Skip to main content

Uroplakins as Unique Tetraspanin Networks

  • Chapter
  • First Online:
Tetraspanins

Part of the book series: Proteins and Cell Regulation ((PROR,volume 9))

Abstract

A major class of tetraspanins are uroplakins (UP’s) Ia and Ib that, together with their associated (non-tetraspanin) uroplakins II and IIIa, form two dimensional crystals of 16-nm particles, known as ‘urothelial plaques’. Interconnected by small hinge areas, urothelial plaques cover almost the entire apical surface of mammalian bladder urothelium, and contribute to the remarkable urothelial permeability barrier function. UPIa and Ib bind selectively to UPII and IIIa, respectively, to form a UPIa/II and UPIb/IIIa heterodimer, which constitutes one of the six dumbbell-shaped, heterotetramer subunit of a ­stellate-­shaped 16-nm uroplakin particle. Ultrastructural studies indicate that UPIa/II and UPII/IIIa dimers are associated with the inner and outer subdomains of the 16-nm particles, respectively. In vitro gel overlay assay suggests that the high mannose glycan anchored on the second, large extracellular loop of UPIa may serve as the urothelial receptor for the type 1-fimbriated E. coli that causes over 85% of urinary tract infection. Moreover, uroplakin defects may play a role in renal adysplasia and overreactive bladder. Although uroplakins are expressed mainly as major differentiation products of bladder urothelium, small amounts of uroplakins are present in some nonurothelial tissues including oocytes and may play a diverse range of important biological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboushwareb T, Zhou G, Deng FM, Turner C, Andersson KE, Tar M, Zhao W, Melman A, D’Agostino R Jr, Sun TT, Christ GJ (2009) Alterations in bladder function associated with urothelial defects in uroplakin II and IIIa knockout mice. Neurourol Urodyn 28(8):1028–1033. doi:10.1002/nau.20688

    Article  PubMed  CAS  Google Scholar 

  • Anderson GG, Palermo JJ, Schilling JD, Roth R, Heuser J, Hultgren SJ (2003) Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301(5629):105–107

    Article  PubMed  CAS  Google Scholar 

  • Barral DC, Ramalho JS, Anders R, Hume AN, Knapton HJ, Tolmachova T, Collinson LM, Goulding D, Authi KS, Seabra MC (2002) Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. J Clin Invest 110(2):247–257. doi:10.1172/JCI15058

    PubMed  CAS  Google Scholar 

  • Berditchevski F, Odintsova E (2007) Tetraspanins as regulators of protein trafficking. Traffic 8(2):89–96. doi:10.1111/j.1600-0854.2006.00515.x

    Article  PubMed  CAS  Google Scholar 

  • Bouckaert J, Berglund J, Schembri M, De Genst E, Cools L, Wuhrer M, Hung CS, Pinkner J, Slattegard R, Zavialov A, Choudhury D, Langermann S, Hultgren SJ, Wyns L, Klemm P, Oscarson S, Knight SD, De Greve H (2005) Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin. Mol Microbiol 55(2):441–455

    Article  PubMed  CAS  Google Scholar 

  • Charrin S, le Naour F, Silvie O, Milhiet PE, Boucheix C, Rubinstein E (2009) Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 420(2):133–154. doi:10.1042/BJ20082422

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Guo X, Deng FM, Liang FX, Sun W, Ren M, Izumi T, Sabatini DD, Sun TT, Kreibich G (2003) Rab27b is associated with fusiform vesicles and may be involved in targeting uroplakins to urothelial apical membranes. Proc Natl Acad Sci USA 100(24):14012–14017

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Huang H, Zhang ZT, Shapiro E, Pellicer A, Sun TT, Wu XR (2002) Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth. Cancer Res 62(14):4157–4163

    PubMed  CAS  Google Scholar 

  • Cheng J, Huang H, Pak J, Shapiro E, Sun TT, Cordon-Cardo C, Waldman FM, Wu XR (2003) Allelic loss of p53 gene is associated with genesis and maintenance, but not invasion, of mouse carcinoma in situ of the bladder. Cancer Res 63(1):179–185

