Skip to main content

Organisation of the Tetraspanin Web

  • Chapter
  • First Online:
Book cover Tetraspanins

Part of the book series: Proteins and Cell Regulation ((PROR,volume 9))

Abstract

Tetraspanins are currently hypothesized to promote membrane compartmentalization, through their ability to organize a network of molecular interactions termed the tetraspanin web or tetraspanin-enriched microdomains. In this chapter we will describe how the discovery of this unique ability of tetraspanins to interact with one another and with many other surface proteins led to this concept, and will discuss the hierarchical organization of these structures. We will also show how tetraspanins modulate the function of the proteins they associate with, including the regulation of trafficking, ligand binding, signal transduction and enzymatic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abache T, Le Naour F, Planchon S, Harper F, Boucheix C, Rubinstein E (2007) The transferrin receptor and the tetraspanin web molecules CD9, CD81, and CD9P-1 are differentially sorted into exosomes after TPA treatment of K562 cells. J Cell Biochem 102:650–664

    Article  PubMed  CAS  Google Scholar 

  • Andre M, Le Caer JP, Greco C, Planchon S, El Nemer W, Boucheix C, Rubinstein E, Chamot-Rooke J, Le Naour F (2006) Proteomic analysis of the tetraspanin web using LC-ESI-MS/MS and MALDI-FTICR-MS. Proteomics 6:1437–1449

    Article  PubMed  CAS  Google Scholar 

  • Andre M, Chambrion C, Charrin S, Soave S, Chaker J, Boucheix C, Rubinstein E, Le Naour F (2009) In situ chemical cross-linking on living cells reveals CD9P-1 cis-oligomer at cell surface. J Proteomics 73:93–102

    Article  PubMed  CAS  Google Scholar 

  • Angelisova P, Hilgert I, Horejsi V (1994) Association of four antigens of the tetraspans family (CD37, CD53, TAPA-1, and R2/C33) with MHC class II glycoproteins. Immunogenetics 39:249–256

    Article  PubMed  CAS  Google Scholar 

  • Anzai N, Lee Y, Youn BS, Fukuda S, Kim YJ, Mantel C, Akashi M, Broxmeyer HE (2002) C-kit associated with the transmembrane 4 superfamily proteins constitutes a functionally distinct subunit in human hematopoietic progenitors. Blood 99:4413–4421

    Article  PubMed  CAS  Google Scholar 

  • Arduise C, Abache T, Li L, Billard M, Chabanon A, Ludwig A, Mauduit P, Boucheix C, Rubinstein E, Le Naour F (2008) Tetraspanins regulate ADAM10-mediated cleavage of TNF-alpha and epidermal growth factor. J Immunol 181:7002–7013

    PubMed  CAS  Google Scholar 

  • Baldwin G, Novitskaya V, Sadej R, Pochec E, Litynska A, Hartmann C, Williams J, Ashman L, Eble JA, Berditchevski F (2008) Tetraspanin CD151 regulates glycosylation of (alpha)3(beta)1 integrin. J Biol Chem 283:35445–35454

    Article  PubMed  CAS  Google Scholar 

  • Baleato RM, Guthrie PL, Gubler MC, Ashman LK, Roselli S (2008) Deletion of CD151 results in a strain-dependent glomerular disease due to severe alterations of the glomerular basement membrane. Am J Pathol 173:927–937

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay S, Zhan R, Chaudhuri A, Watabe M, Pai SK, Hirota S, Hosobe S, Tsukada T, Miura K, Takano Y, Saito K, Pauza ME, Hayashi S, Wang Y, Mohinta S, Mashimo T, Iiizumi M, Furuta E, Watabe K (2006) Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat Med 12:933–938

    Article  PubMed  CAS  Google Scholar 

  • Barreiro O, Yanez-Mo M, Sala-Valdes M, Gutierrez-Lopez MD, Ovalle S, Higginbottom A, Monk PN, Cabanas C, Sanchez-Madrid F (2005) Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood 105:2852–2861

    Article  PubMed  CAS  Google Scholar 

  • Barreiro O, Zamai M, Yanez-Mo M, Tejera E, Lopez-Romero P, Monk PN, Gratton E, Caiolfa VR, Sanchez-Madrid F (2008) Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J Cell Biol 183:527–542

    Article  PubMed  CAS  Google Scholar 

  • Barylko B, Mao YS, Wlodarski P, Jung G, Binns DD, Sun HQ, Yin HL, Albanesi JP (2009) Palmitoylation controls the catalytic activity and subcellular distribution of ­phosphatidylinositol 4-kinase II{alpha}. J Biol Chem 284:9994–1

    Article  PubMed  CAS  Google Scholar 

  • Bassani S, Cingolani LA, Valnegri P, Folci A, Zapata J, Gianfelice A, Sala C, Goda Y, Passafaro M (2012) The X-linked intellectual disability protein TSPAN7 regulates excitatory synapse development and AMPAR trafficking. Neuron 73:1143–1158

    Article  PubMed  CAS  Google Scholar 

  • Baudoux B, Castanares-Zapatero D, Leclercq-Smekens M, Berna N, Poumay Y (2000) The tetraspanin CD9 associates with the integrin alpha6beta4 in cultured human epidermal keratinocytes and is involved in cell motility. Eur J Cell Biol 79:41–51

    Article  PubMed  CAS  Google Scholar 

  • Bell GM, Seaman WE, Niemi EC, Imboden JB (1992) The OX-44 molecule couples to signaling pathways and is associated with CD2 on rat T lymphocytes and a natural killer cell line. J Exp Med 175:527–536

    Article  PubMed  CAS  Google Scholar 

  • Berditchevski F, Bazzoni G, Hemler ME (1995) Specific association of CD63 with the VLA-3 and VLA-6 integrins. J Biol Chem 270:17784–17790

    Article  PubMed  CAS  Google Scholar 

  • Berditchevski F, Zutter MM, Hemler ME (1996) Characterization of novel complexes on the cell surface between integrins and proteins with 4 transmembrane domains (TM4 proteins). Mol BiolCell 7:193–207

    CAS  Google Scholar 

  • Berditchevski F, Tolias KF, Wong K, Carpenter CL, Hemler ME (1997) A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. J Biol Chem 272:2595–2598

    Article  PubMed  CAS  Google Scholar 

  • Berditchevski F, Gilbert E, Griffiths MR, Fitter S, Ashman L, Jenner SJ (2001) Analysis of the CD151-alpha3beta1 integrin and CD151-tetraspanin interactions by mutagenesis. J Biol Chem 276:41165–41174

    Article  PubMed  CAS  Google Scholar 

  • Berditchevski F, Odintsova E, Sawada S, Gilbert E (2002) Expression of the palmitoylation-­deficient CD151 weakens the association of alpha 3 beta 1 integrin with the tetraspanin-­enriched microdomains and affects integrin-dependent signaling. J Biol Chem 277:36991–37000

    Article  PubMed  CAS  Google Scholar 

  • Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6:32–43

    Article  PubMed  CAS  Google Scholar 

  • Boucheix C, Rubinstein E (2001) Tetraspanins. Cell Mol Life Sci 58:1189–1205

    Article  PubMed  CAS  Google Scholar 

  • Bradbury LE, Kansas GS, Levy S, Evans RL, Tedder TF (1992) The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J Immunol 149:2841–2850

    PubMed  CAS  Google Scholar 

  • Cailleteau L, Estrach S, Thyss R, Boyer L, Doye A, Domange B, Johnsson N, Rubinstein E, Boucheix C, Ebrahimian T, Silvestre JS, Lemichez E, Meneguzzi G, Mettouchi A (2010) Alpha2beta1 integrin controls association of Rac with the membrane and triggers quiescence of endothelial cells. J Cell Sci 123:2491–2501

    Article  PubMed  CAS  Google Scholar 

  • Carter RH, Fearon DT (1992) CD19: lowering the treshold for antigen receptor stimulation of B lymphocytes. Science 256:105–107

