Skip to main content

Two-Dimensional (2D) Damage Percolation/Finite Element Modeling of Sheet Metal Forming

  • Chapter
  • First Online:
Book cover Micromechanics Modelling of Ductile Fracture

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 195))

  • 2185 Accesses

Abstract

Experimental evidence and numerical simulation have established that ductile damage critically limits the formability of sheet metals (Gelin 1998; Hu et al. 2000; Tang et al. 1999). To accurately predict formability and to optimize material processing to achieve enhanced formability, it is important to understand how heterogeneously distributed micro-defects affect the macromechanical behaviour of sheet metal. Therefore, it is of both theoretical and practical interest to investigate damage evolution during sheet metal forming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brown, L. M., & Embury, J. D. (1973). The initiation and growth of voids at second phase particles. In Proceedings of the 3rd international conference on the strength of metals and alloys (pp. 164–169). London: Institute of Metals.

    Google Scholar 

  • Chen, Z. T. (2004). The role of heterogeneous particle distribution in the prediction of ductile fracture. Ph.D. thesis, University of Waterloo, Canada.

    Google Scholar 

  • Chen, Z. T., & Worswick, M. J. (2008). Investigation of void nucleation in aluminum alloys. Materials Science and Engineering A, 483–484, 99–101.

    Article  Google Scholar 

  • Chu, C. C., & Needleman, A. (1980). Void nucleation effects in biaxially stretched sheets. Journal Engineering Materials Technology, 102, 249–256.

    Article  Google Scholar 

  • Cinotti, N. (2003). Stretch flange formability of aluminum alloys. M.Sc., thesis, University of Waterloo, Ontario, Canada.

    Google Scholar 

  • Gelin, J. C. (1998). Modelling of damage in metal forming processes. Journal of Materials Processing Technology, 80–81, 24–32.

    Article  Google Scholar 

  • Gurson, A. L. (1977). Continuum theory of ductile rupture by void nucleation and growth – Part I. Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, 99, 2–15.

    Article  Google Scholar 

  • Hu, J. G., Ishikawa, T., & Jonas, J. J. (2000). Finite element analysis of damage evolution and the prediction of the limiting draw ratio in textured aluminum sheets. Journal of Materials Processing Technology, 103, 374–382.

    Article  Google Scholar 

  • Orlov, O. (2003). Private communications.

    Google Scholar 

  • Pilkey, A. K. (1997). Effect of second phase particle clustering on aluminum-silicon alloy sheet formability. Ph.D. thesis, Carleton University, Ottawa, Canada.

    Google Scholar 

  • Tang, C. Y., Chow, C. L., Shen, W., & Tai, W. H. (1999). Development of a damage-based criterion for ductile fracture prediction in sheet metal forming. Journal of Materials Processing Technology, 91, 270–277.

    Article  Google Scholar 

  • Thomson, C. I. A., Worswick, M. J., Pilkey, A. K., Lloyd, D. J., & Burger, G. (1999). Modeling void nucleation and growth within periodic clusters of particles. Journal of the Mechanics and Physics of Solids, 47, 1–26.

    Article  MATH  Google Scholar 

  • Tvergaard, V. (1981). Influence of voids on shear band instabilities under plane strain conditions. International Journal of Fracture, 17, 389–407.

    Article  Google Scholar 

  • Tvergaard, V., & Needleman, A. (1984). Analysis of the cup-cone fracture in a round tensile test bar. Acta Metallurgica, 32, 157–169. 231.

    Article  Google Scholar 

  • Worswick, M. J., & Pelletier, P. (1998). Numerical simulation of ductile fracture during high strain rate deformation. European Physical Journal Applied Physics, 4, 257–267.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, Z., Butcher, C. (2013). Two-Dimensional (2D) Damage Percolation/Finite Element Modeling of Sheet Metal Forming. In: Micromechanics Modelling of Ductile Fracture. Solid Mechanics and Its Applications, vol 195. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6098-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6098-1_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6097-4

  • Online ISBN: 978-94-007-6098-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics