Skip to main content

The Tricky Ways Bacteria Cope with Iron Limitation

  • Chapter
  • First Online:
Iron Uptake in Bacteria with Emphasis on E. coli and Pseudomonas

Part of the book series: SpringerBriefs in Molecular Science ((SB BIOMETALS))

Abstract

Iron is an essential element for many key redox systems. It is difficult to acquire for cells under oxic conditions, since Fe3+ forms insoluble hydroxides. In the human host, iron is tightly bound to proteins. Bacteria invented iron transport systems which solubilize external Fe3+ by secreted low-molecular weight compounds, designated siderophores, or directly from the human proteins. Gram-negative bacteria contain an intricate energy-coupled iron transport mechanism across the outer membrane which lacks an energy source. The electrochemical potential of the cytoplasmic membrane delivers the energy. Transport across the cytoplasmic membrane is most frequently achieved by ABC transporters in Gram-positive and Gram-negative bacteria. Under anaerobic conditions, iron is the soluble Fe2+ form and transported different to Fe3+. Iron transport and intracellular iron concentrations are controlled by transcription regulation of iron transport genes. Transcription is turned on under iron-limiting growth conditions which usually exist in natural environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari P, Kirby SD, Nowalk AJ et al (1995) Biochemical characterization of a Haemophilus influenzae periplasmic iron transport operon. J Biol Chem 270:25142–25149

    CAS  Google Scholar 

  • Africa LA, Murphy ER, Egan NR et al (2011) The iron-responsive Fur/RyhB regulatory cascade modulates the Shigella outer membrane protease IcsP. Infect Immun 79:4543–4549

    CAS  Google Scholar 

  • Ahn BE, Cha J, Lee EJ, Han AR et al (2006) Nur, a nickel-responsive regulator of the Fur family, regulates superoxide dismutases and nickel transport in Streptomyces coelicolor. Mol Microbiol 59:1848–1858

    CAS  Google Scholar 

  • Alt S, Burkard N, Kulik A et al (2011) An artificial pathway to 3,4 dihydroxybenzoic acid allows generation of new aminocoumarin antibiotic recognized by catechol transporters of E. coli. Chem Biol 18:304–313

    CAS  Google Scholar 

  • An YJ, Ahn BE, Han AR, Kim HM et al (2009) Structural basis for the specialization of Nur, a nickel-specific Fur homolog, in metal sensing and DNA recognition. Nucleic Acids Res 37:3442–3451

    CAS  Google Scholar 

  • Anderson ES, Paulley JT, Roop RM (2008) The AraC-like transcriptional regulator DhbR is required for maximum expression of the 2,3-dihydroxybenzoic acid biosynthesis genes in Brucella abortus 2308 in response to iron deprivation. J Bacteriol 190:1838–1842

    CAS  Google Scholar 

  • Angerer A, Gaisser S, Braun V (1990) Nucleotide sequence of the sfuA, sfuB and sfuC genes of Serratia marcescens suggest a periplasmic–binding-protein–dependent iron transport mechanism. J Bacteriol 172(572):578

    Google Scholar 

  • Angerer A, Klupp B, Braun V (1992) Iron transport systems of Serratia marcescens. J Bacteriol 174:1378–1387

    CAS  Google Scholar 

  • Aranda J, Cortes P, Garrido ME et al (2009) Contribution of the FeoB transporter to Strepococcus suis virulence. Int Microbiol 12:137–143

    CAS  Google Scholar 

  • Argaman L, Elgrably-Weiss M, Hershko T et al (2012) RelA protein stimulates the activity of RyhB small RNA by acting on RNA-binding protein Hfq. Proc Natl Acad Sci USA 109:4621–4626

    CAS  Google Scholar 

  • Beasley FC, Marolda CL, Cheung J et al (2011) Staphylococcus aureus transporters Hts, Sir, and Sst capture iron liberated from human transferrin by staphyloferrin A, staphyloferrin B and catecholamine stress hormones, respectively, and contribute to virulence. Infect Immun 79:2345–2355

    CAS  Google Scholar 

  • Bister B, Bischoff D, Nicholson GJ et al (2004) The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. Biometals 17:471–481

    CAS  Google Scholar 

  • Bjursell MK, Martens EC, Gordon JI (2006) Functional genomic and metabolic studies of the adaptation of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem 281:36269–36279

    CAS  Google Scholar 

  • Blanvillain S, Meyer D, Boulanger A et al (2007) Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS ONE 2:e224

    Google Scholar 

  • Bleuel C, Grosse C, Taudte N, Scherer J, Wesenberg D, Krauss GJ, Nies DH, Grass G (2005) TolC is involved in enterobactin efflux across the outer membrane of Escherichia coli. J Bacteriol 187:6701–6707