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Finnemann SC (2007) Tetraspanin CD81 is required for the alpha v beta5-integrin-dependent particle-binding step of RPE phagocytosis. J Cell Sci 120:3053–3063

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, Alcover A (2006) Role of ERM (Ezrin-Radixin-Moesin) proteins in T lymphocyte polarization, immune synapse formation and in T cell receptor-mediated signaling. Front Biosci 11:1987–1997

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, Le Naour F, Oualid M, Billard M, Faure G, Hanash SM, Boucheix C, Rubinstein E (2001) The major CD9 and CD81 molecular partner: identification and characterization of the complexes. J Biol Chem 276:14329–14337

    PubMed  CAS  Google Scholar 

  • Charrin S, Manie S, Oualid M, Billard M, Boucheix C, Rubinstein E (2002) Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett 516:139–144

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, Le Naour F, Labas V, Billard M, Le Caer JP, Emile JF, Petit MA, Boucheix C, Rubinstein E (2003a) EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem J 373:409–421

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, Manie S, Billard M, Ashman L, Gerlier D, Boucheix C, Rubinstein E (2003b) Multiple levels of interactions within the tetraspanin web. Biochem Biophys Res Commun 304:107–112

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, Manie S, Thiele C, Billard M, Gerlier D, Boucheix C, Rubinstein E (2003c) A physical and functional link between cholesterol and tetraspanins. Eur J Immunol 33:2479–2489

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, Le Naour F, Silvie O, Milhiet PE, Boucheix C, Rubinstein E (2009a) Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 420:133–154

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, Yalaoui S, Bartosch B, Cocquerel L, Franetich JF, Boucheix C, Mazier D, Rubinstein E, Silvie O (2009b) The Ig domain protein CD9P-1 down-regulates CD81 ability to support Plasmodium yoelii infection. J Biol Chem 284:31572–31578

    Article  PubMed  CAS  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  PubMed  CAS  Google Scholar 

  • Chometon G, Zhang ZG, Rubinstein E, Boucheix C, Mauch C, Aumailley M (2006) Dissociation of the complex between CD151 and laminin-binding integrins permits migration of epithelial cells. Exp Cell Res 312:983–995

    Article  PubMed  CAS  Google Scholar 

  • Claas C, Stipp CS, Hemler ME (2001) Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts. J Biol Chem 276:7974–7984

    Article  PubMed  CAS  Google Scholar 

  • Claas C, Wahl J, Orlicky DJ, Karaduman H, Schnolzer M, Kempf T, Zoller M (2005) The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. Biochem J 389:99–110

    Article  PubMed  CAS  Google Scholar 

  • Clark KL, Zeng Z, Langford AL, Bowen SM, Todd SC (2001) Pgrl is a major cd81-associated protein on lymphocytes and distinguishes a new family of cell surface proteins. J Immunol 167:5115–5121

    PubMed  CAS  Google Scholar 

  • Clark KL, Oelke A, Johnson ME, Eilert KD, Simpson PC, Todd SC (2004) CD81 associates with 14-3-3 in a redox-regulated palmitoylation-dependent manner. J Biol Chem 279:19401–19406

    Article  PubMed  CAS  Google Scholar 

  • Clergeot PH, Gourgues M, Cots J, Laurans F, Latorse MP, Pepin R, Tharreau D, Notteghem JL, Lebrun MH (2001) PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc Natl Acad Sci USA 98:6963–6968

    Article  PubMed  CAS  Google Scholar 

  • Cnops G, Neyt P, Raes J, Petrarulo M, Nelissen H, Malenica N, Luschnig C, Tietz O, Ditengou F, Palme K, Azmi A, Prinsen E, Van Lijsebettens M (2006) The TORNADO1 and TORNADO2 genes function in several patterning processes during early leaf development in Arabidopsis thaliana. Plant Cell 18:852–866

    Article  PubMed  CAS  Google Scholar 

  • Codina J, Li J, DuBose TD Jr (2005) CD63 interacts with the carboxy terminus of the colonic H + -K + -ATPase to decrease [corrected] plasma membrane localization and 86Rb + uptake. Am J Physiol Cell Physiol 288:C1279–C1286

    Article  PubMed  CAS  Google Scholar 

  • Coffey GP, Rajapaksa R, Liu R, Sharpe O, Kuo CC, Krauss SW, Sagi Y, Davis RE, Staudt LM, Sharman JP, Robinson WH, Levy S (2009) Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin. J Cell Sci 122:3137–3144

    Article  PubMed  CAS  Google Scholar 

  • Cowin AJ, Adams D, Geary SM, Wright MD, Jones JC, Ashman LK (2006) Wound healing is defective in mice lacking tetraspanin CD151. J Invest Dermatol 126:680–689

    Article  PubMed  CAS  Google Scholar 

  • Danglot L, Chaineau M, Dahan M, Gendron MC, Boggetto N, Perez F, Galli T (2010) Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling. J Cell Sci 123:723–735

    Article  PubMed  CAS  Google Scholar 

  • Delaguillaumie A, Harriague J, Kohanna S, Bismuth G, Rubinstein E, Seigneuret M, Conjeaud H (2004) Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation. J Cell Sci 117:5269–5282

    Article  PubMed  CAS  Google Scholar 

  • Dornier E, Coumailleau F, Ottavi JF, Moretti J, Boucheix C, Mauduit P, Schweisguth F, Rubinstein E (2012) TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals. J Cell Biol 199:481–496

    Article  PubMed  CAS  Google Scholar 

  • Doyle EL, Ridger V, Ferraro F, Turmaine M, Saftig P, Cutler DF (2011) CD63 is an essential cofactor to leukocyte recruitment by endothelial P-selectin. Blood 118:4265–4273

    Article  PubMed  CAS  Google Scholar 

  • Draber P, Vonkova I, Stepanek O, Hrdinka M, Kucova M, Skopcova T, Otahal P, Angelisova P, Horejsi V, Yeung M, Weiss A, Brdicka T (2011) SCIMP, a transmembrane adaptor protein involved in major histocompatibility complex class II signaling. Mol Cell Biol 31:4550–4562

    Article  PubMed  CAS  Google Scholar 

  • Duffield A, Kamsteeg EJ, Brown AN, Pagel P, Caplan MJ (2003) The tetraspanin CD63 enhances the internalization of the H, K-ATPase beta-subunit. Proc Natl Acad Sci USA 100:15560–15565

    Article  PubMed  CAS  Google Scholar 

  • Dunn CD, Sulis ML, Ferrando AA, Greenwald I (2010) A conserved tetraspanin subfamily promotes Notch signaling in Caenorhabditis elegans and in human cells. Proc Natl Acad Sci USA 107:5907–5912

    Article  PubMed  CAS  Google Scholar 

  • Ellerman DA, Ha C, Primakoff P, Myles DG, Dveksler GS (2003) Direct binding of the ligand PSG17 to CD9 requires a CD9 site essential for sperm-egg fusion. Mol Biol Cell 14:5098–5103

    Article  PubMed  CAS  Google Scholar 

  • Espenel C, Margeat E, Dosset P, Arduise C, Le Grimellec C, Royer CA, Boucheix C, Rubinstein E, Milhiet PE (2008) Single-molecule analysis of CD9 dynamics and partitioning reveals multiple modes of interaction in the tetraspanin web. J Cell Biol 182:765–776

    Article  PubMed  CAS  Google Scholar 

  • Fearon DT, Carter RH (1995) The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Annu Rev Immunol 13:127–149

    Article  PubMed  CAS  Google Scholar 

  • Feigelson SW, Grabovsky V, Shamri R, Levy S, Alon R (2003) The CD81 tetraspanin facilitates instantaneous leukocyte VLA-4 adhesion strengthening to Vascular Cell Adhesion Molecule 1 (VCAM-1) under shear flow. J Biol Chem 278:51203–51212

    Article  PubMed  CAS  Google Scholar 

  • Fitter S, Sincock PM, Jolliffe CN, Ashman LK (1999) Transmembrane 4 superfamily protein CD151 (PETA-3) associates with beta 1 and alpha IIb beta 3 integrins in haemopoietic cell lines and modulates cell-cell adhesion. Biochem J 338:61–70

    Article  PubMed  CAS  Google Scholar 

  • Flannery AR, Czibener C, Andrews NW (2010) Palmitoylation-dependent association with CD63 targets the Ca2+ sensor synaptotagmin VII to lysosomes. J Cell Biol 191:599–613

    Article  PubMed  CAS  Google Scholar 

  • Force T, Woulfe K, Koch WJ, Kerkela R (2007) Molecular scaffolds regulate bidirectional crosstalk between Wnt and classical seven-transmembrane-domain receptor signaling pathways. Sci STKE 2007:e41

    Article  Google Scholar 

  • Gambin Y, Lopez-Esparza R, Reffay M, Sierecki E, Gov NS, Genest M, Hodges RS, Urbach W (2006) Lateral mobility of proteins in liquid membranes revisited. Proc Natl Acad Sci USA 103:2098–2102

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Espana A, Chung PJ, Sarkar IN, Stiner E, Sun TT, Desalle R (2008) Appearance of new tetraspanin genes during vertebrate evolution. Genomics 91:326–334

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AF (2006) Role of peripherin/rds in vertebrate photoreceptor architecture and inherited retinal degenerations. Int Rev Cytol 253:131–175

    Article  PubMed  CAS  Google Scholar 

  • Goschnick MW, Lau LM, Wee JL, Liu YS, Hogarth PM, Robb LM, Hickey MJ, Wright MD, Jackson DE (2006) Impaired “outside-in” integrin alphaIIbbeta3 signaling and thrombus stability in TSSC6-deficient mice. Blood 108:1911–1918

    Article  PubMed  CAS  Google Scholar 

  • Greco C, Bralet MP, Ailane N, Dubart-Kupperschmitt A, Rubinstein E, Le Naour F, Boucheix C (2010) E-cadherin/p120-catenin and tetraspanin Co-029 cooperate for cell motility control in human colon carcinoma. Cancer Res 70:7674–7683

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Lopez MD, Gilsanz A, Yanez-Mo M, Ovalle S, Lafuente EM, Dominguez C, Monk PN, Gonzalez-Alvaro I, Sanchez-Madrid F, Cabanas C (2011) The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9. Cell Mol Life Sci 68:3275–3292

    Google Scholar 

  • Ha CT, Waterhouse R, Wessells J, Wu JA, Dveksler GS (2005) Binding of pregnancy-specific glycoprotein 17 to CD9 on macrophages induces secretion of IL-10, IL-6, PGE2, and TGF-beta1. J Leukoc Biol 77:948–957

    Article  PubMed  CAS  Google Scholar 

  • Haining EJ, Yang J, Bailey RL, Khan K, Collier R, Tsai S, Watson SP, Frampton J, Garcia P, Tomlinson MG (2012) The TspanC8 subgroup of tetraspanins interacts with a disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression. J Biol Chem 287:39753–39765

    Article  PubMed  CAS  Google Scholar 

  • Harris HJ, Farquhar MJ, Mee CJ, Davis C, Reynolds GM, Jennings A, Hu K, Yuan F, Deng H, Hubscher SG, Han JH, Balfe P, McKeating JA (2008) CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry. J Virol 82:5007–5020

    Article  PubMed  CAS  Google Scholar 

  • Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422

    Article  PubMed  CAS  Google Scholar 

  • Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811

    Article  PubMed  CAS  Google Scholar 

  • Ho SH, Martin F, Higginbottom A, Partridge LJ, Parthasarathy V, Moseley GW, Lopez P, Cheng-­Mayer C, Monk PN (2006) Recombinant extracellular domains of tetraspanin proteins are potent inhibitors of the infection of macrophages by human immunodeficiency virus type 1. J Virol 80:6487–6496

    Article  PubMed  CAS  Google Scholar 

  • Horváth G, Serru V, Clay D, Billard M, Boucheix C, Rubinstein E (1998) CD19 is linked to the integrin-­associated tetraspans CD9, CD81, and CD82. J Biol Chem 273:30537–30543

    Article  PubMed  Google Scholar 

  • Huang S, Yuan S, Dong M, Su J, Yu C, Shen Y, Xie X, Yu Y, Yu X, Chen S, Zhang S, Pontarotti P, Xu A (2005) The phylogenetic analysis of tetraspanins projects the evolution of cell-cell interactions from unicellular to multicellular organisms. Genomics 86:674–684

    Article  PubMed  CAS  Google Scholar 

  • Imai T, Yoshie O (1993) C33 antigen and M38 antigen recognized by monoclonal antibodies inhibitory to syncytium formation by human T cell leukemia virus type 1 are both members of the transmembrane 4 superfamily and associate with each other and with CD4 or CD8 in T cells. J Immunol 151:6470–6481

    PubMed  CAS  Google Scholar 

  • Imai T, Kakizaki M, Nishimura M, Yoshie O (1995) Molecular analyses of the association of CD4 with two members of the transmembrane 4 superfamily CD81 and CD82. J Immunol 155:1229–1239

    PubMed  CAS  Google Scholar 

  • Indig FE, Diaz-Gonzalez F, Ginsberg MH (1997) Analysis of the tetraspanin CD9-integrin à IIb á3 (GPIIb-IIIa) complex in platelet membranes and transfected cells. Biochem J 327:291–298

    PubMed  CAS  Google Scholar 

  • Ishibashi T, Ding L, Ikenaka K, Inoue Y, Miyado K, Mekada E, Baba H (2004) Tetraspanin protein CD9 is a novel paranodal component regulating paranodal junctional formation. J Neurosci 24:96–102

    Article  PubMed  CAS  Google Scholar 

  • Israels SJ, McMillan-Ward EM, Easton J, Robertson C, McNicol A (2001) CD63 associates with the alphaIIb beta3 integrin-CD9 complex on the surface of activated platelets. Thromb Haemost 85:134–141

    PubMed  CAS  Google Scholar 

  • Iwamoto R, Higashiyama S, Mitamura T, Taniguchi N, Klagsbrun M, Mekada E (1994) Heparin-­binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein DRAP27/CD9, which up-regulates functional receptors and diphtheria toxin sensitivity. EMBO J 13:2322–2330

    PubMed  CAS  Google Scholar 

  • Jones EY, Davis SJ, Williams AF, Harlos K, Stuart DI (1992) Crystal structure at 2.8 a resolution of a soluble form of the cell adhesion molecule CD2. Nature 360:232–239

    Article  PubMed  CAS  Google Scholar 

  • Jones PH, Bishop LA, Watt FM (1996) Functional significance of CD9 association with á1 integrins in human epidermal keratinocytes. Cell Adhes Commun 4:297–305

    Article  PubMed  CAS  Google Scholar 

  • Jung KK, Liu XW, Chirco R, Fridman R, Kim HR (2006) Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. EMBO J 25:3934–3942

    Article  PubMed  CAS  Google Scholar 

  • Junge HJ, Yang S, Burton JB, Paes K, Shu X, French DM, Costa M, Rice DS, Ye W (2009) TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/beta-catenin signaling. Cell 139:299–311

    Article  PubMed  CAS  Google Scholar 

  • Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S, Kudo A (2000) The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat Genet 24:279–282

    Article  PubMed  CAS  Google Scholar 

  • Kaji K, Oda S, Miyazaki S, Kudo A (2002) Infertility of CD9-deficient mouse eggs is reversed by mouse CD9, human CD9, or mouse CD81; polyadenylated mRNA injection developed for molecular analysis of sperm-egg fusion. Dev Biol 247:327–334

