Skip to main content

The Role of Sphingolipids in Modulating Pluripotency of Stem Cells

  • Chapter
  • First Online:
Trends in Stem Cell Proliferation and Cancer Research

Abstract

Sphingolipids are essential components in mammalian cell membranes and vital modulators of cellular signaling processes. Nine molecular types of glycosphingolipids (GSLs), along with sphingosine 1-phosphate (S1P), play crucial roles in stem cells. GSLs are generated via ceramide glycosylation, the first step of which is catalyzed by glucosylceramide synthase, followed by further alternative elaborations to globo-series, ganglio-series, and lacto-series GSLs. Certain globo-series GSLs, namely, Gb5 (stage-specific embryonic antigen 3) and MSGb5 (stage-specific embryonic antigen 4), are essential for maintaining pluripotency of embryonic stem cells , and a shift of globo-series to ganglio-series GSLs (GD3, GM3, GD2, GT3) is associated with differentiation of embryonic stem cells into neural stem cells. Stem properties of breast cancer stem cells (BCSCs) mainly rely on glucosylceramide synthase and globo-series GSLs (Gb3). GD2 is a newly adopted surface marker for identifying BCSCs, and is also an effective target for eradicating BCSCs. S1P, which is generated from sphingosine phosphorylation following ceramide hydrolysis, activates S1P receptors and regulates stem cell proliferation and differentiation. Fingolimod deactivates S1P receptors and induces brain tumor stem cell apoptosis and protects neural stem cells. Targeting selected enzymes controlling sphingolipid synthesis and degradation can maintain normal stem cells and eradicate cancer stem cells. GSLs and S1P modulate stem cells through cSrc/β-catenin and pathways, but the mechanistic implications require further studies for clarification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avery K, Avery S, Shepherd J, Heath PR, Moore H (2008) Sphingosine-1-phosphate mediates transcriptional regulation of key targets associated with survival, proliferation, and pluripotency in human embryonic stem cells. Stem Cells Dev 17:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Barraud P, Stott S, Mollgard K, Parmar M, Bjorklund A (2007) In vitro characterization of a human neural progenitor cell coexpressing SSEA4 and CD133. J Neurosci Res 85:250–259

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Kaufman B, Roseman S (1968) Enzymatic synthesis of ceramide-glucose and ceramide-lactose by glycosyltransferases from embryonic chicken brain. J Biol Chem 243:5802–5804

    PubMed  CAS  Google Scholar 

  • Battula VL, Shi Y, Evans KW, Wang RY, Spaeth EL, Jacamo RO, Guerra R, Sahin AA, Marini FC, Hortobagyi G, Mani SA, Andreeff M (2012) Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Investig 122:2066–2078

    Article  PubMed  CAS  Google Scholar 

  • Bernardo K, Hurwitz R, Zenk T, Desnick RJ, Ferlinz K, Schuchman EH, Sandhoff K (1995) Purification, characterization, and biosynthesis of human acid ceramidase. J Biol Chem 270:11098–11102

    Article  PubMed  CAS  Google Scholar 

  • Bhinge K, Gupta V, Hosain S, Satyanarayanajois SD, Meyer SA, Blaylock B, Zhang QJ, Liu YY (2012) The opposite effects of doxorubicin on bone marrow stem cells versus breast cancer stem cells depend on glucosylceramide synthase. Int J Biochem Cell Biol 44:1770–1778

    Google Scholar 

  • Bieberich E (2004) Integration of glycosphingolipid metabolism and cell-fate decisions in cancer and stem cells: review and hypothesis. Glycoconj J 21:315–327

    Article  PubMed  CAS  Google Scholar 

  • Bieberich E (2011) There is more to a lipid than just being a fat: sphingolipid-guided differentiation of oligodendroglial lineage from embryonic stem cells. Neurochem Res 36:1601–1611

