Skip to main content

The Embryonic Rest Hypothesis of Cancer Development: 150 Years Later

  • Chapter
  • First Online:
Trends in Stem Cell Proliferation and Cancer Research

Abstract

More than 150 years ago, Rudolf Virchow and Julius Cohnheim proposed the intriguing hypothesis that cancer may develop from embryonic cell remnants that remain in the developing organs following embryogenesis. This hypothesis, known as the “embryonic rest hypothesis of cancer development,” was popular in textbooks of pathology in the ninetieth and twentieth centuries. At that time, the concept of stem cells was still unknown, and thus it was not clear what types of cells could be responsible for tumor occurrence. However, what was clear at that time was that the morphology of several tumors mimics developmentally early tissues. Today we know that some tumors express early developmental markers characteristic of embryonic cells, which could reflect either the epigenetic dedifferentiation of the somatic cells in which cancer develops to the state of early embryonic cells or that cancer originates in primitive stem cells closely related to the epiblast/germline. The identification of primitive epiblast/germline-derived very small embryonic/epiblast-like stem cells in several adult organs raised the possibility that cancer originates in these rare cells. Thus, very small embryonic/epiblast-like stem cells could be a missing link supporting this more than 150-year-old concept; however, further experimental evidence is needed to prove this tempting hypothesis.

From the Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA and Department of Physiology, Pomeranian Medical University, Szczecin, Poland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bartolomei MS, Ferguson-Smith AC (2011) Mammalian genomic imprinting. Cold Spring Harb Perspect Biol 3:1–17

    Article  Google Scholar 

  • Beachy PA, Karhadkar SS, Berman DM (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature 432:324–331

    Article  PubMed  CAS  Google Scholar 

  • Beltrami AP, Cesselli D, Bergamin N, Marcon P, Rigo S, Puppato E, D’Aurizio F, Verardo R, Piazza S, Pignatelli A, Poz A, Baccarani U, Damiani D, Fanin R, Mariuzzi L, Finato N, Masolini P, Burelli S, Belluzzi O, Schneider C, Beltrami CA (2007) Multipotent cells can be generated in vitro from several adult human organs (heart, liver and bone marrow). Blood 110:3438–3446

    Article  PubMed  CAS  Google Scholar 

  • Blanpain C, Horsley V, Fuchs E (2007) Epithelial stem cells: turning over new leaves. Cell 128:445–458

    Article  PubMed  CAS  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  • Casola S, Pedone PV, Cavazzana AO, Basso G, Luksch R, d’Amore ES, Carli M, Bruni CB, Riccio A (1997) Expression and parental imprinting of the H19 gene in human rhabdomyosarcoma. Oncogene 14:1503–1510

    Article  PubMed  CAS  Google Scholar 

  • Chao W, D’Amore PA (2008) IGF2: epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev 19:111–120

    Article  PubMed  CAS  Google Scholar 

  • Cheng L (2004) Establishing a germ cell origin for metastatic tumors using Oct-4 immunohistochemistry. Cancer 101:2006–2010

    Article  PubMed  Google Scholar 

  • Choufani S, Shuman C, Weksberg R (2010) Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet 154C:343–354

    Article  PubMed  CAS  Google Scholar 

  • D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981

    Article  PubMed  Google Scholar 

  • Delaval K, Feil R (2004) Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev 14:188–195

    Article  PubMed  CAS  Google Scholar 

  • Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    Article  PubMed  CAS  Google Scholar 

  • Eggenschwiler J, Ludwig T, Fisher P, Leighton PA, Tilghman SM, Efstratiadis A (1997) Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith-Wiedemann and Simpson-Golabi-Behmel syndromes. Genes Dev 11:3128–3142

    Article  PubMed  CAS  Google Scholar 

  • Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337

    Article  PubMed  CAS  Google Scholar 

  • Fu VX, Schwarze SR, Kenowski ML, Leblanc S, Svaren J, Jarrard DF (2004) A loss of insulin-like growth factor-2 imprinting is modulated by CCCTC-binding factor down-regulation at senescence in human epithelial cells. J Biol Chem 279:52218–52226

    Article  PubMed  CAS  Google Scholar 

  • Gabory A, Jammes H, Dandolo L (2010) The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays 32:473–480

    Article  PubMed  CAS  Google Scholar 

  • Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23

    Article  PubMed  CAS  Google Scholar 

  • Hernando E (2008) Cancer. Aneuploidy advantages? Science 322:692–693

    Article  PubMed  CAS  Google Scholar 

  • Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, Cai X, Fox JG, Goldenring JR, Wang TC (2004) Gastric cancer originating from bone marrow-derived cells. Science 306:1568–1571

    Article  PubMed  CAS  Google Scholar 

  • Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, Reik W (2012) The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14:659–665

    Article  PubMed  CAS  Google Scholar 

  • Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    Article  PubMed  CAS  Google Scholar 

  • Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, Park ES, Seo JS, Ogawa H (2004) Birth of parthenogenetic mice that can develop to adulthood. Nature 428:860–864

    Article  PubMed  CAS  Google Scholar 

  • Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4 + stem cells identified in adult bone marrow. Leukemia 20:857–869

    Article  PubMed  CAS  Google Scholar 

  • Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, Czajka R, Wojakowski W, Machalinski B, Ratajczak MZ (2007) Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21:297–303