    PubMed  CAS  Google Scholar 

  • Deng FM, Liang FX, Tu L, Resing KA, Hu P, Supino M, Hu CC, Zhou G, Ding M, Kreibich G, Sun TT (2002) Uroplakin IIIb, a urothelial differentiation marker, dimerizes with uroplakin Ib as an early step of urothelial plaque assembly. J Cell Biol 159(4):685–694

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Huang HY, Pak J, Cheng J, Zhang ZT, Shapiro E, Pellicer A, Sun TT, Wu XR (2004) p53 deficiency provokes urothelial proliferation and synergizes with activated Ha-ras in promoting urothelial tumorigenesis. Oncogene 23(3):687–696. doi:10.1038/sj.onc.1207169

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Espana A, Chung PJ, Zhao X, Lee A, Pellicer A, Yu J, Sun TT, Desalle R (2006) Origin of the tetraspanin uroplakins and their co-evolution with associated proteins: implications for uroplakin structure and function. Mol Phylogenet Evol 41(2):355–367

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Espana A, Chung PJ, Sarkar IN, Stiner E, Sun TT, Desalle R (2008) Appearance of new tetraspanin genes during vertebrate evolution. Genomics 91(4):326–334

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Espana A, Mares R, Sun TT, Desalle R (2009) Intron evolution: testing hypotheses of intron evolution using the phylogenomics of tetraspanins. PLoS One 4(3):e4680. ­doi:10.1371/journal.pone.0004680

    Article  PubMed  Google Scholar 

  • Giltay JC, van de Meerakker J, van Amstel HK, de Jong TP (2004) No pathogenic mutations in the uroplakin III gene of 25 patients with primary vesicoureteral reflux. J Urol 171(2 Pt 1):931–932

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Tu L, Gumper I, Plesken H, Novak EK, Chintala S, Swank RT, Pastores G, Torres P, Izumi T, Sun TT, Sabatini DD, Kreibich G (2009) Involvement of vps33a in the fusion of uroplakin-­degrading multivesicular bodies with lysosomes. Traffic 10(9):1350–1361. doi:10.1111/j.1600-0854.2009.00950.x

    Article  PubMed  CAS  Google Scholar 

  • Hasan AK, Fukami Y, Sato K (2011) Gamete membrane microdomains and their associated molecules in fertilization signaling. Mol Reprod Dev 78(10–11):814–830. doi:10.1002/mrd.21336

    Article  PubMed  CAS  Google Scholar 

  • He F, Mo L, Zheng XY, Hu C, Lepor H, Lee EY, Sun TT, Wu XR (2009) Deficiency of pRb family proteins and p53 in invasive urothelial tumorigenesis. Cancer Res 69(24):9413–9421. doi:10.1158/0008-5472.CAN-09-2158

    Article  PubMed  CAS  Google Scholar 

  • Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6(10):801–811

    Article  PubMed  CAS  Google Scholar 

  • Hicks RM (1965) The fine structure of the transitional epithelium of rat ureter. J Cell Biol 26:25–48

    Article  PubMed  CAS  Google Scholar 

  • Hicks RM, Ketterer B (1969) Hexagonal lattice of subunits in the thick luminal membrane of the rat urinary bladder. Nature (Lond) 224:1304–1305

    Article  CAS  Google Scholar 

  • Hodges SJ, Zhou G, Deng FM, Aboushwareb T, Turner C, Andersson KE, Santago P, Case D, Sun TT, Christ GJ (2008) Voiding pattern analysis as a surrogate for cystometric evaluation in uroplakin II knockout mice. J Urol 179(5):2046–2051

    Article  PubMed  Google Scholar 

  • Hu P, Deng FM, Liang FX, Hu CM, Auerbach AB, Shapiro E, Wu XR, Kachar B, Sun TT (2000) Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J Cell Biol 151(5):961–972