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Coskun U, Rossle M, Buschhorn SB, Grzybek M, Dafforn TR, Lenoir M, Overduin M, Simons K (2009) Golgi protein FAPP2 tubulates membranes. Proc Natl Acad Sci USA 106:21121–21125

    Article  PubMed  CAS  Google Scholar 

  • Chang WW, Lee CH, Lee P, Lin J, Hsu CW, Hung JT, Lin JJ, Yu JC, Shao LE, Yu J, Wong CH, Yu AL (2008) Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc Natl Acad Sci USA 105:11667–11672

    Article  PubMed  CAS  Google Scholar 

  • Charruyer A, Bell SM, Kawano M, Douangpanya S, Yen TY, Macher BA, Kumagai K, Hanada K, Holleran WM, Uchida Y (2008) Decreased ceramide transport protein (CERT) function alters sphingomyelin production following UVB irradiation. J Biol Chem 283:16682–16692

    Article  PubMed  CAS  Google Scholar 

  • Cooling LL, Zhang DS, Naides SJ, Koerner TA (2003) Glycosphingolipid expression in acute nonlymphocytic leukemia: common expression of shiga toxin and parvovirus B19 receptors on early myeloblasts. Blood 101:711–721

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, Godi A, West G, Bielawski J, Chuang CC, van der Spoel AC, Platt FM, Hannun YA, Polishchuk R, Mattjus P, De Matteis MA (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449:62–67

    Article  PubMed  CAS  Google Scholar 

  • D’Angelo G, Rega LR, De Matteis MA (2012) Connecting vesicular transport with lipid synthesis: FAPP2. Biochim Biophys Acta 1821:1089–1095

    Google Scholar 

  • Dan YY, Riehle KJ, Lazaro C, Teoh N, Haque J, Campbell JS, Fausto N (2006) Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages. Proc Natl Acad Sci USA 103:9912–9917

    Article  PubMed  CAS  Google Scholar 

  • Derre I, Swiss R, Agaisse H (2011) The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLoS Pathog 7:e1002092

    Article  PubMed  CAS  Google Scholar 

  • Donati C, Cencetti F, Nincheri P, Bernacchioni C, Brunelli S, Clementi E, Cossu G, Bruni P (2007) Sphingosine 1-phosphate mediates proliferation and survival of mesoangioblasts. Stem Cells 25:1713–1719

    Article  PubMed  CAS  Google Scholar 

  • Donati C, Cencetti F, De Palma C, Rapizzi E, Brunelli S, Cossu G, Clementi E, Bruni P (2009) TGFbeta protects mesoangioblasts from apoptosis via sphingosine kinase-1 regulation. Cell Signal 21:228–236

    Article  PubMed  CAS  Google Scholar 

  • Donati C, Marseglia G, Magi A, Serrati S, Cencetti F, Bernacchioni C, Nannetti G, Benelli M, Brunelli S, Torricelli F, Cossu G, Bruni P (2011) Sphingosine 1-phosphate induces differentiation of mesoangioblasts towards smooth muscle. A role for GATA6. PLoS One 6:e20389

    Article  PubMed  CAS  Google Scholar 

  • Draper JS, Pigott C, Thomson JA, Andrews PW (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200:249–258

    Article  PubMed  CAS  Google Scholar 

  • Dubois C, Manuguerra JC, Hauttecoeur B, Maze J (1990) Monoclonal antibody A2B5, which detects cell surface antigens, binds to ganglioside GT3 (II3 (NeuAc)3LacCer) and to its 9-O-acetylated derivative. J Biol Chem 265:2797–2803

    PubMed  CAS  Google Scholar 

  • Estrada-Bernal A, Lawler SE, Nowicki MO, Ray Chaudhury A, Van Brocklyn JR (2011) The role of sphingosine kinase-1 in EGFRvIII-regulated growth and survival of glioblastoma cells. J Neurooncol 102:353–366

    Article  PubMed  CAS  Google Scholar 

  • Estrada-Bernal A, Palanichamy K, Ray Chaudhury A, Van Brocklyn JR (2012) Induction of brain tumor stem cell apoptosis by FTY720: a potential therapeutic agent for glioblastoma. Neuro-oncology 14:405–415