    Article  PubMed  CAS  Google Scholar 

  • Kucia M, Masternak M, Liu R, Shin DM, Ratajczak J, Mierzejewska K, Spong A, Kopchick JJ, Bartke A, Ratajczak MZ (2013) The negative effect of prolonged somatotrophic/insulin signaling on an adult bone marrow-residing population of pluripotent very small embryonic-like stem cells (VSELs). Age (Dordr) 35:315–330

    Google Scholar 

  • Liu C, Chen Z, Zhang T, Lu Y (2006) Multiple tumor types may originate from bone marrow-derived cells. Neoplasia 8:716–724

    Article  PubMed  CAS  Google Scholar 

  • Pannetier M, Feil R (2007) Epigenetic stability of embryonic stem cells and developmental potential. Trends Biotechnol 25:556–562

    Article  PubMed  CAS  Google Scholar 

  • Parte S, Bhartiya D, Telang J, Daithankar V, Salvi V, Zaveri K, Hinduja I (2011) Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev 20:1451–1464

    Article  PubMed  CAS  Google Scholar 

  • Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak MZ, Zuba-Surma EK, Machalinski B, Ratajczak J, Kucia M (2008a) Very small embryonic-like (VSEL) stem cells: purification from adult organs, characterization, and biological significance. Stem Cell Rev 4:89–99

    Article  PubMed  Google Scholar 

  • Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, Wan W, Ratajczak J, Wojakowski W, Kucia M (2008b) Hunt for pluripotent stem cell – regenerative medicine search for almighty cell. J Autoimmun 30:151–162

    Article  PubMed  Google Scholar 

  • Ratajczak MZ, Shin DM, Kucia M (2009) Very small embryonic/epiblast-like stem cells: a missing link to support the germ line hypothesis of cancer development? Am J Pathol 174:1985–1992

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak MZ, Shin DM, Ratajczak J, Kucia M, Bartke A (2010) A novel insight into aging: are there pluripotent very small embryonic-like stem cells (VSELs) in adult tissues overtime depleted in an Igf-1-dependent manner? Aging (Albany NY) 2:875–883

    CAS  Google Scholar 

  • Ratajczak MZ, Kucia M, Liu R, Shin DM, Bryndza E, Masternak MM, Tarnowski M, Ratajczak J, Bartke A (2011a) RasGrf1: genomic imprinting, VSELs, and aging. Aging (Albany NY) 3:692–697

    CAS  Google Scholar 

  • Ratajczak MZ, Liu R, Marlicz W, Blogowski W, Starzynska T, Wojakowski W, Zuba-Surma E (2011b) Identification of very small embryonic/epiblast-like stem cells (VSELs) circulating in peripheral blood during organ/tissue injuries. Methods Cell Biol 103:31–54

    Google Scholar 

  • Ratajczak MZ, Shin DM, Liu R, Mierzejewska K, Ratajczak J, Kucia M, Zuba-Surma EK (2012) Very small embryonic/epiblast-like stem cells (VSELs) and their potential role in aging and organ rejuvenation–an update and comparison to other primitive small stem cells isolated from adult tissues. Aging (Albany NY) 4:235–246

    CAS  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Article  PubMed  CAS  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Ishihara K, Kato R (2000) Mechanisms of Igf2/H19 imprinting: DNA methylation, chromatin and long-distance gene regulation. J Biochem 127:711–715

    Article  PubMed  CAS  Google Scholar 

  • Shin DM, Zuba-Surma EK, Wu W, Ratajczak J, Wysoczynski M, Ratajczak MZ, Kucia M (2009) Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4(+) very small embryonic-like stem cells. Leukemia 23:2042–2051

    Article  PubMed  CAS  Google Scholar 

  • Shin DM, Liu R, Klich I, Wu W, Ratajczak J, Kucia M, Ratajczak MZ (2010) Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia 24(8):1450–1461

    Google Scholar 

  • Sigalotti L, Covre A, Zabierowski S, Himes B, Colizzi F, Natali PG, Herlyn M, Maio M (2008) Cancer testis antigens in human melanoma stem cells: expression, distribution, and methylation status. J Cell Physiol 215:287–291

    Article  PubMed  CAS  Google Scholar 

  • Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ (2005) Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 5:615–625

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  • Vakkila J, Lotze MT (2004) Inflammation and necrosis promote tumour growth. Nat Rev Immunol 4:641–648

    Article  PubMed  CAS  Google Scholar 

  • Welm B, Behbod F, Goodell MA, Rosen JM (2003) Isolation and characterization of functional mammary gland stem cells. Cell Prolif 36(Suppl 1):17–32

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki Y, Mann MR, Lee SS, Marh J, McCarrey JR, Yanagimachi R, Bartolomei MS (2003) Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci USA 100:12207–12212

    Article  PubMed  CAS  Google Scholar 

  • Zuba-Surma EK, Kucia M, Wu W, Klich I, Lillard JW Jr, Ratajczak J, Ratajczak MZ (2008) Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies. Cytometry A 73:1116–1127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Z. Ratajczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ratajczak, M.Z., Tarnowski, M., Borkowska, S., Serwin, K. (2013). The Embryonic Rest Hypothesis of Cancer Development: 150 Years Later. In: Resende, R., Ulrich, H. (eds) Trends in Stem Cell Proliferation and Cancer Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6211-4_3

Download citation

Publish with us

Policies and ethics