    Article  PubMed  CAS  Google Scholar 

  • Karamatic CV, Burton N, Kagan A, Green CA, Levene C, Flinter F, Brady RL, Daniels G, Anstee DJ (2004) CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood 104:2217–2223

    Article  CAS  Google Scholar 

  • Kazarov AR, Yang X, Stipp CS, Sehgal B, Hemler ME (2002) An extracellular site on tetraspanin CD151 determines alpha 3 and alpha 6 integrin-dependent cellular morphology. J Cell Biol 158:1299–1309

    Article  PubMed  CAS  Google Scholar 

  • Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, Grandi G, Bolognesi M (2001) CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J 20:12–18

    Article  PubMed  CAS  Google Scholar 

  • Klosek SK, Nakashiro K, Hara S, Shintani S, Hasegawa H, Hamakawa H (2005) CD151 forms a functional complex with c-Met in human salivary gland cancer cells. Biochem Biophys Res Commun 336:408–416

    Article  PubMed  CAS  Google Scholar 

  • Kolesnikova TV, Stipp CS, Rao RM, Lane WS, Luscinskas FW, Hemler ME (2004) EWI-2 modulates lymphocyte integrin {alpha}4{beta}1 functions. Blood 103:3013–3019

    Article  PubMed  CAS  Google Scholar 

  • Kong F, Garcia AJ, Mould AP, Humphries MJ, Zhu C (2009) Demonstration of catch bonds between an integrin and its ligand. J Cell Biol 185:1275–1284

    Article  PubMed  CAS  Google Scholar 

  • Kopczynski CC, Davis GW, Goodman CS (1996) A neural tetraspanin, encoded by late bloomer, that facilitates synapse formation. Science 271:1867–1870

    Article  PubMed  CAS  Google Scholar 

  • Kovalenko OV, Yang XH, Hemler ME (2007) A novel cysteine cross-linking method reveals a direct association between claudin-1 and tetraspanin CD9. Mol Cell Proteomics 6:1855–1867

    Article  PubMed  CAS  Google Scholar 

  • Krementsov DN, Rassam P, Margeat E, Roy NH, Schneider-Schaulies J, Milhiet PE, Thali M (2010) HIV-1 assembly differentially alters dynamics and partitioning of tetraspanins and raft components. Traffic 11:1401–1414

    Article  PubMed  CAS  Google Scholar 

  • Lafleur MA, Xu D, Hemler ME (2009) Tetraspanin proteins regulate membrane type-1 matrix metalloproteinase-dependent pericellular proteolysis. Mol Biol Cell 20:2030–2040

    Article  PubMed  CAS  Google Scholar 

  • Lagaudriere-Gesbert C, Le Naour F, Lebel-Binay S, Billard M, Lemichez E, Boucheix C, Conjeaud H, Rubinstein E (1997a) Functional analysis of four tetraspans, CD9, CD53, CD81, and CD82, suggests a common role in costimulation, cell adhesion, and migration: only CD9 upregulates HB-EGF activity. Cell Immunol 182:105–112

    Article  PubMed  CAS  Google Scholar 

  • Lagaudriere-Gesbert C, Lebel-Binay S, Wiertz E, Ploegh HL, Fradelizi D, Conjeaud H (1997b) The tetraspanin protein CD82 associates with both free HLA class I heavy chain and heterodimeric beta2-microglobulin complexes. J Immunol 158:2790–2797

    PubMed  CAS  Google Scholar 

  • Lagaudriere-Gesbert C, Lebel-Binay S, Hubeau C, Fradelizi D, Conjeaud H (1998) Signaling through the tetraspanin CD82 triggers its association with the cytoskeleton leading to sustained morphological changes and T cell activation. Eur J Immunol 28:4332–4344

    Article  PubMed  CAS  Google Scholar 

  • Lammerding J, Kazarov AR, Huang H, Lee RT, Hemler ME (2003) Tetraspanin CD151 regulates {alpha}6{beta}1 integrin adhesion strengthening. Proc Natl Acad Sci USA 100:7616–7621

    Article  PubMed  CAS  Google Scholar 

  • Latysheva N, Muratov G, Rajesh S, Padgett M, Hotchin NA, Overduin M, Berditchevski F (2006) Syntenin-1 is a new component of tetraspanin-enriched microdomains: mechanisms and consequences of the interaction of syntenin-1 with CD63. Mol Cell Biol 26:7707–7718

    Article  PubMed  CAS  Google Scholar 

  • Lau LM, Wee JL, Wright MD, Moseley GW, Hogarth PM, Ashman LK, Jackson DE (2004) The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3 signaling and platelet function. Blood 104:2368–2375

    Article  PubMed  CAS  Google Scholar 

  • Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C (2000) Severely reduced female fertility in CD9-deficient mice. Science 287:319–321

    Article  PubMed  Google Scholar 

  • Le Naour F, Andre M, Greco C, Billard M, Sordat B, Emile JF, Lanza F, Boucheix C, Rubinstein E (2006) Profiling of the tetraspanin web of human colon cancer cells. Mol Cell Proteomics 5:845–857

    Article  PubMed  CAS  Google Scholar 

  • Lebel-Binay S, Lagaudrière C, Fradelizi D, Conjeaud H (1995) CD82, member of the tetra-span-transmembrane protein family, is a costimulatory protein for T cell activation. J Immunol 155:101–110

    PubMed  CAS  Google Scholar 

  • Lekishvili T, Fromm E, Mujoomdar M, Berditchevski F (2008) The tumour-associated antigen L6 (L6-Ag) is recruited to the tetraspanin-enriched microdomains: implication for tumour cell motility. J Cell Sci 121:685–694

    Article  PubMed  CAS  Google Scholar 

  • Levy S, Shoham T (2005) The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol 5:136–148

    Article  PubMed  CAS  Google Scholar 

  • Levy S, Nguyen VQ, Andria ML, Takahashi S (1991) Structure and membrane topology of TAPA-1. J Biol Chem 266:14597–14602

    PubMed  CAS  Google Scholar 

  • Lineberry N, Su L, Soares L, Fathman CG (2008) The single subunit transmembrane E3 ligase Gene Related to Anergy In Lymphocytes (GRAIL) captures and then ubiquitinates transmembrane proteins across the cell membrane. J Biol Chem 283:28497–28505

    Article  PubMed  CAS  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  PubMed  CAS  Google Scholar 

  • Little KD, Hemler ME, Stipp CS (2004) Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Galpha q/11 association. Mol Biol Cell 15:2375–2387

    Article  PubMed  CAS  Google Scholar 

  • Longhurst CM, White MM, Wilkinson DA, Jennings LK (1999) A CD9, IIb3, integrin-associated protein, and GPIb/V/IX complex on the surface of human platelets is influenced by IIb3 conformational states. Eur J Biochem 263:104–111

    Article  PubMed  CAS  Google Scholar 

  • Lozahic S, Christiansen D, Manie S, Gerlier D, Billard M, Boucheix C, Rubinstein E (2000) CD46 (membrane cofactor protein) associates with multiple beta1 integrins and tetraspans. Eur J Immunol 30:900–907

    Article  PubMed  CAS  Google Scholar 

  • Mangin PH, Kleitz L, Boucheix C, Gachet C, Lanza F (2009) CD9 negatively regulates integrin alpha(llb)beta(3) activation and could thus prevent excessive platelet recruitment at sites of vascular injury. J Thromb Haemost 7:900–902

    Google Scholar 

  • Mannion BA, Berditchevski F, Kraeft SK, Chen LB, Hemler ME (1996) Transmembrane-4 superfamily proteins CD81 (TAPA-1), CD82, CD63, and CD53 specifically associated with integrin alpha 4 beta 1 (CD49d/CD29). J Immunol 157:2039–2047