    CAS  Google Scholar 

  • Bosello M, Robbel L, Linne U et al (2011) Biosynthesis of the siderophore rhodochelin requires the coordinated expression of three independent gene clusters in Rhodococcus jostii RhA1. J Amer Chem Soc 133:4587–4595

    CAS  Google Scholar 

  • Braun V (1999) Active transport of siderophore-mimicking antibacterials across the outer membrane. Drug Resist Updat 2:363–369

    CAS  Google Scholar 

  • Braun V (2010) Outer membrane signaling in Gram-negative bacteria. In: Krämer R, Jung K (eds) Bacterial Signaling. Wiley-Blackwell, Weinheim, pp 117–133

    Google Scholar 

  • Braun M, Endriss F, Killmann H et al (2003a) In vivo reconstitution of the FhuA transport protein of Escherichia coli K-12. J Bacteriol 185:5508–5518

    CAS  Google Scholar 

  • Braun V, Gaisser S, Herrmann C et al (1996) Energy-coupled transport across the outer membrane of Escherichia coli: ExbB binds ExbD and TonB in vitro, and Leucine 132 in the periplasmic region and aspartate 25 in the transmembaren region are important for ExbB activity. J Bacteriol 178:2836–2845

    CAS  Google Scholar 

  • Braun V, Günthner K, Hantke K et al (1983) Intracellular activation of albomycin in Escherichia coli and Salmonella typhimurium. J Bacteriol 156:308–315

    CAS  Google Scholar 

  • Braun V, Hantke K, Köster W (1998) Bacterial iron transport: mechanisms, genetics, and regulation. In: Sigel A, Sigel H (eds) Metal ions in biological systems. Marcel Dekker, New York

    Google Scholar 

  • Braun V, Herrmann C (2004a) Evolutionary relationship of uptake systems for biopolymers in Escherichia coli: cross-complementation between the TonB-ExbB-ExbD and the TolA-TolQ-TolR proteins. Mol Microbiol 8:261–268

    Google Scholar 

  • Braun V, Herrmann C (2004b) Point mutations in transmembrane helices 2 and 3 of ExbB and TolQ affect their activities in Escherichia coli K-12. J Bacteriol 186:4402–4406

    CAS  Google Scholar 

  • Braun M, Killmann K, Maier E et al (2002a) Diffusion through channel derivatives of the Escherichia coli FhuA transport protein. Eur J Biochem 269:4948–4959

    CAS  Google Scholar 

  • Braun V, Mahren S (2005) Transmembrane transcriptional control (surface signaling) of the Escherichia coli Fec type. FEMS Microbiol Rev 29:673–684

    CAS  Google Scholar 

  • Braun V, Mahren S (2007) Transfer of energy and information across the periplasm in iron transport and regulation. In: Ehrmann M (ed) The periplasm. ASM Press, Washington, DC, pp 276–286

    Google Scholar 

  • Braun V, Mahren S, Ogierman M (2003b) Regulation of the FecI type ECF sigma factor by transmembrane signaling. Curr Opin Microbiol 6:173–180

    CAS  Google Scholar 

  • Braun V, Mahren S, Sauter A (2006) Gene regulation by transmembrane signaling. Biometals 18:507–517

    Google Scholar 

  • Braun V, Patzer SI, Hantke K (2002b) TonB-dependent colicins and microcins: modular design and evolution. Biochimie 84:365–380

    CAS  Google Scholar 

  • Braun V, Pramanik A, Gwinner T et al (2009) Sideromycins: tools and antibiotics. Biometals 22:3–13

    CAS  Google Scholar 

  • Brett PJ, Burtnick MN, Fenno JC et al (2008) Treponema denticola TroR is a manganese- and iron-dependent transcriptional repressor. Mol Microbiol 70:396–409

    CAS  Google Scholar 

  • Carvalho CCCR, Marques MPC, Fernandes P (2011) Recent achievements on siderophore production and application. Recent Pat Biotechnol 5:183–198

    Google Scholar 

  • Cartron, ML Maddocks S, Gillingham P et al (2006) Feo–transport of ferrous iron into bacteria. Biometals 10:143–157

    Google Scholar 

  • Chatfield CH, Mulhern BJ, Burnside NP et al (2011) Legionella pneumophila LbtU acts as a novel, TonB-independent receptor for the legiobactin siderophore. J Bacteriol 194:1563–1575

    Google Scholar 

  • Chu BCH, Peacock RS, Vogel HJ (2007) Bioinformatic analysis of the TonB family. Biometals 20:467–483