    Article  PubMed  CAS  Google Scholar 

  • Farwanah H, Pierstorff B, Schmelzer CE, Raith K, Neubert RH, Kolter T, Sandhoff K (2007) Separation and mass spectrometric characterization of covalently bound skin ceramides using LC/APCI-MS and Nano-ESI-MS/MS. J Chromatogr Anal Technol Biomed Life Sci 852:562–570

    Article  CAS  Google Scholar 

  • Furukawa K, Takamiya K (2002) Beta1,4-N-acetylgalactosaminyltransferase–GM2/GD2 synthase: a key enzyme to control the synthesis of brain-enriched complex gangliosides. Biochim Biophys Acta 1573:356–362

    Article  PubMed  CAS  Google Scholar 

  • Futerman AH, Pagano RE (1991) Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem J 280(Pt 2):295–302

    PubMed  CAS  Google Scholar 

  • Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RC (2007) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109:1743–1751

    Article  PubMed  CAS  Google Scholar 

  • Gault CR, Obeid LM, Hannun YA (2010) An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688:1–23

    Article  PubMed  CAS  Google Scholar 

  • Golan K, Vagima Y, Ludin A, Itkin T, Cohen-Gur S, Kalinkovich A, Kollet O, Kim C, Schajnovitz A, Ovadya Y, Lapid K, Shivtiel S, Morris AJ, Ratajczak MZ, Lapidot T (2012) S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood 119:2478–2488

    Article  PubMed  CAS  Google Scholar 

  • Guillas I, Jiang JC, Vionnet C, Roubaty C, Uldry D, Chuard R, Wang J, Jazwinski SM, Conzelmann A (2003) Human homologues of LAG1 reconstitute Acyl-CoA-dependent ceramide synthesis in yeast. J Biol Chem 278:37083–37091

    Article  PubMed  CAS  Google Scholar 

  • Gupta G, Surolia A (2010) Glycosphingolipids in microdomain formation and their spatial organization. FEBS Lett 584:1634–1641

    Article  PubMed  CAS  Google Scholar 

  • Gupta V, Zhang QJ, Liu YY (2011) Evaluation of anticancer agents using flow cytometry analysis of cancer stem cells. Methods Mol Biol 716:179–191

    Article  PubMed  CAS  Google Scholar 

  • Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S, Spiegel S (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325:1254–1257

    Article  PubMed  CAS  Google Scholar 

  • Hakomori SI (2010) Glycosynaptic microdomains controlling tumor cell phenotype through alteration of cell growth, adhesion, and motility. FEBS Lett 584:1901–1906

    Article  PubMed  CAS  Google Scholar 

  • Halter D, Neumann S, van Dijk SM, Wolthoorn J, de Maziere AM, Vieira OV, Mattjus P, Klumperman J, van Meer G, Sprong H (2007) Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 179:101–115

    Article  PubMed  CAS  Google Scholar 

  • Hanada K (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta 1632:16–30

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Kumagai K, Tomishige N, Yamaji T (2009) CERT-mediated trafficking of ceramide. Biochim Biophys Acta 1791:684–691

    Article  PubMed  CAS  Google Scholar 

  • Hancock JF (2006) Lipid rafts: contentious only from simplistic standpoints. Nat Rev 7:456–462

    Article  CAS  Google Scholar 

  • Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev 9:139–150

    Article  CAS  Google Scholar 

  • Haynes CA, Allegood JC, Sims K, Wang EW, Sullards MC, Merrill AH Jr (2008) Quantitation of fatty acyl-coenzyme As in mammalian cells by liquid chromatography-electrospray ionization tandem mass spectrometry. J Lipid Res 49:1113–1125

    Article  PubMed  CAS  Google Scholar 

  • Hong SH, Rampalli S, Lee JB, McNicol J, Collins T, Draper JS, Bhatia M (2011) Cell fate potential of human pluripotent stem cells is encoded by histone modifications. Cell Stem Cell 9:24–36