    PubMed  CAS  Google Scholar 

  • Marakalala MJ, Graham LM, Brown GD (2010) The role of Syk/CARD9-coupled C-type lectin receptors in immunity to Mycobacterium tuberculosis infections. Clin Dev Immunol 2010:567571

    Article  PubMed  CAS  Google Scholar 

  • Marsh D (2008) Protein modulation of lipids, and vice-versa, in membranes. Biochim Biophys Acta 1778:1545–1575

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto AK, Martin DR, Carter RH, Klickstein LB, Ahearn JM, Fearon DT (1993) Functional dissection of the CD21/CD19/TAPA-1/leu-13 complex of B lymphocytes. J Exp Med 178:1407–1417

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Wentrup F, Figdor CG, Ansems M, Brossart P, Wright MD, Adema GJ, van Spriel AB (2007) Dectin-1 interaction with tetraspanin CD37 inhibits IL-6 production. J Immunol 178:154–162

    PubMed  CAS  Google Scholar 

  • Miao WM, Vasile E, Lane WS, Lawler J (2001) CD36 associates with CD9 and integrins on human blood platelets. Blood 97:1689–1696

    Article  PubMed  CAS  Google Scholar 

  • Min G, Wang H, Sun TT, Kong XP (2006) Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution. J Cell Biol 173:975–983

    Article  PubMed  CAS  Google Scholar 

  • Mittelbrunn M, Yanez-Mo M, Sancho D, Ursa A, Sanchez-Madrid F (2002) Cutting edge: dynamic redistribution of tetraspanin CD81 at the central zone of the immune synapse in both T lymphocytes and APC. J Immunol 169:6691–6695

    PubMed  CAS  Google Scholar 

  • Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–324

    Article  PubMed  CAS  Google Scholar 

  • Montpellier C, Tews BA, Poitrimole J, Rocha-Perugini V, D’Arienzo V, Potel J, Zhang XA, Rubinstein E, Dubuisson J, Cocquerel L (2011) Interacting regions of CD81 and two of its partners, EWI-2 and EWI-2wint and their effect on hepatitis C virus infection. J Biol Chem 286:13954–13965

    Article  PubMed  CAS  Google Scholar 

  • Moribe H, Yochem J, Yamada H, Tabuse Y, Fujimoto T, Mekada E (2004) Tetraspanin protein (TSP-­15) is required for epidermal integrity in Caenorhabditis elegans. J Cell Sci 117:5209–5220

    Article  PubMed  CAS  Google Scholar 

  • Murayama Y, Shinomura Y, Oritani K, Miyagawa J, Yoshida H, Nishida M, Katsube F, Shiraga M, Miyazaki T, Nakamoto T, Tsutsui S, Tamura S, Higashiyama S, Shimomura I, Hayashi N (2008) The tetraspanin CD9 modulates epidermal growth factor receptor signaling in cancer cells. J Cell Physiol 216:135–143

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Mitamura T, Takahashi T, Kobayashi T, Mekada E (2000) Importance of the major extracellular domain of CD9 and the Epidermal Growth Factor (EGF)-like domain of heparin-­binding EGF-like growth factor for Up-regulation of binding and activity. J Biol Chem 275:18284–18290

    Article  PubMed  CAS  Google Scholar 

  • Nichols TC, Guthridge JM, Karp DR, Molina H, Fletcher DR, Holers VM (1998) Gamma-glutamyl transpeptidase, an ecto-enzyme regulator of intracellular redox potential, is a component of TM4 signal transduction complexes. Eur J Immunol 28:4123–4129

    Article  PubMed  CAS  Google Scholar 

  • Nikopoulos K, Gilissen C, Hoischen A, van Nouhuys CE, Boonstra FN, Blokland EA, Arts P, Wieskamp N, Strom TM, Ayuso C, Tilanus MA, Bouwhuis S, Mukhopadhyay A, Scheffer H, Hoefsloot LH, Veltman JA, Cremers FP, Collin RW (2010) Next-generation sequencing of a 40 Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy. Am J Hum Genet 86:240–247

    Article  PubMed  CAS  Google Scholar 

  • Nishiuchi R, Sanzen N, Nada S, Sumida Y, Wada Y, Okada M, Takagi J, Hasegawa H, Sekiguchi K (2005) Potentiation of the ligand-binding activity of integrin alpha3beta1 via association with tetraspanin CD151. Proc Natl Acad Sci USA 102:1939–1944

    Article  PubMed  CAS  Google Scholar 

  • Novitskaya V, Romanska H, Dawoud M, Jones JL, Berditchevski F (2010) Tetraspanin CD151 regulates growth of mammary epithelial cells in three-dimensional extracellular matrix: implication for mammary ductal carcinoma in situ. Cancer Res 70:4698–4708

    Article  PubMed  CAS  Google Scholar 

  • Odintsova E, Sugiura T, Berditchevski F (2000) Attenuation of EGF receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI-1. Curr Biol 10:1009–1012

    Article  PubMed  CAS  Google Scholar 

  • Odintsova E, Voortman J, Gilbert E, Berditchevski F (2003) Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR. J Cell Sci 116:4557–4566

    Article  PubMed  CAS  Google Scholar 

  • Odintsova E, Butters TD, Monti E, Sprong H, van Meer G, Berditchevski F (2006) Gangliosides play an important role in the organization of CD82-enriched microdomains. Biochem J 400:315–325

    Article  PubMed  CAS  Google Scholar 

  • Olmos E, Reiss B, Dekker K (2003) The ekeko mutant demonstrates a role for tetraspanin-like protein in plant development. Biochem Biophys Res Commun 310:1054–1061

    Article  PubMed  CAS  Google Scholar 

  • Ono M, Handa K, Sonnino S, Withers DA, Nagai H, Hakomori S (2001) GM3 ganglioside inhibits CD9-facilitated haptotactic cell motility: coexpression of GM3 and CD9 is essential in the downregulation of tumor cell motility and malignancy. Biochemistry 40:6414–6421

    Article  PubMed  CAS  Google Scholar 

  • Orlowski E, Chand R, Yip J, Wong C, Goschnick MW, Wright MD, Ashman LK, Jackson DE (2009) A platelet tetraspanin superfamily member, CD151, is required for regulation of thrombus growth and stability in vivo. J Thromb Haemost 7:2074–2084

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Brown C, Wang X, Geisert EE (2007) The developmental regulation of CD81 in the rat retina. Mol Vis 13:181–189

    PubMed  CAS  Google Scholar 

  • Parthasarathy V, Martin F, Higginbottom A, Murray H, Moseley GW, Read RC, Mal G, Hulme R, Monk PN, Partridge LJ (2009) Distinct roles for tetraspanins CD9, CD63 and CD81 in the formation of multinucleated giant cells. Immunology 127:237–248

    Article  PubMed  CAS  Google Scholar 

  • Poulter JA, Ali M, Gilmour DF, Rice A, Kondo H, Hayashi K, Mackey DA, Kearns LS, Ruddle JB, Craig JE, Pierce EA, Downey LM, Mohamed MD, Markham AF, Inglehearn CF, Toomes C (2010) Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy. Am J Hum Genet 86:248–253

    Article  PubMed  CAS  Google Scholar 

  • Protty MB, Watkins NA, Colombo D, Thomas SG, Heath VL, Herbert JM, Bicknell R, Senis YA, Ashman LK, Berditchevski F, Ouwehand WH, Watson SP, Tomlinson MG (2009) Identification of Tspan9 as a novel platelet tetraspanin and the collagen receptor GPVI as a component of tetraspanin microdomains. Biochem J 417:391–400

    Article  PubMed  CAS  Google Scholar 

  • Prox J, Willenbrock M, Weber S, Lehmann T, Schmidt-Arras D, Schwanbeck R, Saftig P, Schwake M (2012) Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10. Cell Mol Life Sci 69:2919–2932