    CAS  Google Scholar 

  • Chu BC, Vogel HJ (2011) A structural and functional analysis of type III periplasmic and substrate binding proteins: their role in bacterial siderophore and heme uptake. Biol Chem 392:39–52

    CAS  Google Scholar 

  • Clarke TE, Ku SY, Vogel H et al (2000) The structure of the ferric siderophore binding protein FhuD complexed with gallichrome. Nat Struct Biol 7:287–291

    CAS  Google Scholar 

  • Clarke TE, Braun V, Winkelmann G et al (2002) X-ray crystallographic structures of the Escherichia coli periplasmic protein FhuD bound to hydroxamate-type siderophores and the antibiotic albomycin. J Biol Chem 277:13966–13972

    CAS  Google Scholar 

  • Cornelis P, Andrews SC (2010) Iron uptake and homeostasis in microorganisms. Caister Academic Press, Norfolk

    Google Scholar 

  • Correnti C, Strong RK (2012) Mammalian siderophores, siderophores-binding lipocalins, and the labile iron pool. J Biol Chem 287:13524–13531

    CAS  Google Scholar 

  • da Silva Neto JF, Braz VS, Italiani VC et al (2009) Fur controls iron homeostasis and oxidative stress defense in the oligotrophic alpha-proteobacterium Caulobacter crescentus. Nucleic Acids Res 37:4812–4825

    Google Scholar 

  • Dian C, Vitale S, Leonard GA et al (2011) The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites. Mol Microbiol 79:1260–1275

    CAS  Google Scholar 

  • Diaz-Mireles E, Wexler M, Sawers G et al (2004) The Fur-like protein Mur of Rhizobium leguminosarum is a Mn(2 +)-responsive transcriptional regulator. Microbiology 150:1447–1456

    CAS  Google Scholar 

  • Draper RC, Martin LW, Beare PA et al (2011) Differential proteolysis of sigma regulators controls cell-surface signalling in Pseudomonas aeruginosa. Mol Microbiol 82:1444–1453

    CAS  Google Scholar 

  • Eisenbeis S, Lohmiller S, Valdebenito M et al (2008) NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the OM of Caulobacter crescentus. J Bacteriol 190:5230–5238

    CAS  Google Scholar 

  • Eng ET, Jalilian AR, Spasov KA et al (2008) Characterization of a novel prokaryotic GDP dissociation inhibitor domain from the G protein coupled membrane protein FeoB. J Mol Biol 375:1086–1097

    CAS  Google Scholar 

  • Faith JJ, Hayete B, Thaden JT et al (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5:e8

    Google Scholar 

  • Faulkner MJ, Helmann JD (2011) Peroxide stress elicits adaptive changes in bacterial metal ion homeostasis. Antioxid Redox Signal 15:175–189

    CAS  Google Scholar 

  • Faulkner MJ, Ma Z, Fuangthong M et al (2012) Derepression of the Bacillus subtilis PerR peroxide stress response leads to iron deficiency. J Bacteriol 194:1226–1235

    CAS  Google Scholar 

  • Ferguson AD, Braun V, Fiedler HP et al (2000) Crystal structure of the antibiotic albomycin in complex with the OM transporter FhuA. Prot Sci 9:956–963

    CAS  Google Scholar 

  • Ferguson AD, Koding J, Walker G et al (2001) Active transport of an antibiotic rifamycin derivative by the outer membrane protein FhuA. Structure 9:707–716

    Google Scholar 

  • Ferguson AD, Amezcua CA, Halabi NM et al (2007) Signal transduction pathway of TonB-dependent transporters. Proc Natl Acad ScI USA 104:513–518

    CAS  Google Scholar 

  • Ferguson AD, Hofmann EE, Coulton JEW et al (1998) Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282:2215–2220

    CAS  Google Scholar 

  • Ferguson AD, Chakraborty R, Smith BS et al (2002) Structural basis of gating by the OM transporter FecA. Science 295:1715–1719

    CAS  Google Scholar 

  • Fischbach MA, Smith KD, Sato S et al (2006) The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci USA 103:16502–16507

    CAS  Google Scholar 

  • Fisher CR, Davies NMLL, Wyckoff EE et al (2009) Genetics and virulence association of the Shigella flexneri Sit iron transport system. Infect Immun 77:1992–1999

    CAS  Google Scholar 

  • Fleischhacker AS, Kiley PJ (2011) Iron-containing transcription factors and their roles as sensors. Curr Opin Chem Biol 15:335–341

    CAS  Google Scholar 

  • Floh TH, Smith KD, Sato S et al (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 4232:917–921