    Article  PubMed  CAS  Google Scholar 

  • Hu P, Meyers S, Liang FX, Deng FM, Kachar B, Zeidel ML, Sun TT (2002) Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability. Am J Physiol Renal Physiol 283(6):F1200–F1207

    PubMed  CAS  Google Scholar 

  • Hu CC, Liang FX, Zhou G, Tu L, Tang CH, Zhou J, Kreibich G, Sun TT (2005) Assembly of urothelial plaques: tetraspanin function in membrane protein trafficking. Mol Biol Cell 16(9):3937–3950

    Article  PubMed  CAS  Google Scholar 

  • Hu CC, Bachmann T, Zhou G, Liang FX, Ghiso J, Kreibich G, Sun TT (2008) Assembly of a membrane receptor complex: roles of the uroplakin II prosequence in regulating uroplakin bacterial receptor oligomerization. Biochem J 414(2):195–203

    Article  PubMed  CAS  Google Scholar 

  • Huang HY, Shariat SF, Sun TT, Lepor H, Shapiro E, Hsieh JT, Ashfaq R, Lotan Y, Wu XR (2007) Persistent uroplakin expression in advanced urothelial carcinomas: implications in urothelial tumor progression and clinical outcome. Hum Pathol 38(11):1703–1713

    Article  PubMed  CAS  Google Scholar 

  • Jenkins D, Bitner-Glindzicz M, Malcolm S, Hu CC, Allison J, Winyard PJ, Gullett AM, Thomas DF, Belk RA, Feather SA, Sun TT, Woolf AS (2005) De novo Uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J Am Soc Nephrol 16(7):2141–2149

    Article  PubMed  CAS  Google Scholar 

  • Jiang S, Gitlin J, Deng FM, Liang FX, Lee A, Atala A, Bauer SB, Ehrlich GD, Feather SA, Goldberg JD, Goodship JA, Goodship TH, Hermanns M, Hu FZ, Jones KE, Malcolm S, Mendelsohn C, Preston RA, Retik AB, Schneck FX, Wright V, Ye XY, Woolf AS, Wu XR, Ostrer H, Shapiro E, Yu J, Sun TT (2004) Lack of major involvement of human uroplakin genes in vesicoureteral reflux: implications for disease heterogeneity. Kidney Int 66(1):10–19

    Article  PubMed  CAS  Google Scholar 

  • Justice SS, Hunstad DA, Cegelski L, Hultgren SJ (2008) Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 6(2):162–168

    Article  PubMed  CAS  Google Scholar 

  • Kachar B, Liang F, Lins U, Ding M, Wu XR, Stoffler D, Aebi U, Sun TT (1999) Three-dimensional analysis of the 16nm urothelial plaque particle: luminal surface exposure, preferential head-­to-head int.raction, and hinge formation. J Mol Biol 285(2):595–608

    Article  PubMed  CAS  Google Scholar 

  • Kelly H, Ennis S, Yoneda A, Bermingham C, Shields DC, Molony C, Green AJ, Puri P, Barton DE (2005) Uroplakin III is not a major candidate gene for primary vesicoureteral reflux. Eur J Hum Genet 13(4):500–502

    Article  PubMed  CAS  Google Scholar 

  • Kerr DE, Liang F, Bondioli KR, Zhao H, Kreibich G, Wall RJ, Sun TT (1998) The bladder as a bioreactor: urothelium production and secretion of growth hormone into urine. Nat Biotechnol 16(1):75–79

    Article  PubMed  CAS  Google Scholar 

  • Ketterer B, Hicks RM (1971) Proteins of the plasma membrane lining the lumen of the rat bladder. Biochem J 122(5):66

    Google Scholar 

  • Ketterer B, Hicks RM, Christodoulides L, Beale D (1973) Studies of the chemistry of the luminal plasma membrane of rat bladder epithelial cells. Biochim Biophys Acta 311(2):180–190