    Article  PubMed  CAS  Google Scholar 

  • Puklin-Faucher E, Sheetz MP (2009) The mechanical integrin cycle. J Cell Sci 122:179–186

    Article  PubMed  CAS  Google Scholar 

  • Qi JC, Wang J, Mandadi S, Tanaka K, Roufogalis BD, Madigan MC, Lai K, Yan F, Chong BH, Stevens RL, Krilis SA (2006) Human and mouse mast cells use the tetraspanin CD9 as an alternate interleukin-16 receptor. Blood 107:135–142

    Article  PubMed  CAS  Google Scholar 

  • Rao TP, Kuhl M (2010) An updated overview on Wnt signaling pathways: a prelude for more. Circ Res 106:1798–1806

    Article  PubMed  CAS  Google Scholar 

  • Reiss K, Saftig P (2009) The “A Disintegrin And Metalloprotease” (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol 20:126–137

    Article  PubMed  CAS  Google Scholar 

  • Romanska HM, Berditchevski F (2011) Tetraspanins in human epithelial malignancies. J Pathol 223:4–14

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein E, Le Naour F, Billard M, Prenant M, Boucheix C (1994) CD9 antigen is an accessory subunit of the VLA integrin complexes. Eur J Immunol 24:3005–3013

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein E, Le Naour F, Lagaudrière C, Billard M, Conjeaud H, Boucheix C (1996) CD9, CD63, CD81 and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins. Eur J Immunol 26:2657–2665

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein E, Ziyyat A, Prenant M, Wrobel E, Wolf JP, Levy S, Le Naour F, Boucheix C (2006) Reduced fertility of female mice lacking CD81. Dev Biol 290:351–358

    Article  PubMed  CAS  Google Scholar 

  • Sachs N, Kreft M, van den Bergh Weerman MA, Beynon AJ, Peters TA, Weening JJ, Sonnenberg A (2006) Kidney failure in mice lacking the tetraspanin CD151. J Cell Biol 175:33–39

    Article  PubMed  CAS  Google Scholar 

  • Sadej R, Romanska H, Baldwin G, Gkirtzimanaki K, Novitskaya V, Filer AD, Krcova Z, Kusinska R, Ehrmann J, Buckley CD, Kordek R, Potemski P, Eliopoulos AG, Lalani E, Berditchevski F (2009) CD151 regulates tumorigenesis by modulating the communication between tumor cells and endothelium. Mol Cancer Res 7:787–798

    Article  PubMed  CAS  Google Scholar 

  • Sadej R, Romanska H, Kavanagh D, Baldwin G, Takahashi T, Kalia N, Berditchevski F (2010) Tetraspanin CD151 regulates transforming growth factor beta signaling: implication in tumor metastasis. Cancer Res 70:6059–6070

    Article  PubMed  CAS  Google Scholar 

  • Sala-Valdes M, Ursa A, Charrin S, Rubinstein E, Hemler ME, Sanchez-Madrid F, Yanez-Mo M (2006) EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J Biol Chem 281:19665–19675

    Article  PubMed  CAS  Google Scholar 

  • Schick MR, Levy S (1993) The TAPA-1 molecule is associated on the surface of B cells with HLA-DR molecules. J Immunol 151:4090–4097

    PubMed  CAS  Google Scholar 

  • Schmidt C, Kunemund V, Wintergerst ES, Schmitz B, Schachner M (1996) CD9 of mouse brain is implicated in neurite outgrowth and cell migration in vitro and is associated with the alpha 6/beta 1 integrin and the neural adhesion molecule L1. J Neurosci Res 43:12–31

    Article  PubMed  CAS  Google Scholar 

  • Seehafer JG, Shou Ching T, Slupsky JR, Shaw ARE (1988) The functional glycoprotein CD9 is variably acylated: localization of the variably acylated region to a membrane-associated peptide containing the binding site for the agonistic monoclonal antibody 50H.19. Biochim Biophys Acta 957:399–410

    Article  PubMed  CAS  Google Scholar 

  • Seigneuret M (2006) Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily. Biophys J 90:212–227

    Article  PubMed  CAS  Google Scholar 

  • Serru V, Le Naour F, Billard M, Azorsa DO, Lanza F, Boucheix C, Rubinstein E (1999) Selective Tetraspan/integrin complexes (CD81/à4á1, CD151/à3á1, CD151/à6á1) under conditions disrupting tetraspan interactions. Biochem J 340:103–111

    Article  PubMed  CAS  Google Scholar 

  • Sharma C, Yang XH, Hemler ME (2008) DHHC2 affects palmitoylation, stability, and functions of tetraspanins CD9 and CD151. Mol Biol Cell 19:3415–3425

    Article  PubMed  CAS  Google Scholar 

  • Sheng KC, van Spriel AB, Gartlan KH, Sofi M, Apostolopoulos V, Ashman L, Wright MD (2009) Tetraspanins CD37 and CD151 differentially regulate Ag presentation and T-cell co-­stimulation by DC. Eur J Immunol 39:50–55

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Fan H, Shum L, Derynck R (2000) The tetraspanin CD9 associates with transmembrane TGF-alpha and regulates TGF-alpha-induced EGF receptor activation and cell proliferation. J Cell Biol 148:591–602

    Article  PubMed  CAS  Google Scholar 

  • Shibagaki N, Hanada K, Yamashita H, Shimada S, Hamada H (1999) Overexpression of CD82 on human T cells enhances LFA-1/ICAM-1-mediated cell-cell adhesion: functional association between CD82 and LFA-1 in T cell activation. Eur J Immunol 29:4081–4091

    Article  PubMed  CAS  Google Scholar 

  • Shigeta M, Sanzen N, Ozawa M, Gu J, Hasegawa H, Sekiguchi K (2003) CD151 regulates epithelial cell-cell adhesion through PKC- and Cdc42-dependent actin cytoskeletal reorganization. J Cell Biol 163:165–176

    Article  PubMed  CAS  Google Scholar 

  • Shiomi T, Inoki I, Kataoka F, Ohtsuka T, Hashimoto G, Nemori R, Okada Y (2005) Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151. Lab Invest 85:1489–1506

    PubMed  CAS  Google Scholar 

  • Shoham T, Rajapaksa R, Boucheix C, Rubinstein E, Poe JC, Tedder TF, Levy S (2003) The tetraspanin CD81 regulates the expression of CD19 during B cell development in a postendoplasmic reticulum compartment. J Immunol 171:4062–4072

    PubMed  CAS  Google Scholar 

  • Shoham T, Rajapaksa R, Kuo CC, Haimovich J, Levy S (2006) Building of the tetraspanin web: distinct structural domains of CD81 function in different cellular compartments. Mol Cell Biol 26:1373–1385

    Article  PubMed  CAS  Google Scholar 

  • Silvie O, Charrin S, Billard M, Franetich JF, Clark KL, van Gemert GJ, Sauerwein RW, Dautry F, Boucheix C, Mazier D, Rubinstein E (2006) Cholesterol contributes to the organization of tetraspanin-enriched microdomains and to CD81-dependent infection by malaria sporozoites. J Cell Sci 119:1992–2002

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  PubMed  CAS  Google Scholar 

  • Sincock PM, Fitter S, Parton RG, Berndt MC, Gamble JR, Ashman LK (1999) PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. J Cell Sci 112:833–844

    PubMed  CAS  Google Scholar 

  • Skubitz KM, Campbell KD, Iida J, Skubitz APN (1996) CD63 associates with tyorsine kinase activity and CD11/CD18; and transmits an activation signal in neutrophils. J Immunol 157:3617–3626

    PubMed  CAS  Google Scholar 

  • Slupsky JR, Seehafer JG, Tang SC, Masellis-Smith A, Shaw AR (1989) Evidence that monoclonal antibodies against CD9 antigen induce specific association between CD9 and the platelet glycoprotein IIb-IIIa complex. J Biol Chem 264:12289–12293