    Google Scholar 

  • Fournier C, Smith A, Delepelaire P (2011) Haem release from haemopexin by HuxA allows Haemophilus influenzae to escape host nutritional immunity. Mol Microbiol 80:133–148

    CAS  Google Scholar 

  • Furrer JL, Sanders DN, Hook-Barnard IG et al (2002) Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Mol Microbiol 44:1225–1234

    CAS  Google Scholar 

  • Ganz T (2006) Hepcidin-a peptide hormone at the interface of innate immunity and iron metabolism. Curr Top Microbiol Immunol 306:183–198

    CAS  Google Scholar 

  • Gauglitz JM, Zhou H, Butler A (2012) A suite of citrate-derived siderophores from a marine Vibrio species isolated following the Deepwater Horizon oil spill. J Inorg Chem 107:90–95

    CAS  Google Scholar 

  • Gonzalez A, Bes MT, Peleato ML et al (2011) Unravelling the regulatory function of FurA in Anabaena sp. PCC 7120 through 2-D DIGE proteomic analysis. J Proteomics 74:660–671

    CAS  Google Scholar 

  • Greenwald J, Hoegy F, Nader M et al (2007) Real time fluorescence resonance transfer visualization of ferric pyoverdine uptake in Pseudomonas aeruginosa. The role of ferrous iron. J Biol Chem 282:2987–2995

    CAS  Google Scholar 

  • Greenwood KT, Luke RKJ (1978) Enzymatic hydrolysis of enterochelin and its iron complex in Escherichia coli. Properties of enterochelin esterase. Biochim Biophys Acta 525:209–218

    CAS  Google Scholar 

  • Grinter R, Milner J, Walker D (2012) Ferredoxin containing bacteriocins suggest a novel mechanisms of iron uptake in Pectobacterium spp. PLoS ONE 7(1–9):e33033

    CAS  Google Scholar 

  • Groeger W, Köster W (1998) Transmembrane topology of the two FhuB domains representing the hydrophobic components of bacterial ABC transporters involved in uptake of siderophores, haem and vitamin B12. Microbiology 144:2759–2769

    CAS  Google Scholar 

  • Grosse C, Scherer J, Koch D et al (2006) A new ferrous iron-uptake transporter, EfeU (YcdN) from Escherichia coli. Mol Microbiol 62:120–131

    CAS  Google Scholar 

  • Guilfoyle A, Maher MJ, Rapp M et al (2009) Structural basis of GDP release and gating in G protein coupled Fe2+ transport. EMBO J 28:2677–2685

    CAS  Google Scholar 

  • Gumbart J, Wiener MC, Tajkhorshid E (2007) Mechanism of force propagation in TonB-dependent OM transport. Biophys J 93:496–504

    CAS  Google Scholar 

  • Günter-Seeboth K, Schupp T (1995) Cloning and sequence analysis of the Corynebacterium diphtheriae dtxR homologue from Streptomyces lividans and S. pilosus encoding a putative iron repressor protein. Gene 166:117–119

    Google Scholar 

  • Hammer ND, Scaar EP (2011) Molecular mechanism of Staphylococcus aureus iron acquisition. Annu Rev Microbiol 65:129–147

    CAS  Google Scholar 

  • Hannauer M, Yeterian E, Martin LW et al (2010a) An efflux pump is involved in secretion of newly synthesized siderophore by Pseudomonas aeruginosa. FEBS Lett 584:4451–4455

    Google Scholar 

  • Hannauer M, Barda Y, Mislin GLA et al (2010b) The ferrichrome uptake pathway in Pseudomonas aeruginosa involves an iron release mechanism with acylation of the siderophore and recycling of the modified desferriferrichrome. J Bacteriol 192:1212–1220

    Google Scholar 

  • Hannauer M, Schäfer M, Hoegy F et al (2012) Biosynthesis of the pyoverdine siderophore of Pseudomonas aeruginosa involves precursors with myristic and myristoleic acid chain. FEBS Lett 586:96–101

    CAS  Google Scholar 

  • Hantke K (1987) Ferrous iron transport mutants in Escherichia coli K-12. FEMS Microbiol Lett 44:53–57

    CAS  Google Scholar 

  • Hartmann A, Braun V (1980) Iron transport in Escherichia coli: uptake and modification of ferrichrome. J Bacteriol 143:246–255

    CAS  Google Scholar 

  • Hattori M, Jin Y, Nishimasu H et al (2009) Structural basis of novel interactions between the small-GTPase and the GDI-like domains in prokaryotic FeoB iron transporter. Structure 17:1345–1355