    Article  PubMed  CAS  Google Scholar 

  • Kong XT, Deng FM, Hu P, Liang FX, Zhou G, Auerbach AB, Genieser N, Nelson PK, Robbins ES, Shapiro E, Kachar B, Sun TT (2004) Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. J Cell Biol 167(6):1195–1204

    Article  PubMed  CAS  Google Scholar 

  • Koss LG (1969) The asymmetric unit membranes of the epithelium of the urinary bladder of the rat. An electron microscopic study of a mechanism of epithelial maturation and function. Lab Invest 21:154–168

    PubMed  CAS  Google Scholar 

  • Levy S, Shoham T (2005) The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol 5(2):136–148

    Article  PubMed  CAS  Google Scholar 

  • Li SM, Zhang ZT, Chan S, McLenan O, Dixon C, Taneja S, Lepor H, Sun TT, Wu XR (1999) Detection of circulating uroplakin-positive cells in patients with transitional cell carcinoma of the bladder. J Urol 162(3 Pt 1):931–935

    Article  PubMed  CAS  Google Scholar 

  • Liang FX, Riedel I, Deng FM, Zhou G, Xu C, Wu XR, Kong XP, Moll R, Sun TT (2001) Organization of uroplakin subunits: transmembrane topology, pair formation and plaque composition. Biochem J 355(Pt 1):13–18

    Article  PubMed  CAS  Google Scholar 

  • Liang FX, Bosland MC, Huang H, Romih R, Baptiste S, Deng FM, Wu XR, Shapiro E, Sun TT (2005) Cellular basis of urothelial squamous metaplasia: roles of lineage heterogeneity and cell replacement. J Cell Biol 171(5):835–844

    Article  PubMed  CAS  Google Scholar 

  • Lin JH, Wu XR, Kreibich G, Sun TT (1994) Precursor sequence, processing, and urothelium-­specific expression of a major 15-kDa protein subunit of asymmetric unit membrane. J Biol Chem 269(3):1775–1784

    PubMed  CAS  Google Scholar 

  • Lin JH, Zhao H, Sun TT (1995) A tissue-specific promoter that can drive a foreign gene to express in the suprabasal urothelial cells of transgenic mice. Proc Natl Acad Sci USA 92(3):679–683

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Evanoff DP, Chen X, Luo Y (2007) Urinary bladder epithelium antigen induces CD8+ T cell tolerance, activation, and autoimmune response. J Immunol 178(1):539–546

    PubMed  CAS  Google Scholar 

  • Liu W, Deyoung BR, Chen X, Evanoff DP, Luo Y (2008) RDP58 inhibits T cell-mediated bladder inflammation in an autoimmune cystitis model. J Autoimmun 30(4):257–265

    Article  PubMed  Google Scholar 

  • Mahbub Hasan AK, Sato K, Sakakibara K, Ou Z, Iwasaki T, Ueda Y, Fukami Y (2005) Uroplakin III, a novel Src substrate in Xenopus egg rafts, is a target for sperm protease essential for fertilization. Dev Biol 286(2):483–492. doi:10.1016/j.ydbio.2005.08.020

    Article  PubMed  CAS  Google Scholar 

  • Mahbub Hasan AK, Ou Z, Sakakibara K, Hirahara S, Iwasaki T, Sato K, Fukami Y (2007) Characterization of Xenopus egg membrane microdomains containing uroplakin Ib/III complex: roles of their molecular interactions for subcellular localization and signal transduction. Genes Cells 12(2):251–267. doi:10.1111/j.1365-2443.2007.01048.x

    Article  PubMed  CAS  Google Scholar 

  • Min G, Stolz M, Zhou G, Liang F, Sebbel P, Stoffler D, Glockshuber R, Sun TT, Aebi U, Kong XP (2002) Localization of uroplakin Ia, the urothelial receptor for bacterial adhesin FimH, on the six inner domains of the 16 nm urothelial plaque particle. J Mol Biol 317(5):697–706