    PubMed  CAS  Google Scholar 

  • Slupsky JR, Kamiguti AS, Rhodes NP, Cawley JC, Shaw AR, Zuzel M (1997) The platelet antigens CD9, CD42 and integrin alpha IIb beta IIIa can be topographically associated and transduce functionally similar signals. Eur J Biochem 244:168–175

    Article  PubMed  CAS  Google Scholar 

  • Sridhar SC, Miranti CK (2006) Tetraspanin KAI1/CD82 suppresses invasion by inhibiting integrin-­dependent crosstalk with c-Met receptor and Src kinases. Oncogene 25:2367–2378

    Article  PubMed  CAS  Google Scholar 

  • Sterk LM, Geuijen CA, Oomen LC, Calafat J, Janssen H, Sonnenberg A (2000) The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin alpha6beta4 and may regulate the spatial organization of hemidesmosomes. J Cell Biol 149:969–982

    Article  PubMed  CAS  Google Scholar 

  • Sterk LM, Geuijen CA, van den Berg JG, Claessen N, Weening JJ, Sonnenberg A (2002) Association of the tetraspanin CD151 with the laminin-binding integrins alpha3beta1, alpha6beta1, alpha6beta4 and alpha7beta1 in cells in culture and in vivo. J Cell Sci 115:1161–1173

    PubMed  CAS  Google Scholar 

  • Stipp CS, Kolesnikova TV, Hemler ME (2001a) EWI-2 is a major CD9 and CD81 partner and member of a novel Ig protein subfamily. J Biol Chem 276:40545–40554

    Article  PubMed  CAS  Google Scholar 

  • Stipp CS, Orlicky D, Hemler ME (2001b) FPRP, a major, highly stoichiometric, highly specific CD81- and CD9-associated protein. J Biol Chem 276:4853–4862

    Article  PubMed  CAS  Google Scholar 

  • Stipp CS, Kolesnikova TV, Hemler ME (2003) EWI-2 regulates alpha3beta1 integrin-dependent cell functions on laminin-5. J Cell Biol 163:1167–1177

    Article  PubMed  CAS  Google Scholar 

  • Sun TT (2006) Altered phenotype of cultured urothelial and other stratified epithelial cells: implications for wound healing. Am J Physiol Renal Physiol 291:F9–F21

    Article  PubMed  CAS  Google Scholar 

  • Szöllösi J, Horejsi V, Bene L, Angelisova P, Damjanovich S (1996) Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY. J Immunol 157:2939–2946

    PubMed  Google Scholar 

  • Tachibana I, Bodorova J, Berditchevski F, Zutter MM, Hemler ME (1997) NAG-2 a novel Transmembrane-4 Superfamily (TM4SF) protein that complexes with integrins and other TM4SF proteins. J Biol Chem 272:29181–29189

    Article  PubMed  CAS  Google Scholar 

  • Tai XG, Toyooka K, Yashiro Y, Abe R, Park CS, Hamaoka T, Kobayashi M, Neben S, Fujiwara H (1997) CD9-mediated costimulation of TCR-triggered naive T cells leads to activation followed by apoptosis. J Immunol 159:3799–3807

    PubMed  CAS  Google Scholar 

  • Takahashi S, Doss C, Levy S, Levy R (1990) TAPA-1, the target of an antiproliferative antibody, is associated on the cell surface with the Leu-13 antigen. J Immunol 145:2207–2213

    PubMed  CAS  Google Scholar 

  • Takahashi M, Sugiura T, Abe M, Ishii K, Shirasuna K (2007) Regulation of c-Met signaling by the tetraspanin KAI-1/CD82 affects cancer cell migration. Int J Cancer 121:1919–1929

    Article  PubMed  CAS  Google Scholar 

  • Takeda Y, Tachibana I, Miyado K, Kobayashi M, Miyazaki T, Funakoshi T, Kimura H, Yamane H, Saito Y, Goto H, Yoneda T, Yoshida M, Kumagai T, Osaki T, Hayashi S, Kawase I, Mekada E (2003) Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes. J Cell Biol 161:945–956

    Article  PubMed  CAS  Google Scholar 

  • Takeda Y, Kazarov AR, Butterfield CE, Hopkins BD, Benjamin LE, Kaipainen A, Hemler ME (2007) Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood 109:1524–1532

    Article  PubMed  CAS  Google Scholar 

  • Takeda Y, He P, Tachibana I, Zhou B, Miyado K, Kaneko H, Suzuki M, Minami S, Iwasaki T, Goya S, Kijima T, Kumagai T, Yoshida M, Osaki T, Komori T, Mekada E, Kawase I (2008) Double deficiency of tetraspanins CD9 and CD81 alters cell motility and protease production of macrophages and causes chronic obstructive pulmonary disease-like phenotype in mice. J Biol Chem 283:26089–26097

    Article  PubMed  CAS  Google Scholar 

  • Takino T, Miyamori H, Kawaguchi N, Uekita T, Seiki M, Sato H (2003) Tetraspanin CD63 promotes targeting and lysosomal proteolysis of membrane-type 1 matrix metalloproteinase. Biochem Biophys Res Commun 304:160–166

    Article  PubMed  CAS  Google Scholar 

  • Tarrant JM, Groom J, Metcalf D, Li R, Borobokas B, Wright MD, Tarlinton D, Robb L (2002) The absence of Tssc6, a member of the tetraspanin superfamily, does not affect lymphoid development but enhances in vitro T-cell proliferative responses. Mol Cell Biol 22:5006–5018

    Article  PubMed  CAS  Google Scholar 

  • Tedder TF, Zhou LJ, Engel P (1994) The CD19/CD21 signal transduction complex of B lymphocytes. Immunol Today 15:437–442

    Article  PubMed  CAS  Google Scholar 

  • Thomas W (2008) Catch bonds in adhesion. Annu Rev Biomed Eng 10:39–57

    Article  PubMed  CAS  Google Scholar 

  • Todeschini AR, Dos Santos JN, Handa K, Hakomori SI (2007) Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J Biol Chem 282:8123–8133

    Article  PubMed  CAS  Google Scholar 

  • Toyo-Oka K, Yashiro-Ohtani Y, Park CS, Tai XG, Miyake K, Hamaoka T, Fujiwara H (1999) Association of a tetraspanin CD9 with CD5 on the T cell surface: role of particular transmembrane domains in the association. Int Immunol 11:2043–2052

    Article  PubMed  CAS  Google Scholar 

  • Tsai YC, Mendoza A, Mariano JM, Zhou M, Kostova Z, Chen B, Veenstra T, Hewitt SM, Helman LJ, Khanna C, Weissman AM (2007) The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat Med 13:1504–1509

    Article  PubMed  CAS  Google Scholar 

  • Tu L, Sun TT, Kreibich G (2002) Specific heterodimer formation is a prerequisite for uroplakins to exit from the endoplasmic reticulum. Mol Biol Cell 13:4221–4230

    Article  PubMed  CAS  Google Scholar 

  • Ubarretxena-Belandia I, Stokes DL (2010) Present and future of membrane protein structure determination by electron crystallography. Adv Protein Chem Struct Biol 81:33–60

    Article  PubMed  CAS  Google Scholar 

  • Unternaehrer JJ, Chow A, Pypaert M, Inaba K, Mellman I (2007) The tetraspanin CD9 mediates lateral association of MHC class II molecules on the dendritic cell surface. Proc Natl Acad Sci USA 104:234–239

    Article  PubMed  CAS  Google Scholar 

  • van Spriel AB, Puls KL, Sofi M, Pouniotis D, Hochrein H, Orinska Z, Knobeloch KP, Plebanski M, Wright MD (2004) A regulatory role for CD37 in T cell proliferation. J Immunol 172:2953–2961