    CAS  Google Scholar 

  • Helbig S, Braun V (2011) Mapping functional domains of colicin M. J Bacteriol 193:815–821

    CAS  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    CAS  Google Scholar 

  • Higgs PI, Larsen RA, Postle K (2002) Quantification of known components of the Escherichia coli TonB energy transducing system: TonB, ExbB, ExbD, and FepA. Mol Microbiol 44:271–281

    CAS  Google Scholar 

  • Hollander A, Mercante AD, Shafer WM et al (2011) The iron-repressed, AraC-like regulator MpeR activates expression of fetA in Neisseria gonorrhoeae. Infect Immun 79:4764–4776

    CAS  Google Scholar 

  • Hopkinson BM, Barbeau KA (2011) Iron transporters in marine prokaryotic genomes and metagenomes. Environ Microbiol 14:114–128

    Google Scholar 

  • Ji C, Juarez-Hernandez RE, Miller MJ (2012) Exploiting bacterial iron acquisition: siderophore conjugates. Future Med Chem 4:297–313

    CAS  Google Scholar 

  • Johnston AW, Todd JD, Curson AR et al (2007) Living without Fur: the subtlety and complexity of iron-responsive gene regulation in the symbiotic bacterium Rhizobium and other alpha-proteobacteria. Biometals 20:501–511

    CAS  Google Scholar 

  • Joseph B, Jeschke G, Goetz BA et al (2011) Transmembrane gate movements in the type II ATP-binding cassette (ABC) importer BtuCD-F during nucleotide cycle. J Biol Chem 286:41008–41017

    CAS  Google Scholar 

  • Kehres DG, Janakiraman A, Slauch JM et al (2002) SitABCD is the alkaline Mn2+ transporter of Salmonella enterica serovar Typhimurium. J Bacteriol 184:3159–3166

    CAS  Google Scholar 

  • Killmann H, Herrmann C, Wolff H et al (1998) Identification of a new site for ferrichrome transport by comparison of the FhuA proteins of Escherichia coli, Salmonella paratyphi B, Salmonella typhimurium, and Pantoea agglomerans. J Bacteriol 180:3845–3852

    CAS  Google Scholar 

  • Koebnik R (2005) TonB-dependent trans-envelope signaling: the exception of the rule? Trends Microbiol 13:343–347

    CAS  Google Scholar 

  • Köster W (2005) Cytoplasmic membrane iron permease systems in the bacterial cell envelope. Frontiers Biosci 10:462–477

    Google Scholar 

  • Köster S, Wehner M, Herrmann C et al (2009) Structure and function of the FeoB G-domain from Methanococcus jannaschii. J Mol Biol 392:405–419

    Google Scholar 

  • Krewulak KD, Shepherd CM, Vogel HJ (2005) Molecular dynamics simulations of the periplasmic ferric-hydroxamate binding protein FhuD. Biometals 18:375–386

    CAS  Google Scholar 

  • Krieg S, Huché F, Diederichs K, Izadi-Pruneyre N et al (2009) Heme uptake across the OM as revealed by crystal structures of the receptor-heme complex. Proc Natl Acad Sci USA 106:1045–1050

    CAS  Google Scholar 

  • Kustusch RJ, Kuehl C, Crosa JH (2011) Power plays: iron transport and energy transduction in pathogenic vibrios. Biometals 24:559–566

    CAS  Google Scholar 

  • Létoffé S, Ghigo JM, Wandersman C (1994) Secretion of the Serratia marcescens HasA protein by an ABC transporter. J Bacteriol 176:5327–5377

    Google Scholar 

  • Lewinson O, Lee AT, Locher KP, Rees DC (2010) A distinct mechanism for the ABC transporter BtuCD-BtuF revealed by the dynamics of complex formation. Nat Struct Biol 17:332–339

    CAS  Google Scholar 

  • Li N, Zhang C, Li B et al (2012) An unique iron coordination in the iron-chelating molecule vibriobactin helps Vibrio cholerae evade the mammalian siderocalin-mediated immune response. J Biol Chem 287:8912–8919

    CAS  Google Scholar 

  • Locher KP, Lee AT, Rees DC (2002) The E. coli BtucD structure: a framework for ABC transporter architecture and mechanism. Science 296:1091–1098

    CAS  Google Scholar 

  • Locher KP, Rees B, Koebnik R et al (1998) Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell 95:771–778

    CAS  Google Scholar 

  • Lohmiller S, Hantke K, Patzer SI et al (2008) TonB-dependent maltose transport by Caulobacter crescentus. Microbiology 154:1748–1754