    Article  PubMed  CAS  Google Scholar 

  • Min G, Zhou G, Schapira M, Sun TT, Kong XP (2003) Structural basis of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle. J Cell Sci 116(Pt 20):4087–4094

    Article  PubMed  CAS  Google Scholar 

  • Min G, Wang H, Sun TT, Kong XP (2006) Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution. J Cell Biol 173(6):975–983

    Article  PubMed  CAS  Google Scholar 

  • Mo L, Cheng J, Lee EY, Sun TT, Wu XR (2005) Gene deletion in urothelium by specific expression of Cre recombinase. Am J Physiol Renal Physiol 289(3):F562–F568

    Article  PubMed  CAS  Google Scholar 

  • Mo L, Zheng X, Huang HY, Shapiro E, Lepor H, Cordon-Cardo C, Sun TT, Wu XR (2007) Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder ­tumorigenesis. J Clin Invest 117(2):314–325. doi:10.1172/JCI30062

    Article  PubMed  CAS  Google Scholar 

  • Moll R, Wu XR, Lin JH, Sun TT (1995) Uroplakins, specific membrane proteins of urothelial umbrella cells, as histological markers of metastatic transitional cell carcinomas. Am J Pathol 147(5):1383–1397

    PubMed  CAS  Google Scholar 

  • Negrete HO, Lavelle JP, Berg J, Lewis SA, Zeidel ML (1996) Permeability properties of the intact mammalian bladder epithelium. Am J Physiol 271(4 Pt 2):F886–F894

    PubMed  CAS  Google Scholar 

  • Osman I, Kang M, Lee A, Deng FM, Polsky D, Mikhail M, Chang C, David DA, Mitra N, Wu XR, Sun TT, Bajorin DF (2004) Detection of circulating cancer cells expressing uroplakins and epidermal growth factor receptor in bladder cancer patients. Int J Cancer 111(6):934–939

    Article  PubMed  CAS  Google Scholar 

  • Osman I, Bajorin DF, Sun TT, Zhong H, Douglas D, Scattergood J, Zheng R, Han M, Marshall KW, Liew CC (2006) Novel blood biomarkers of human urinary bladder cancer. Clin Cancer Res 12(11 Pt 1):3374–3380

    Article  PubMed  CAS  Google Scholar 

  • Porter KR, Bonneville MA (1963) An introduction to the fine structure of cells and tissues. Lea & Febiger, Philadelphia

    Google Scholar 

  • Raposo G, Marks MS, Cutler DF (2007) Lysosome-related organelles: driving post-Golgi compartments into specialisation. Curr Opin Cell Biol 19(4):394–401. doi:10.1016/j.ceb.2007.05.001

    Article  PubMed  CAS  Google Scholar 

  • Robertson JD, Vergara J (1980) Analysis of the structure of intramembrane particles of the mammalian urinary bladder. J Cell Biol 86(2):514–528

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein E (2011) The complexity of tetraspanins. Biochem Soc Trans 39(2):501–505. doi:10.1042/BST0390501

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara K, Sato K, Yoshino K, Oshiro N, Hirahara S, Mahbub Hasan AK, Iwasaki T, Ueda Y, Iwao Y, Yonezawa K, Fukami Y (2005) Molecular identification and characterization of Xenopus egg uroplakin III, an egg raft-associated transmembrane protein that is tyrosine-­phosphorylated upon fertilization. J Biol Chem 280(15):15029–15037. doi:10.1074/jbc.M410538200

    Article  PubMed  CAS  Google Scholar 

  • Salz W, Eisenberg D, Plescia J, Garlick DS, Weiss RM, Wu XR, Sun TT, Altieri DC (2005) A survivin gene signature predicts aggressive tumor behavior. Cancer Res 65(9):3531–3534. doi:10.1158/0008-5472.CAN-04-4284

