Skip to main content

Roles of Signaling Pathways in Cancer Cells and Immune Cells in Generation of Immunosuppressive Tumor-Associated Microenvironments

  • Chapter
  • First Online:

Abstract

Cancer cells trigger multiple immunosuppressive cascades and generate immunosuppressive tumor-associated microenvironments including tumor and sentinel lymph nodes. Constitutive activation of various signaling pathways (e.g., MAPK, STAT3, NF-κB, β-catenin) in human cancer cells was found to trigger the multiple immunosuppressive cascades through the production of immunosuppressive cytokines, such as TGF-β, IL-10, IL-6, and VEGF, and induction of immunosuppressive immune cells, such as regulatory T cells, tolerogenic dendritic cells, and myeloid derived suppressor cells. Some of these cancer-derived cytokines impair various immune cells through activation of their signaling molecules such as STAT3 and NF-κB. Inhibitors for these activated signals could inhibit the multiple immunosuppressive cascades by acting on both cancer cells and immune cells. Since common signaling mechanisms are often utilized for some of the hallmarks of cancer (e.g., cell proliferation/survival, invasion/metastasis, and immunosuppression), targeting these common signaling pathways may be an attractive strategy for cancer therapy, including immunotherapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Boni A, Cogdill AP, Dang P, Udayakumar D, Njauw CN, Sloss CM et al (2010) Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res 70:5213–5219

    Article  PubMed  CAS  Google Scholar 

  • Burdelya L, Catlett-Falcone R, Levitzki A, Cheng F, Mora LB, Sotomayor E et al (2002) Combination therapy with AG-490 and interleukin 12 achieves greater antitumor effects than either agent alone. Mol Cancer Ther 1:893–899

    PubMed  CAS  Google Scholar 

  • Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    Article  PubMed  CAS  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Shen S, Lino AC, De Curotto Lafaille MA, Lafaille JJ (2008) Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells. Nat Med 14:162–169

    Article  PubMed  CAS  Google Scholar 

  • Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M et al (2012) Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 367:107–114

    Article  PubMed  CAS  Google Scholar 

  • Fridman WH, Galon J, Dieu-Nosjean MC, Cremer I, Fisson S, Damotte D et al (2011) Immune infiltration in human cancer: prognostic significance and disease control. Curr Top Microbiol Immunol 344:1–24

    Article  PubMed  CAS  Google Scholar 

  • Fu C, Jiang A (2010) Generation of tolerogenic dendritic cells via the E-cadherin/β-catenin-signaling pathway. Immunol Res 46:72–78

    Article  PubMed  CAS  Google Scholar 

  • Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM et al (2005) Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J Exp Med 208:2005–2016

    Article  Google Scholar 

  • Fujita T, Teramoto K, Ozaki Y, Hanaoka J, Tezuka N, Itoh Y et al (2009) Inhibition of transforming growth factor-beta-mediated immunosuppression in tumor-draining lymph nodes augments antitumor responses by various immunologic cell types. Cancer Res 69:5142–5150

    Article  PubMed  CAS  Google Scholar 

  • Gajewski TF, Meng Y, Blank C, Brown I, Kacha A, Kline J, et al. (2006) Immune resistance orchestrated by the tumor microenvironment. Immunol Rev, 213:131–145

    Google Scholar 

  • Gajewski TF, Fuertes M, Spaapen R, Zheng Y, Kline J (2011) Molecular profiling to identify relevant immune resistance mechanisms in the tumor microenvironment. Curr Opin Immunol 23:286–292

    Article  PubMed  CAS  Google Scholar 

  • Gajewski TF, Fuertes MB, Woo SR (2012) Innate immune sensing of cancer: clues from an identified role for type I IFNs. Cancer Immunol Immunother 61:1343–1347

    Article  PubMed  CAS  Google Scholar 

  • Galon J, Pagès F, Marincola FM, Angell HK, Thurin M, Lugli A et al (2012) Cancer classification using the Immunoscore: a worldwide task force. J Transl Med 10:205