    CAS  Google Scholar 

  • Lo M, Murray GL, Khoo CA et al (2010) Transcriptional response of Leptospira interrogans to iron limitation and characterization of a PerR homolog. Infect Immun 78:4850–4859

    CAS  Google Scholar 

  • Louvel H, Bommezzadri S, Zidane N et al (2006) Comparative and functional genomic analyses of iron transport and regulation in Leptospira spp. J Bacteriol 188:7893–7904

    CAS  Google Scholar 

  • Louvel H, Kanai T, Atomi H et al (2009) The Fur iron regulator-like protein is cryptic in the hyperthermophilic archaeon Thermococcus kodakaraensis. FEMS Microbiol Lett 295:117–128

    Google Scholar 

  • Lukacik P, Barnard TJ, Keller PW et al (2012) Structural engineering of a phage lysin that targets Gram-negative pathogens. Proc Natl Acad Sci USA 109:9857–9862

    Google Scholar 

  • Marlovits TC, Haase W, Herrmann C et al (2003) The membrane protein FeoB contains an intramolecular G protein essential for Fe(II) uptake in bacteria. Proc Natl Acad Sci USA 99:16243–16248

    Google Scholar 

  • Matzanke BF, Anemüller S, Schünemann V et al (2004) FhuF, part of a siderophore-reductase system. Biochemistry 43:1386–1392

    CAS  Google Scholar 

  • Mazmanian SK, Skaar EP, Gaspar AH et al (2003) Passage of heme –iron across the envelope of Staphylococcus aureus. Science 299:906–909

    CAS  Google Scholar 

  • Mey AR, Wyckoff EE, Hoover LA et al (2008) Vibrio cholerae VciB promotes iron uptake via ferrous iron transporters. J Bacteriol 190:5953–5962

    CAS  Google Scholar 

  • Miethke M, Hou J, Marahiel MA (2011a) The siderophore interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli. Biochemistry 50:10951–10964

    CAS  Google Scholar 

  • Miethke M, Pierik AJ, Peuckert F et al (2011b) Identification and characterization of a nove-type ferric siderophore reductase from a gram-positive extremophile. J Biol Chem 286:2245–2260

    CAS  Google Scholar 

  • Moraes TF, Yu RH, Strynadka NC et al (2009) Insights into the bacterial transferrin receptor: the structure of transferrin-binding protein B from Actinobacillus pleuropneumoniae. Mol Cell 35:523–533

    CAS  Google Scholar 

  • Müller SI, Valdebenito M, Hantke K (2009) Salmochelin, the long-overlooked catecholate siderophore of Salmonella. Biometals 22:691–695

    Google Scholar 

  • Neugebauer H, Herrmann C, Kammer W et al (2005) ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter cresescentus. J Bacteriol 187:8300–8311

    CAS  Google Scholar 

  • Newton SM, Trinh V, Pi H et al (2010) Direct measurements of the OM stage of ferric enterobactin transport postuptake binding. J Biol Chem 285:17488–17497

    CAS  Google Scholar 

  • Nicolaisen K, Hahn A, Valdebenito M et al (2010) The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp.PCC 7120. Biochim Biophys Acta 1798:2131–2140

    CAS  Google Scholar 

  • Noinaj N, Easley NC, Oke M et al (2012) Structural basis for iron piracy by pathogenic Neisseria. Nature 483:53–58

    CAS  Google Scholar 

  • Noinaj N, Guillier M, Barnard TJ et al (2010) TonB dependent transporters: regulation, structure and function. Annu Rev Microbiol 64:43–60

    CAS  Google Scholar 

  • Oldham ML, Chen J (2011) Crystal structure of the maltose transporter in a pretranslocation intermediate state. Science 332:1201–1205

    Google Scholar 

  • Ollinger J, Song KB, Antelmann H et al (2006) Role of the Fur regulon in iron transport in Bacillus subtilis. J Bacteriol 188:3664–3673

    CAS  Google Scholar 

  • Ollis AA, Postle K (2012) ExbD mutants define initial stages in TonB energization. J Mol Biol 415:237–247

    CAS  Google Scholar 

  • Patzer SI, Braun V (2010) Gene cluster involved in the biosynthesis of griseobactin, a catechol-peptide siderophore of Streptomyces sp ATCC 700974. J Bacteriol 192:426–435

    CAS  Google Scholar 

  • Patzer SI, Albrecht R, Braun V, et al (2012) Structure and mechanistic studies of pesticin, a bacterial homolog of phage lysozymes. J Biol Chem 287(28):23381–23396

    Google Scholar 

  • Patzer SI, Hantke K (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28:1199–1210