    Article  PubMed  CAS  Google Scholar 

  • Hwang YH, Tani M, Nakagawa T, Okino N, Ito M (2005) Subcellular localization of human neutral ceramidase expressed in HEK293 cells. Biochem Biophys Res Commun 331:37–42

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa S, Sakiyama H, Suzuki G, Hidari KI, Hirabayashi Y (1996) Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proc Natl Acad Sci USA 93:4638–4643

    Article  PubMed  CAS  Google Scholar 

  • Igarashi N, Okada T, Hayashi S, Fujita T, Jahangeer S, Nakamura S (2003) Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem 278:46832–46839

    Article  PubMed  CAS  Google Scholar 

  • Inniss K, Moore H (2006) Mediation of apoptosis and proliferation of human embryonic stem cells by sphingosine-1-phosphate. Stem Cells Dev 15:789–796

    Article  PubMed  CAS  Google Scholar 

  • Jeckel D, Karrenbauer A, Burger KN, van Meer G, Wieland F (1992) Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol 117:259–267

    Article  PubMed  CAS  Google Scholar 

  • Juarez JG, Harun N, Thien M, Welschinger R, Baraz R, Pena AD, Pitson SM, Rettig M, DiPersio JF, Bradstock KF, Bendall LJ (2012) Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice. Blood 119:707–716

    Article  PubMed  CAS  Google Scholar 

  • Jung JU, Ko K, Lee DH, Chang KT, Choo YK (2009) The roles of glycosphingolipids in the proliferation and neural differentiation of mouse embryonic stem cells. Exp Mol Med 41:935–945

    Article  PubMed  CAS  Google Scholar 

  • Kannagi R, Cochran NA, Ishigami F, Hakomori S, Andrews PW, Knowles BB, Solter D (1983) Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J 2:2355–2361

    PubMed  CAS  Google Scholar 

  • Kim SM, Jung JU, Ryu JS, Jin JW, Yang HJ, Ko K, You HK, Jung KY, Choo YK (2008) Effects of gangliosides on the differentiation of human mesenchymal stem cells into osteoblasts by modulating epidermal growth factor receptors. Biochem Biophys Res Commun 371:866–871

    Article  PubMed  CAS  Google Scholar 

  • Kimber SJ, Brown DG, Pahlsson P, Nilsson B (1993) Carbohydrate antigen expression in murine embryonic stem cells and embryos. II. Sialylated antigens and glycolipid analysis. Histochem J 25:628–641

    Article  PubMed  CAS  Google Scholar 

  • Klassen H, Schwartz MR, Bailey AH, Young MJ (2001) Surface markers expressed by multipotent human and mouse neural progenitor cells include tetraspanins and non-protein epitopes. Neurosci Lett 312:180–182

    Article  PubMed  CAS  Google Scholar 

  • Kleger A, Busch T, Liebau S, Prelle K, Paschke S, Beil M, Rolletschek A, Wobus A, Wolf E, Adler G, Seufferlein T (2007) The bioactive lipid sphingosylphosphorylcholine induces differentiation of mouse embryonic stem cells and human promyelocytic leukaemia cells. Cell Signal 19:367–377

    Article  PubMed  CAS  Google Scholar 

  • Klimanskaya I, Chung Y, Meisner L, Johnson J, West MD, Lanza R (2005) Human embryonic stem cells derived without feeder cells. Lancet 365:1636–1641

    Article  PubMed  CAS  Google Scholar 

  • Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444:481–485

    Article  PubMed  CAS  Google Scholar 

  • Kojima Y, Fukumoto S, Furukawa K, Okajima T, Wiels J, Yokoyama K, Suzuki Y, Urano T, Ohta M (2000) Molecular cloning of globotriaosylceramide/CD77 synthase, a glycosyltransferase that initiates the synthesis of globo series glycosphingolipids. J Biol Chem 275:15152–15156

    Article  PubMed  CAS  Google Scholar 

  • Kolesnick RN, Haimovitz-Friedman A, Fuks Z (1994) The sphingomyelin signal transduction pathway mediates apoptosis for tumor necrosis factor, Fas, and ionizing radiation. Biochem Cell Biol 72:471–474

    Article  PubMed  CAS  Google Scholar 

  • Kudo N, Kumagai K, Tomishige N, Yamaji T, Wakatsuki S, Nishijima M, Hanada K, Kato R (2008) Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide. Proc Natl Acad Sci USA 105:488–493

    Article  PubMed  CAS  Google Scholar 

  • Kumagai K, Kawano M, Shinkai-Ouchi F, Nishijima M, Hanada K (2007) Interorganelle trafficking of ceramide is regulated by phosphorylation-dependent cooperativity between the PH and START domains of CERT. J Biol Chem 282:17758–17766

    Article  PubMed  CAS  Google Scholar 

  • Kwak DH, Yu K, Kim SM, Lee DH, Jung JU, Seo JW, Kim N, Lee S, Jung KY, You HK, Kim HA, Choo YK (2006) Dynamic changes of gangliosides expression during the differentiation of embryonic and mesenchymal stem cells into neural cells. Exp Mol Med 38:668–676

    Article  PubMed  CAS  Google Scholar 

  • Levy M, Futerman AH (2010) Mammalian ceramide synthases. IUBMB Life 62:347–356

    Article  PubMed  CAS  Google Scholar 

  • Liang YJ, Kuo HH, Lin CH, Chen YY, Yang BC, Cheng YY, Yu AL, Khoo KH, Yu J (2010) Switching of the core structures of glycosphingolipids from globo- and lacto- to ganglio-series upon human embryonic stem cell differentiation. Proc Natl Acad Sci USA 107:22564–22569

    Article  PubMed  CAS  Google Scholar 

  • Liang YJ, Yang BC, Chen JM, Lin YH, Huang CL, Cheng YY, Hsu CY, Khoo KH, Shen CN, Yu J (2011) Changes in glycosphingolipid composition during differentiation of human embryonic stem cells to ectodermal or endodermal lineages. Stem Cells 29:1995–2004

    Article  PubMed  CAS  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  PubMed  CAS  Google Scholar 

  • Liu YY, Gupta V, Patwardhan GA, Bhinge K, Zhao Y, Bao J, Mehendale H, Cabot MC, Li YT, Jazwinski SM (2010) Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling. Mol Cancer 9:145

    Article  PubMed  CAS  Google Scholar 

  • Maceyka M, Harikumar KB, Milstien S, Spiegel S (2012) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22:50–60

    Article  PubMed  CAS  Google Scholar 

  • Mao C, Xu R, Szulc ZM, Bielawska A, Galadari SH, Obeid LM (2001) Cloning and characterization of a novel human alkaline ceramidase. A mammalian enzyme that hydrolyzes phytoceramide. J Biol Chem 276:26577–26588

    Article  PubMed  CAS  Google Scholar 

  • Mao C, Xu R, Szulc ZM, Bielawski J, Becker KP, Bielawska A, Galadari SH, Hu W, Obeid LM (2003) Cloning and characterization of a mouse endoplasmic reticulum alkaline ceramidase: an enzyme that preferentially regulates metabolism of very long chain ceramides. J Biol Chem 278:31184–31191

    Article  PubMed  CAS  Google Scholar 

  • Mao C, Obeid LM (2008) Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim Biophys Acta 1781:424–434

    Article  PubMed  CAS  Google Scholar 

  • Martinez C, Hofmann TJ, Marino R, Dominici M, Horwitz EM (2007) Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood 109:4245–4248

    Article  PubMed  CAS  Google Scholar 

  • Mattjus P (2009) Glycolipid transfer proteins and membrane interaction. Biochim Biophys Acta 1788:267–272