    Article  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  • Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365

    Article  PubMed  CAS  Google Scholar 

  • Hong DS, Vence L, Falchook G, Radvanyi LG, Liu C, Goodman V et al (2012) BRAF(V600) inhibitor GSK2118436 targeted inhibition of mutant BRAF in cancer patients does not impair overall immune competency. Clin Cancer Res 18:2326–2335

    Article  PubMed  CAS  Google Scholar 

  • Iwata-Kajihara T, Sumimoto H, Kawamura N, Ueda R, Takahashi T, Mizuguchi H et al (2011) Enhanced cancer immunotherapy using STAT3-depleted dendritic cells with high Th1-inducing ability and resistance to cancer cell-derived inhibitory factors. J Immunol 187:27–36

    Article  PubMed  CAS  Google Scholar 

  • Jalkanen SE, Vakkila J, Kreutzman A, Nieminen JK, Porkka K, Mustjoki S (2010) Poor cytokine-induced phosphorylation in chronic myeloid leukemia patients at diagnosis is effectively reversed by tyrosine kinase inhibitor therapy. Exp Hematol 39:102–113

    Article  PubMed  Google Scholar 

  • Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Rivoltini L, Topalian SL et al (1994a) Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci U S A 91:1519–3515

    Article  Google Scholar 

  • Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Appella E et al (1994b) Identification of human melanoma antigen recognized by tumor infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 91:6458–6462

    Article  PubMed  CAS  Google Scholar 

  • Kawakami Y, Fujita T, Matsuzaki Y, Sakurai T, Tsukamoto M, Toda M et al (2004) Identification of human tumor antigens and its implications for diagnosis and treatment of cancer. Cancer Sci 95:784–791

    Article  PubMed  CAS  Google Scholar 

  • Kim R, Emi M, Tanabe K, Arihiro K (2006) Immunobiology of the sentinel lymph node and its potential role for antitumour immunity. Lancet Oncol 7:1006–1016

    Article  PubMed  CAS  Google Scholar 

  • Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P et al (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15:2148–2157

    Article  PubMed  CAS  Google Scholar 

  • Kono M, Dunn IS, Durda PJ, Butera D, Rose LB, Haggerty TJ et al (2006) Role of the mitogen-activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression. Mol Cancer Res 4:779–792

    Article  PubMed  CAS  Google Scholar 

  • Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S et al (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11:1314–1321

    Article  PubMed  CAS  Google Scholar 

  • Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y (2009) Cancer metastasis is accelerated through immunosuppression during snail-induced EMT of cancer cells. Cancer Cell 15:195–206

    Article  PubMed  CAS  Google Scholar 

  • Kujawski M, Zhang C, Herrmann A, Reckamp K, Scuto A, Jensen M et al (2010) Targeting STAT3 in adoptively transferred T cells promotes their in vivo expansion and antitumor effects. Cancer Res 70:9599–9610

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Pal SK, Reckamp K, Figlin RA, Yu H (2011) STAT3: a target to enhance antitumor immune response. Curr Top Microbiol Immunol 344:41–59

    Article  PubMed  CAS  Google Scholar 

  • Manicassamy S, Reizis B, Ravindran R, Nakaya H, Salazar-Gonzalez RM, Wang JC et al (2010) Activation of β-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329:849–853

    Article  PubMed  CAS  Google Scholar 

  • Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meatchi T et al (2011) Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol 29:610–618

    Article  PubMed  Google Scholar 

  • Murakami M, Hirano T (2011) A four-step model for the IL-6 amplifier, a regulator of chronic inflammations in tissue-specific MHC class II-associated autoimmune diseases. Front Immunol 2:22

    Article  PubMed  Google Scholar 

  • Mustjoki S, Ekblom M, Arstila TP, Dybedal I, Epling-Burnette PK, Guilhot F et al (2009) Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia 23:1398–1405

    Article  PubMed  CAS  Google Scholar 

  • Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M et al (2009) The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 69:2514–2522