    CAS  Google Scholar 

  • Patzer SI, Hantke K (2001) Dual repression by Fe(2 +)-Fur and Mn(2 +)-MntR of the mntH gene, encoding an NRAMP-like Mn(2 +) transporter in Escherichia coli. J Bacteriol 183:4806–4813

    CAS  Google Scholar 

  • Pawelek PD, Croteau N, Ng-Tow-Hing C et al (2006) Structure of TonB in complex with FhuA E. coli OM receptor. Science 312:1399–1402

    CAS  Google Scholar 

  • Pohl E, Haller JC, Mijovilovich A et al (2003) Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 47:903–915

    CAS  Google Scholar 

  • Postle K, Larsen RA (2007) TonB-dependent energy transduction between outer and cytoplasmic membranes. Biometals 20:453–465

    CAS  Google Scholar 

  • Pramanik A, Braun V (2006) Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6. J Bacteriol 188:3878–3886

    CAS  Google Scholar 

  • Pramanik A, Stroeher UW, Krejci J et al (2007) Albomycin is an effective antibiotic, as exemplified with Yersinia enterocolitica and Streptococcus pneumoniae. Int J Med Micriobiol 297:459–469

    CAS  Google Scholar 

  • Pramanik A, Hauf W, Hoffmann J et al (2011) Oligomeric structure of ExbB and ExbB-ExbD isolated from Escherichia coli as revealed by LILBID mass spectrometry. Biochemistry 50:8950–8956

    CAS  Google Scholar 

  • Pramanik A, Zhang F, Schwarz H et al (2010) ExbB protein in the cytoplasmic membrane of Escherichia coli forms a stable oligomer. Biochemistry 49:8721–8728

    CAS  Google Scholar 

  • Prevost K, Salvail H, Desnoyers G et al (2007) The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol Microbiol 64:1260–1273

    CAS  Google Scholar 

  • Pugsley AP, Zimmermann W, Wehrli W (1987) High efficiency uptake of a rifamycin derivative via the FhuA-TonB-dependent uptake route in Escherichia coli. J Gen Microbiol 133:3505–3511

    CAS  Google Scholar 

  • Reimmann C (2012) Inner-membrane transporters for the siderophores pyochelin in Pseudomonas aeruginosa and enantio-pyochelin in Pseudomonas fluorescens display different enantioselectivities. Microbiology 158:1317–1324

    CAS  Google Scholar 

  • Saken E, Rakin A, Heesemann J (2000) Molecular characterization of a novel siderophore-independent iron transport system in Yersinia. Int J Med Microbiol 290:51–60

    Google Scholar 

  • Salvail H, Lanthier-Bourbonnais P, Sobota JM et al (2010) A small RNA promotes siderophore production through transcriptional and metabolic remodeling. Proc Natl Acad Sci USA 107:15223–15228

    CAS  Google Scholar 

  • Schauer K, Gouget B, Carrière M et al (2007) Novel nickel transport mechanism across the bacterial OM energized by the TonB/ExbB/ExbD machinery. Mol Microbiol 63:1054–1068

    CAS  Google Scholar 

  • Schauer K, Rodionov DA, de Reuse H (2008) New substrates for TonB-dependent transport: do we only see the “tip of the iceberg”? Trends Biochem Sci 33:330–338

    CAS  Google Scholar 

  • Schmid AK, Pan M, Sharma K et al (2011) Two transcription factors are necessary for iron homeostasis in a salt-dwelling archaeon. Nucleic Acids Res 39:2519–2533

    CAS  Google Scholar 

  • Seipke RF, Song L, Bicz J et al (2011) The plant pathogen Streptomyces scabies 87–22 has a functional pyochelin biosynthetic pathway that is regulated by TetR- and AfsR-family proteins. Microbiology 157:2681–2693

    CAS  Google Scholar 

  • Shin JH, Oh SY, Kim SJ et al (2007) The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolorA3(2). J Bacteriol 189:4070–4077

    CAS  Google Scholar 

  • Shultis DD, Purdy MD, Branchs CN et al (2006) Outer membrane active transport: structure of the BtuB:TonB complex. Science 312:1396–1399

    CAS  Google Scholar 

  • Singh PK, Parsek PR, Greenberg EP et al (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555

    CAS  Google Scholar 

  • Small SK, Puri S, O’Brian MR (2009) Heme-dependent metalloregulation by the iron response regulator (Irr) protein in Rhizobium and other Alpha-proteobacteria. Biometals 22:89–97

    CAS  Google Scholar 

  • Stefanska AL, Fulston M, Houge-Frydrych CSV et al (2000) A potent seryl tRNA synthetase inhibitor SB-217452 isolated from a Streptomyces species. J Antibiot 53:1346–1353