    Article  PubMed  CAS  Google Scholar 

  • Merrill AH Jr, Williams RD (1984) Utilization of different fatty acyl-CoA thioesters by serine palmitoyltransferase from rat brain. J Lipid Res 25:185–188

    PubMed  CAS  Google Scholar 

  • Merrill AH Jr (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111:6387–6422

    Article  PubMed  CAS  Google Scholar 

  • Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25:11113–11121

    Article  PubMed  CAS  Google Scholar 

  • Nikolova-Karakashian M, Merrill AH Jr (2000) Ceramidases. Methods Enzymol 311:194–201

    Article  PubMed  CAS  Google Scholar 

  • Ogden AT, Waziri AE, Lochhead RA, Fusco D, Lopez K, Ellis JA, Kang J, Assanah M, McKhann GM, Sisti MB, McCormick PC, Canoll P, Bruce JN (2008) Identification of A2B5 + CD133- tumor-initiating cells in adult human gliomas. Neurosurgery 62:505–514; discussion 514–505

    Google Scholar 

  • Olivera A, Spiegel S (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365:557–560

    Article  PubMed  CAS  Google Scholar 

  • Pebay A, Wong RC, Pitson SM, Wolvetang EJ, Peh GS, Filipczyk A, Koh KL, Tellis I, Nguyen LT, Pera MF (2005) Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells 23:1541–1548

    Article  PubMed  CAS  Google Scholar 

  • Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ (2008) Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci USA 105:20764–20769

    Article  PubMed  CAS  Google Scholar 

  • Pewzner-Jung Y, Ben-Dor S, Futerman AH (2006) When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: Insights into the regulation of ceramide synthesis. J Biol Chem 281:25001–25005

    Article  PubMed  CAS  Google Scholar 

  • Pitson SM, Pebay A (2009) Regulation of stem cell pluripotency and neural differentiation by lysophospholipids. Neurosignals 17:242–254

    Article  PubMed  CAS  Google Scholar 

  • Pitson SM (2011) Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem Sci 36:97–107

    Article  PubMed  CAS  Google Scholar 

  • Pruett ST, Bushnev A, Hagedorn K, Adiga M, Haynes CA, Sullards MC, Liotta DC, Merrill AH Jr (2008) Biodiversity of sphingoid bases (“sphingosines”) and related amino alcohols. J Lipid Res 49:1621–1639

    Article  PubMed  CAS  Google Scholar 

  • Pruszak J, Sonntag KC, Aung MH, Sanchez-Pernaute R, Isacson O (2007) Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. Stem Cells 25:2257–2268

    Article  PubMed  Google Scholar 

  • Pyne NJ, Pyne S (2010) Sphingosine 1-phosphate and cancer. Nat Rev Cancer 10:489–503

    Article  PubMed  CAS  Google Scholar 

  • Rabionet M, van der Spoel AC, Chuang CC, von Tumpling-Radosta B, Litjens M, Bouwmeester D, Hellbusch CC, Korner C, Wiegandt H, Gorgas K, Platt FM, Grone HJ, Sandhoff R (2008) Male germ cells require polyenoic sphingolipids with complex glycosylation for completion of meiosis: a link to ceramide synthase-3. J Biol Chem 283:13357–13369

    Article  PubMed  CAS  Google Scholar 

  • Radin NS (1994) Glucosylceramide in the nervous system–a mini-review. Neurochem Res 19:533–540

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak MZ, Kim CH, Abdel-Latif A, Schneider G, Kucia M, Morris AJ, Laughlin MJ, Ratajczak J (2012) A novel perspective on stem cell homing and mobilization: review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients. Leukemia 26:63–72

    Article  PubMed  CAS  Google Scholar 

  • Richards M, Fong CY, Chan WK, Wong PC, Bongso A (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 20:933–936

    Article  PubMed  CAS  Google Scholar 

  • Rodgers A, Mormeneo D, Long JS, Delgado A, Pyne NJ, Pyne S (2009) Sphingosine 1-phosphate regulation of extracellular signal-regulated kinase-1/2 in embryonic stem cells. Stem Cells Dev 18:1319–1330