    Article  PubMed  CAS  Google Scholar 

  • Schonfelder EM, Knuppel T, Tasic V, Miljkovic P, Konrad M, Wuhl E, Antignac C, Bakkaloglu A, Schaefer F, Weber S (2006) Mutations in Uroplakin IIIA are a rare cause of renal hypodysplasia in humans. Am J Kidney Dis 47(6):1004–1012

    Article  PubMed  Google Scholar 

  • Staehelin LA, Chlapowski FJ, Bonneville MA (1972) Lumenal plasma membrane of the urinary bladder. I. Three-dimensional reconstruction from freeze-etch images. J Cell Biol 53(1):73–91

    Article  PubMed  CAS  Google Scholar 

  • Starcevic M, Nazarian R, Dell’Angelica EC (2002) The molecular machinery for the biogenesis of lysosome-related organelles: lessons from Hermansky-Pudlak syndrome. Semin Cell Dev Biol 13(4):271–278

    Article  PubMed  CAS  Google Scholar 

  • Sun TT (2006) Altered phenotype of cultured urothelial and other stratified epithelial cells: implications for wound healing. Am J Physiol Renal Physiol 291(1):F9–F21

    Article  PubMed  CAS  Google Scholar 

  • Thumbikat P, Berry RE, Zhou G, Billips BK, Yaggie RE, Zaichuk T, Sun TT, Schaeffer AJ, Klumpp DJ (2009) Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog 5(5):e1000415. doi:10.1371/journal.ppat.1000415

    Article  PubMed  Google Scholar 

  • Tolmachova T, Abrink M, Futter CE, Authi KS, Seabra MC (2007) Rab27b regulates number and secretion of platelet dense granules. Proc Natl Acad Sci USA 104(14):5872–5877. doi:10.1073/pnas.0609879104

    Article  PubMed  CAS  Google Scholar 

  • Tu L, Sun TT, Kreibich G (2002) Specific heterodimer formation is a prerequisite for uroplakins to exit from the endoplasmic reticulum. Mol Biol Cell 13(12):4221–4230

    Article  PubMed  CAS  Google Scholar 

  • Vergara JA, Longley W, Robertson JD (1969) A hexagonal arrangement of subunits in membrane of mouse urinary bladder. J Mol Biol 46:593–596

    Article  PubMed  CAS  Google Scholar 

  • Vergara J, Zambrano F, Robertson JD, Elrod H (1974) Isolation and characterization of luminal membranes from urinary bladder. J Cell Biol 61:83–94

    Article  PubMed  CAS  Google Scholar 

  • Walz T, Haner M, Wu XR, Henn C, Engel A, Sun T-T, Aebi U (1995) Towards the molecular ­architecture of the asymmetric unit membrane of the mammalian urinary bladder epithelium: a closed “twisted ribbon” structure. J Mol Biol 248(5):887–900

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Min G, Glockshuber R, Sun TT, Kong XP (2009) Uropathogenic E. coli adhesin-induced host cell receptor conformational changes: implications in transmembrane signaling transduction. J Mol Biol 392(2):352–361. doi:10.1016/j.jmb.2009.06.077, S0022-2836(09)00808-0 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Wellens A, Garofalo C, Nguyen H, Van Gerven N, Slattegard R, Hernalsteens JP, Wyns L, Oscarson S, De Greve H, Hultgren S, Bouckaert J (2008) Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex. PLoS One 3(4):e2040

    Article  PubMed  Google Scholar 

  • Wright KJ, Seed PC, Hultgren SJ (2007) Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 9(9):2230–2241

    Article  PubMed  CAS  Google Scholar 

  • Wu XR (2005) Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5(9):713–725. doi:10.1038/nrc1697

    Article  PubMed  CAS  Google Scholar 

  • Wu XR (2009) Biology of urothelial tumorigenesis: insights from genetically engineered mice. Cancer Metastasis Rev 28(3–4):281–290. doi:10.1007/s10555-009-9189-4

    Article  PubMed  Google Scholar 

  • Wu XR, Sun TT (1993) Molecular cloning of a 47 kDa tissue-specific and differentiation-­dependent urothelial cell surface glycoprotein. J Cell Sci 106:31–43

    PubMed  CAS  Google Scholar 

  • Wu XR, Manabe M, Yu J, Sun TT (1990) Large scale purification and immunolocalization of bovine uroplakins I, II, and III. Molecular markers of urothelial differentiation. J Biol Chem 265(31):19170–19179

    PubMed  CAS  Google Scholar 

  • Wu XR, Sun T-T, Medina JJ (1996) In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc Natl Acad Sci USA 93(18):9630–9635

    Article  PubMed  CAS  Google Scholar 

  • Wu XR, Kong XP, Pellicer A, Kreibich G, Sun TT (2009) Uroplakins in urothelial biology, function, and disease. Kidney Int 75(11):1153–1165. doi:10.1038/ki.2009.73

    Article  PubMed  CAS  Google Scholar 

  • Xie B, Zhou G, Chan S-Y, Shapiro E, Kong X-P, Wu X-R, Sun T-T, Costello CE (2006) Distinct glycan structures of uroplakins Ia and Ib: structural basis for the selective binding of FimH adhesin to uroplakin Ia. J Biol Chem 281:14644–14653

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Manabe M, Wu XR, Xu C, Surya B, Sun TT (1990) Uroplakin I: a 27-kD protein associated with the asymmetric unit membrane of mammalian urothelium. J Cell Biol 111(3):1207–1216

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Lin JH, Wu XR, Sun TT (1994) Uroplakins Ia and Ib, two major differentiation products of bladder epithelium, belong to a family of four transmembrane domain (4TM) proteins. J Cell Biol 125(1):171–182

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZT, Pak J, Shapiro E, Sun TT, Wu XR (1999) Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Res 59(14):3512–3517

    PubMed  CAS  Google Scholar 

  • Zhang ZT, Pak J, Huang HY, Shapiro E, Sun TT, Pellicer A, Wu XR (2001) Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation. Oncogene 20(16):1973–1980. doi:10.1038/sj.onc.1204315

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, Mo WJ, Sebbel P, Min G, Neubert TA, Glockshuber R, Wu XR, Sun TT, Kong XP (2001) Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci 114(Pt 22):4095–4103

    PubMed  CAS  Google Scholar 

  • Zhou H, Liu Y, He F, Mo L, Sun TT, Wu XR (2010) Temporally and spatially controllable gene expression and knockout in mouse urothelium. Am J Physiol Renal Physiol 299(2):F387–F395. doi:10.1152/ajprenal.00185.2010

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank our collaborators who contributed to this work, including Ueli Abei (University of Basel, Switzerland), Gerard Apodaca (University of Pittsburgh Medical School), George Christ (Wake Forest University), Cathy Costello (Boston University Medical School), Robert DeSalle (American Museum of Natural History), Garth Ehrlich (Drexel University Medical School), Antonio Garcia-Expana (Universitat Rovira i Virgili, Tarragona, Spain), Bechara Kachar (NIDCD, National Institutes of Health), David Klumpp (Northwestern University Medical School), David Sabatini and Ellen Shapiro (NYU Medical School), Francis Schneck (University of Pittsburgh), Jun Yu (Beijing Genomic Institute) and Mark Zeidel (Harvard Medical School). This work was supported by NIH grants DK52206, DK39753, DK69688; a Merit Review Award from the Veterans Affairs Administration; and a grant-in-aid from the Goldstein Fund for Urological Research of the New York University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tung-Tien Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sun, TT., Kreibich, G., Pellicer, A., Kong, XP., Wu, XR. (2013). Uroplakins as Unique Tetraspanin Networks. In: Berditchevski, F., Rubinstein, E. (eds) Tetraspanins. Proteins and Cell Regulation, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6070-7_12

Download citation

Publish with us

Policies and ethics