    CAS  Google Scholar 

  • Stojiljkovic I, Cobeljic M, Hantke K (1993) Escherichia coli K-12 ferrous iron uptake mutants are impaired in their ability to colonize the mouse intestine. FEMS Microbiol Lett 108:111–115

    CAS  Google Scholar 

  • Stork M, Bos MP, Jongerius I et al (2010) An OM receptor of Neisseria meningitidis involved in zinc acquisition with vaccine potential. PLoS Pathog 7:e100969

    Google Scholar 

  • Strange HR, Zola TA, Cornelissen CN (2011) The fbpABC operon is required for TonB-independent utilization of xenosiderophores by Neisseria gonorrhoeae strain FA19. Infect Immun 79:267–278

    CAS  Google Scholar 

  • Su YC, Chin KH, Hung HC et al (2010) Structure of Stenotrophomonas maltophila FeoA complexed with zink: unique prokaryotic SH3-domain protein that possibly acts a bacterial ferrous iron-transport activating factor. Acta Crystallogr Sect F 66:636–642

    Google Scholar 

  • Swayne C, Postle K (2011) Taking the Escherichia coli TonB transmembrane domain “offline”? Nonprotonatable Asn substitutes fully for TonB His20. J Bacteriol 193:6393–6701

    Google Scholar 

  • Tanabe T, Funahashi T, Miyamoto K et al (2011) Identification of genes, desR and desA, required for utilization of desferrioxamine B as a xenosiderophore in Vibrio furnissii. Biol Pharm Bull 34:570–574

    CAS  Google Scholar 

  • Tanabe T, Funahashi T, Moon YH et al (2010) Identification and characterization of a Vibrio mimicus gene encoding the heme/hemoglobin receptor. Microbiol Immunol 54:606–617

    CAS  Google Scholar 

  • Udho E, Jakes KS, Buchanan SK et al (2009) Reconstitution of bacterial OM TonB-dependent transporters in planar lipid bilayer membranes. Proc Natl Acad Sci USA 106:21990–21995

    Google Scholar 

  • Valdebenito M, Müller SI, Hantke K (2007) Special conditions allow binding of the siderophore salmochelin to siderocalin (NGAL-lipocalin). FEMS Microbiol Lett 277:182–187

    CAS  Google Scholar 

  • Velayudhan J, Hughes NJ, McColm AA et al (2000) Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high affinity ferrous iron transporter. Mol Microbiol 37:274–286

    CAS  Google Scholar 

  • Vinella D, Albrecht C, Cashel M et al (2005) Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli. Mol Microbiol 56:958–970

    CAS  Google Scholar 

  • Vraspir JM, Butler A (2009) Chemistry of marine ligands and siderophores. Annu Rev Mar Sci 1:43–63

    Google Scholar 

  • Wandersman C (2010) Haem uptake and iron extraction by bacteria. In: Cornelis P, Andrews SC (eds) Iron uptake and homeostasis in microorganisms. Claister Academic Pres, Norfolk

    Google Scholar 

  • Wandersman C, Stojiljkovic I (2000) Bacterial heme sources: the role of heme, heme protein receptors and hemophores. Curr Op Microbiol 3:215–220

    CAS  Google Scholar 

  • Wennerhold J, Bott M (2006) The DtxR regulon of Corynebacterium glutamicum. J Bacteriol 188:2907–2918

    CAS  Google Scholar 

  • Wyckoff EE, Payne SM (2011) The Vibrio cholerae VctPDGC system transports catechol siderophores and a siderophore-free iron ligand. Mol Microbiol 81:1556–1458

    Google Scholar 

  • Xiao Q, Jiang X, Moore KJ et al (2011) Sortase independent and dependent systems for acquisition of haem and haemoglobin in Listeria monocytogenes. Mol Microbiol 80:1581–1597

    CAS  Google Scholar 

  • Yue WW, Grizot S, Buchanan SK (2003) Structural evidence for iron-free citrate and ferric citrate binding to the TonB-dependent OM transporter FecA. J Mol Biol 332:353–368

    CAS  Google Scholar 

  • Zimmermann L, Angerer A, Braun V (1989) Mechanistically novel iron(III) transport system in Serratia marcescens. J Bacteriol 171:238–243

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkmar Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Braun, V., Hantke, K. (2013). The Tricky Ways Bacteria Cope with Iron Limitation. In: Chakraborty, R., Braun, V., Hantke, K., Cornelis, P. (eds) Iron Uptake in Bacteria with Emphasis on E. coli and Pseudomonas. SpringerBriefs in Molecular Science(). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6088-2_2

Download citation

Publish with us

Policies and ethics