer 12:166

    PubMed  CAS  Google Scholar 

  • Watkins SK, Zhu Z, Riboldi E, Shafer-Weaver KA, Stagliano KE, Sklavos MM et al (2011) FOXO3 programs tumor-associated DCs to become tolerogenic in human and murine prostate cancer. J Clin Invest. 121:1361–1372

    PubMed  Google Scholar 

  • Widelitz R (2005) Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors 23:111–116 (Chur, Switzerland)

    PubMed  CAS  Google Scholar 

  • Yamazaki S, Bonito AJ, Spisek R, Dhodapkar M, Inaba K, Steinman RM (2007) Dendritic cells are specialized accessory cells along with TGF- for the differentiation of Foxp3+ CD4+ regulatory T cells from peripheral Foxp3 precursors. Blood 110:4293–4302

    PubMed  CAS  Google Scholar 

  • Yang DH, Park JS, Jin CJ, Kang HK, Nam JH, Rhee JH et al (2009) The dysfunction and abnormal signaling pathway of dendritic cells loaded by tumor antigen can be overcome by neutralizing VEGF in multiple myeloma. Leuk Res 33:665–670

    PubMed  CAS  Google Scholar 

  • Yang L, Pang Y, Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31:220–227

    PubMed  CAS  Google Scholar 

  • Zeid NA, Muller HK (1993) S100 positive dendritic cells in human lung tumors associated with cell differentiation and enhanced survival. Pathology 25:338–343

    PubMed  CAS  Google Scholar 

  • Zhang Y, Chung Y, Bishop C, Daugherty B, Chute H, Holst P et al (2006) Regulation of T cell activation and tolerance by PDL2. Proc Natl Acad Sci USA 103:11695–11700

    PubMed  CAS  Google Scholar 

  • Zhang X, Munegowda MA, Yuan J, Wei Y, Xiang J (2010) Optimal TLR9 signal converts tolerogenic CD4-8- DCs into immunogenic ones capable of stimulating antitumor immunity via activating CD4+ Th1/Th17 and NK cell responses. J Leukoc Biol 88:393–403

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the patience and skill of Ms. Tammy Schroyer and her assistance in preparing the Figures for this Chapter. Some work described in this Chapter was supported in-part by the Intramural Research Program of the NCI, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie K. Watkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Watkins, S.K., Hurwitz, A.A. (2013). Dendritic Cells and Cancer: Development, Dysfunction and Therapeutic Targets. In: Shurin, M., Umansky, V., Malyguine, A. (eds) The Tumor Immunoenvironment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6217-6_18

Download citation

Publish with us

Policies and ethics