    Article  PubMed  CAS  Google Scholar 

  • Ryu JS, Ko K, Lee JW, Park SB, Byun SJ, Jeong EJ, Choo YK (2009) Gangliosides are involved in neural differentiation of human dental pulp-derived stem cells. Biochem Biophys Res Commun 387:266–271

    Article  PubMed  CAS  Google Scholar 

  • Saba JD, de la Garza-Rodea AS (2013) S1P lyase in skeletal muscle regeneration and satellite cell activation: exposing the hidden lyase. Biochim Biophys Acta 1831:167–175

    Google Scholar 

  • Salli U, Fox TE, Carkaci-Salli N, Sharma A, Robertson GP, Kester M, Vrana KE (2009) Propagation of undifferentiated human embryonic stem cells with nano-liposomal ceramide. Stem Cells Dev 18:55–65

    Article  PubMed  CAS  Google Scholar 

  • Sandhoff K, Kolter T (2003) Biosynthesis and degradation of mammalian glycosphingolipids. Philos Trans R Soc Lond B Biol Sci 358:847–861

    Article  PubMed  CAS  Google Scholar 

  • Schulte S, Stoffel W (1993) Ceramide UDPgalactosyltransferase from myelinating rat brain: purification, cloning, and expression. Proc Natl Acad Sci USA 90:10265–10269

    Article  PubMed  CAS  Google Scholar 

  • Sciorra VA, Morris AJ (2002) Roles for lipid phosphate phosphatases in regulation of cellular signaling. Biochim Biophys Acta 1582:45–51

    Article  PubMed  CAS  Google Scholar 

  • Shukla GS, Radin NS (1990) Glucosyceramide synthase of mouse kidney: further characterization with an improved assay method. Arch Biochem Biophys 283:372–378

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  • Sonnino S, Prinetti A, Mauri L, Chigorno V, Tettamanti G (2006) Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem Rev 106:2111–2125

    Article  PubMed  CAS  Google Scholar 

  • Sprong H, Kruithof B, Leijendekker R, Slot JW, van Meer G, van der Sluijs P (1998) UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J Biol Chem 273:25880–25888

    Article  PubMed  CAS  Google Scholar 

  • Stessin AM, Gursel DB, Schwartz A, Parashar B, Kulidzhanov FG, Sabbas AM, Boockvar J, Nori D, Wernicke AG (2012) FTY720, sphingosine 1-phosphate receptor modulator, selectively radioprotects hippocampal neural stem cells. Neurosci Lett 516:253–258

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  • Takizawa M, Nomura T, Wakisaka E, Yoshizuka N, Aoki J, Arai H, Inoue K, Hattori M, Matsuo N (1999) cDNA cloning and expression of human lactosylceramide synthase. Biochim Biophys Acta 1438:301–304

    Article  PubMed  CAS  Google Scholar 

  • Tani M, Iida H, Ito M (2003) O-glycosylation of mucin-like domain retains the neutral ceramidase on the plasma membranes as a type II integral membrane protein. J Biol Chem 278:10523–10530

    Article  PubMed  CAS  Google Scholar 

  • Tchoghandjian A, Baeza N, Colin C, Cayre M, Metellus P, Beclin C, Ouafik L, Figarella-Branger D (2010) A2B5 cells from human glioblastoma have cancer stem cell properties. Brain Pathol 20:211–221

    Article  PubMed  Google Scholar 

  • Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 92:7844–7848

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Togayachi A, Akashima T, Ookubo R, Kudo T, Nishihara S, Iwasaki H, Natsume A, Mio H, Inokuchi J, Irimura T, Sasaki K, Narimatsu H (2001) Molecular cloning and characterization of UDP-GlcNAc:lactosylceramide beta 1,3-N-acetylglucosaminyltransferase (beta 3Gn-T5), an essential enzyme for the expression of HNK-1 and Lewis X epitopes on glycolipids. J Biol Chem 276:22032–22040