    Article  PubMed  CAS  Google Scholar 

  • Pallandre JR, Brillard E, Créhange G, Radlovic A, Remy-Martin JP, Saas P et al (2007) Role of STAT3 in CD4+ CD25+ FOXP3+ regulatory lymphocyte generation: implications in graft-versus-host disease and antitumor immunity. JImmunol 179:7593–7604

    CAS  Google Scholar 

  • Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ et al (2007) Loss of tumor suppressor PTEN function increases B7–H1 expression and immunoresistance in glioma. Nat Med 13:84–88

    Article  PubMed  CAS  Google Scholar 

  • Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R (2010) Immature immunosuppressive CD14+ HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 70:4335–4345

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA, Yang J, Schwartzentruber D, Hwu P, Marincola F, Topalian S et al (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4:321–327

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ et al (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17:4550–4557

    Article  PubMed  CAS  Google Scholar 

  • Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  PubMed  CAS  Google Scholar 

  • Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J et al (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Eng l J Med 364:2119–2127

    Article  CAS  Google Scholar 

  • Sumimoto H, Miyagishi M, Miyoshi H, Yamagata S, Shimizu A, Taira K et al (2004) Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene 23:6031–6039

    Article  PubMed  CAS  Google Scholar 

  • Sumimoto H, Imabayashi F, Iwata T, Kawakami Y (2006) The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med 203:1651–1656

    Article  PubMed  CAS  Google Scholar 

  • Swartz MA, Lund AW (2012) Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer 12:210–219

    Article  PubMed  CAS  Google Scholar 

  • Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL et al (2012) Colocalization of inflammatory response with B7–h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4:127

    Article  Google Scholar 

  • Tsujikawa T, Yaguchi T, Ohmura G, Ohta S, Kobayashi A, Kawamura N, et al. (2012) Autocrine and paracrine loops between cancer cells and macrophages promote lymph node metastasis via CCR4/CCL22 in head and neck squamous cell carcinoma, Int J Cancer, in press

    Google Scholar 

  • Tsukamoto N, Okada S, Onami Y, Sasaki Y, Umezawa K, Kawakami Y (2009) Impairment of plasmacytoid dendritic cells for IFN production by the ligand for immunoglobulin-like transcript 7 expressed on human cancer cells. Clin Cancer Res 15:5733–5743

    Article  PubMed  CAS  Google Scholar 

  • Wilmott JS, Long GV, Howle JR, Haydu LE, Sharma RN, Thompson JF et al (2011) Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res 18:1386–1394

    Article  PubMed  Google Scholar 

  • Wu L, Du H, Li Y, Qu P, Yan C (2011) Signal transducer and activator of transcription 3 (Stat3C) promotes myeloid-derived suppressor cell expansion and immune suppression during lung tumorigenesis. Am J Pathol 179:2131–2141

    Article  PubMed  CAS  Google Scholar 

  • Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H (2009) Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res 69:2506–2513

    Article  PubMed  CAS  Google Scholar 

  • Yaguchi T, Sumimoto H, Kudo-Saito C, Tsukamoto N, Ueda R, Iwata-Kajihara T et al (2011) The mechanisms of cancer immunoescape and development of overcoming strategies. Int J Hematol 93:294–300

    Article  PubMed  Google Scholar 

  • Yaguchi T, Goto Y, Kido K, Mochimaru H, Sakurai T, Tsukamoto N, Kudo-Saito C, Fujita T, Sumimoto H, Kawakami Y (2012) Immune suppression and resistance mediated by constitutive activation of Wnt/β-catenin signaling in human melanoma cells. J Immunol 189:2110–2117

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7:41–51

    Article  PubMed  CAS  Google Scholar 

  • Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Kawakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kawakami, Y. et al. (2013). Roles of Signaling Pathways in Cancer Cells and Immune Cells in Generation of Immunosuppressive Tumor-Associated Microenvironments. In: Shurin, M., Umansky, V., Malyguine, A. (eds) The Tumor Immunoenvironment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6217-6_12

Download citation

Publish with us

Policies and ethics