    PubMed  Google Scholar 

  • van Zelm MC, Smet J, Adams B, Mascart F, Schandene L, Janssen F, Ferster A, Kuo CC, Levy S, van Dongen JJ, van der Burg M (2010) CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest 120:1265–1274

    Article  PubMed  CAS  Google Scholar 

  • Voisset C, Lavie M, Helle F, Op DB, Bilheu A, Bertrand-Michel J, Terce F, Cocquerel L, Wychowski C, Vu-Dac N, Dubuisson J (2008) Ceramide enrichment of the plasma membrane induces CD81 internalization and inhibits hepatitis C virus entry. Cell Microbiol 10:606–617

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi T, Craessaerts K, Bammens L, Bentahir M, Borgions F, Herdewijn P, Staes A, Timmerman E, Vandekerckhove J, Rubinstein E, Boucheix C, Gevaert K, de Strooper B (2009) Analysis of the gamma-secretase interactome and validation of its association with tetraspanin-­enriched microdomains. Nat Cell Biol 11:1340–1346

    Article  PubMed  CAS  Google Scholar 

  • Wang XQ, Yan Q, Sun P, Liu JW, Go L, McDaniel SM, Paller AS (2007) Suppression of epidermal growth factor receptor signaling by protein kinase C-alpha activation requires CD82, caveolin-­1, and ganglioside. Cancer Res 67:9986–9995

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse R, Ha C, Dveksler GS (2002) Murine CD9 is the receptor for pregnancy-specific glycoprotein 17. J Exp Med 195:277–282

    Article  PubMed  CAS  Google Scholar 

  • Winterwood NE, Varzavand A, Meland MN, Ashman LK, Stipp CS (2006) A critical role for tetraspanin CD151 in alpha3beta1 and alpha6beta4 integrin-dependent tumor cell functions on laminin-5. Mol Biol Cell 17:2707–2721

    Article  PubMed  CAS  Google Scholar 

  • Wright MD, Geary SM, Fitter S, Moseley GW, Lau LM, Sheng KC, Apostolopoulos V, Stanley EG, Jackson DE, Ashman LK (2004a) Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol 24:5978–5988

    Article  PubMed  CAS  Google Scholar 

  • Wright MD, Moseley GW, van Spriel AB (2004b) Tetraspanin microdomains in immune cell signalling and malignant disease. Tissue Antigens 64:533–542

    Article  PubMed  CAS  Google Scholar 

  • Wu XR, Kong XP, Pellicer A, Kreibich G, Sun TT (2009) Uroplakins in urothelial biology, function, and disease. Kidney Int 75:1153–1165

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Lee SJ, Suzuki E, Dugan KD, Stoddard A, Li HS, Chodosh LA, Montell C (2004) A lysosomal tetraspanin associated with retinal degeneration identified via a genome-wide screen. EMBO J 23:811–822

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Sharma C, Hemler ME (2009) Tetraspanin12 regulates ADAM10-dependent cleavage of amyloid precursor protein. FASEB J 23:3674–3681

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Sumida Y, Fujibayashi A, Fukaguchi K, Sanzen N, Nishiuchi R, Sekiguchi K (2008a) The tetraspanin CD151 regulates cell morphology and intracellular signaling on laminin-511. FEBS J 275:3335–3351

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Tamura Y, Sanzen N, Sato-Nishiuchi R, Hasegawa H, Ashman LK, Rubinstein E, Yanez-Mo M, Sanchez-Madrid F, Sekiguchi K (2008b) Probing the interaction of tetraspanin CD151 with integrin alpha 3 beta 1 using a panel of monoclonal antibodies with distinct reactivities toward the CD151-integrin alpha 3 beta 1 complex. Biochem J 415:417–427

    Article  PubMed  CAS  Google Scholar 

  • Yanez-Mo M, Barreiro O, Gonzalo P, Batista A, Megias D, Genis L, Sachs N, Sala-Valdes M, Alonso MA, Montoya MC, Sonnenberg A, Arroyo AG, Sanchez-Madrid F (2008) MT1-MMP collagenolytic activity is regulated through association with tetraspanin CD151 in primary endothelial cells. Blood 112:3217–3226

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Claas C, Kraeft SK, Chen LB, Wang Z, Kreidberg JA, Hemler ME (2002) Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell 13:767–781

    Article  PubMed  CAS  Google Scholar 

  • Yang XH, Richardson AL, Torres-Arzayus MI, Zhou P, Sharma C, Kazarov AR, Andzelm MM, Strominger JL, Brown M, Hemler ME (2008) CD151 accelerates breast cancer by regulating alpha 6 integrin function, signaling, and molecular organization. Cancer Res 68:3204–3213

    Article  PubMed  CAS  Google Scholar 

  • Yauch RL, Berditchevski F, Harler MB, Reichner J, Hemler ME (1998) Highly stoichiometric, stable, and specific association of integrin alpha3beta1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell 9:2751–2765

    PubMed  CAS  Google Scholar 

  • Yauch RL, Kazarov AR, Desai B, Lee RT, Hemler ME (2000) Direct extracellular contact between integrin alpha(3)beta(1) and TM4SF protein CD151. J Biol Chem 275:9230–9238

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Kawano Y, Sato K, Ando Y, Aoki J, Miura Y, Komano J, Tanaka Y, Koyanagi Y (2008) A CD63 mutant inhibits T-cell tropic human immunodeficiency virus type 1 entry by disrupting CXCR4 trafficking to the plasma membrane. Traffic 9:540–558

    Article  PubMed  CAS  Google Scholar 

  • Zevian S, Winterwood NE, Stipp CS (2011) Structure-function analysis of tetraspanin CD151 reveals distinct requirements for tumor cell behaviors mediated by α3{beta}1 versus α6{beta}4 integrin. J Biol Chem 286:7496–7506

    Article  PubMed  CAS  Google Scholar 

  • Zhang XA, Bontrager AL, Hemler ME (2001) Transmembrane-4 superfamily proteins associate with activated Protein Kinase C (PKC) and link PKC to specific beta(1) integrins. J Biol Chem 276:25005–25013

    Article  PubMed  CAS  Google Scholar 

  • Zhang XA, Kazarov AR, Yang X, Bontrager AL, Stipp CS, Hemler ME (2002) Function of the tetraspanin CD151-alpha6beta1 integrin complex during cellular morphogenesis. Mol Biol Cell 13:1–11

    Article  PubMed  CAS  Google Scholar 

  • Zhang XA, Lane WS, Charrin S, Rubinstein E, Liu L (2003) EWI2/PGRL associates with the metastasis suppressor KAI1/CD82 and inhibits the migration of prostate cancer cells. Cancer Res 63:2665–2674

    PubMed  CAS  Google Scholar 

  • Zhou B, Liu L, Reddivari M, Zhang XA (2004) The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity. Cancer Res 64:7455–7463

    Article  PubMed  CAS  Google Scholar 

  • Zilber MT, Setterblad N, Vasselon T, Doliger C, Charron D, Mooney N, Gelin C (2005) MHC class ­II/CD38/CD9: a lipid-raft-dependent signaling complex in human monocytes. Blood 106:3074–3081

    Article  PubMed  CAS  Google Scholar 

  • Zoller M (2009) Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer 9:40–55

    Article  PubMed  CAS  Google Scholar 

  • Zuo HJ, Lin JY, Liu ZY, Liu WF, Liu T, Yang J, Liu Y, Wang DW, Liu ZX (2010) Activation of the ERK signaling pathway is involved in CD151-induced angiogenic effects on the formation of CD151-integrin complexes. Acta Pharmacol Sin 31:805–812

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eric Rubinstein , Stéphanie Charrin or Michael G. Tomlinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rubinstein, E., Charrin, S., Tomlinson, M.G. (2013). Organisation of the Tetraspanin Web. In: Berditchevski, F., Rubinstein, E. (eds) Tetraspanins. Proteins and Cell Regulation, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6070-7_3

Download citation

Publish with us

Policies and ethics