    Article  PubMed  CAS  Google Scholar 

  • Van Brocklyn JR, Jackson CA, Pearl DK, Kotur MS, Snyder PJ, Prior TW (2005) Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J Neuropathol Exp Neurol 64:695–705

    Article  PubMed  Google Scholar 

  • Visigalli I, Ungari S, Martino S, Park H, Cesani M, Gentner B, Sergi Sergi L, Orlacchio A, Naldini L, Biffi A (2010) The galactocerebrosidase enzyme contributes to the maintenance of a functional hematopoietic stem cell niche. Blood 116:1857–1866

    Article  PubMed  CAS  Google Scholar 

  • Walter DH, Rochwalsky U, Reinhold J, Seeger F, Aicher A, Urbich C, Spyridopoulos I, Chun J, Brinkmann V, Keul P, Levkau B, Zeiher AM, Dimmeler S, Haendeler J (2007) Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler Thromb Vasc Biol 27:275–282

    Article  PubMed  CAS  Google Scholar 

  • Watson P, Stephens DJ (2005) ER-to-Golgi transport: form and formation of vesicular and tubular carriers. Biochim Biophys Acta 1744:304–315

    Article  PubMed  CAS  Google Scholar 

  • Wong RC, Tellis I, Jamshidi P, Pera M, Pebay A (2007) Anti-apoptotic effect of sphingosine-1-phosphate and platelet-derived growth factor in human embryonic stem cells. Stem Cells Dev 16:989–1001

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Liao W, Gu D, Liang L, Liu M, Du W, Liu P, Zhang L, Lu S, Dong C, Zhou B, Han Z (2009) Neural ganglioside GD2 identifies a subpopulation of mesenchymal stem cells in umbilical cord. Cell Physiol Biochem 23:415–424

    Article  PubMed  CAS  Google Scholar 

  • Xu R, Jin J, Hu W, Sun W, Bielawski J, Szulc Z, Taha T, Obeid LM, Mao C (2006) Golgi alkaline ceramidase regulates cell proliferation and survival by controlling levels of sphingosine and S1P. FASEB J 20:1813–1825

    Article  PubMed  CAS  Google Scholar 

  • Yamaji T, Kumagai K, Tomishige N, Hanada K (2008) Two sphingolipid transfer proteins, CERT and FAPP2: their roles in sphingolipid metabolism. IUBMB Life 60:511–518

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, Proia RL (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96:9142–9147

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa M, Nakamura K, Taga T (2005) Glycosphingolipid synthesis inhibitor represses cytokine-induced activation of the Ras-MAPK pathway in embryonic neural precursor cells. J Biochem 138:285–291

    Article  PubMed  CAS  Google Scholar 

  • Yoon BS, Jun EK, Park G, Jun Yoo S, Moon JH, Soon Baik C, Kim A, Kim H, Kim JH, Young Koh G, Taek Lee H, You S (2010) Optimal suppression of protein phosphatase 2A activity is critical for maintenance of human embryonic stem cell self-renewal. Stem Cells 28:874–884

    PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Yu RK, Bieberich E, Xia T, Zeng G (2004) Regulation of ganglioside biosynthesis in the nervous system. J Lipid Res 45:783–793

    Article  PubMed  CAS  Google Scholar 

  • Yu RK, Nakatani Y, Yanagisawa M (2009) The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 50(Suppl):S440–S445

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Mizutani Foundation for Glycoscience, the National Center for Research Resources (5P20RR016456-11), and the National Institute of General Medical Sciences (8 P20 GM103424-11) of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Yu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hosain, S.B., Hill, R.A., Liu, YY. (2013). The Role of Sphingolipids in Modulating Pluripotency of Stem Cells . In: Resende, R., Ulrich, H. (eds) Trends in Stem Cell Proliferation and Cancer Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6211-4_7

Download citation

Publish with us

Policies and ethics