Skip to main content

Tetraspanins in Cancer

  • Chapter
  • First Online:
Tetraspanins

Part of the book series: Proteins and Cell Regulation ((PROR,volume 9))

Abstract

Tetraspanins play important roles in cancer, especially in metastasis. CD82 and CD9 are frequently down-regulated on progression of epithelial cancers in humans and this has been associated with poor prognosis. In contrast, high levels of CD151 and Tspan 8 are often observed on tumour progression and have also been linked to poor patient outcome. These observations are supported by a large body of evidence from studies in vitro and in animal models. Considerable insights into the mechanisms by which tetraspanins influence tumour behaviour are now emerging. These include effects on cell-matrix and cell-cell interactions which influence migration and invasion of surrounding tissues, as well as angiogenesis. Several tetraspanins influence the function of platelets which can promote metastasis. Tetraspanins are constitutive components of exosomes, which are most important in intercellular communication. This widens the range of tetraspanin activities in physiology and pathology and may well be particularly important during spread and settlement of metastasizing tumor cells. There is hope that the understanding of how tetraspanins contribute to tumour progression indicates novel approaches to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abache T, Le Naour F, Planchon S, Harper F, Boucheix C, Rubinstein E (2007) The transferrin receptor and the tetraspanin web molecules CD9, CD81, and CD9P-1 are differentially sorted into exosomes after TPA treatment of K562 cells. J Cell Biochem 102:650–664

    PubMed  CAS  Google Scholar 

  • Aharon A, Brenner B (2009) Microparticles, thrombosis and cancer. Best Pract Res Clin Haematol 22:61–69

    PubMed  CAS  Google Scholar 

  • Albini A, Mirisola V, Pfeffer U (2008) Metastasis signatures: genes regulating tumor-­microenvironment interactions predict metastatic behavior. Cancer Metastasis Rev 27:75–83

    PubMed  CAS  Google Scholar 

  • Al-Nedawi K, Meehan B, Rak J (2009) Microvesicles: messengers and mediators of tumor progression. Cell Cycle 8:2014–2018

    PubMed  CAS  Google Scholar 

  • AndrĂ© F, Schartz NE, Chaput N, Flament C, Raposo G, Amigorena S, Angevin E, Zitvogel L (2002) Tumor-derived exosomes: a new source of tumor rejection antigens. Vaccine 20(Suppl 4):A28–A31

    PubMed  Google Scholar 

  • Ang J, Lijovic M, Ashman LK, Kan K, Frauman AG (2004) CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator? Cancer Epidemiol Biomarkers Prev 13:1717–1721

    PubMed  CAS  Google Scholar 

  • Arduise C, Abache T, Li L, Billard M, Chabanon A, Ludwig A, Mauduit P, Boucheix C, Rubinstein E, Le Naour F (2008) Tetraspanins regulate ADAM10-mediated cleavage of TNF-alpha and epidermal growth factor. J Immunol 181:7002–7013

    PubMed  CAS  Google Scholar 

  • Arencibia JM, Martin S, Perez-Rodriguez FJ, Bonnin A (2009) Gene expression profiling reveals overexpression of TSPAN13 in prostate cancer. Int J Oncol 34:457–463

    PubMed  CAS  Google Scholar 

  • Atkinson B, Ernst CS, Ghrist BF, Herlyn M, Blaszczyk M, Ross AH, Herlyn D, Steplewski Z, Koprowski H (1984) Identification of melanoma-associated antigens using fixed tissue screening of antibodies. Cancer Res 44:2577–2581

    PubMed  CAS  Google Scholar 

  • Avin E, Haimovich J, Hollander N (2004) Anti-idiotype x anti-CD44 bispecific antibodies inhibit invasion of lymphoid organs by B cell lymphoma. J Immunol 173:4736–4743

    PubMed  CAS  Google Scholar 

  • Bahi A, Boyer F, Kolira M, Dreyer JL (2005) In vivo gene silencing of CD81 by lentiviral expression of small interference RNAs suppresses cocaine-induced behaviour. J Neurochem 92:1243–1255

    PubMed  CAS  Google Scholar 

  • Baldwin G, Novitskaya V, Sadej R, Pochec E, Litynska A, Hartmann C, Williams J, Ashman L, Eble JA, Berditchevski F (2008) Tetraspanin CD151 regulates glycosylation of (alpha)3(beta)1 integrin. J Biol Chem 283:35445–35454

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay S, Zhan R, Chaudhuri A, Watabe M, Pai SK, Hirota S, Hosobe S, Tsukada T, Miura K, Takano Y, Saito K, Pauza ME, Hayashi S, Wang Y, Mohinta S, Mashimo T, Iiizumi M, Furuta E, Watabe K (2006) Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat Med 12:933–938

    PubMed  CAS  Google Scholar 

  • Bari R, Zhang YH, Zhang F, Wang NX, Stipp CS, Zheng JJ, Zhang XA (2009) Transmembrane interactions are needed for KAI1/CD82-mediated suppression of cancer invasion and metastasis. Am J Pathol 174:647–660

    PubMed  CAS  Google Scholar 

  • Barreiro O, Yáñez-MĂł M, Sala-ValdĂ©s M, GutiĂ©rrez-LĂłpez MD, Ovalle S, Higginbottom A, Monk PN, Cabañas C, Sánchez-Madrid F (2005) Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood 105:2852–2861

    PubMed  CAS  Google Scholar 

  • Bass R, Werner F, Odintsova E, Sugiura T, Berditchevski F, Ellis V (2005) Regulation of urokinase receptor proteolytic function by the tetraspanin CD82. J Biol Chem 280:14811–14818

    PubMed  CAS  Google Scholar 

  • Belting M, Wittrup A (2008) J nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. Cell Biol 183:1187–1191

    CAS  Google Scholar 

  • Berckmans RJ, Neiuwland R, Böing AN, Romijn FP, Hack CE, Sturk A (2001) Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost 85:639–646

    PubMed  CAS  Google Scholar 

  • Berditchevski F (2001) Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 114:4143–4151

    PubMed  CAS  Google Scholar 

  • Berditchevski F, Odintsova E (2007) Tetraspanins as regulators of protein trafficking. Traffic 8:89–96

    PubMed  CAS  Google Scholar 

  • Berditchevski F, Odintsova E, Sawada S, Gilbert E (2002) Expression of the palmitoylation-­deficient CD151 weakens the association of alpha 3 beta 1 integrin with the tetraspanin-­enriched microdomains and affects integrin-dependent signaling. J Biol Chem 277:36991–37000

    PubMed  CAS  Google Scholar 

  • Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    PubMed  CAS  Google Scholar 

  • Bissell MJ, Labarge MA (2005) Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7:17–23

    PubMed  CAS  Google Scholar 

  • Boismenu R, Rhein M, Fischer WH, Havran WL (1996) A role for CD81 in early T cell development. Science 271:198–200

    PubMed  CAS  Google Scholar 

  • Bouras T, Frauman AG (1999) Expression of the prostate cancer metastasis suppressor gene KAI1 in primary prostate cancers: a biphasic relationship with tumour grade. J Pathol 188:382–388

    PubMed  CAS  Google Scholar 

  • Boyiadzis M, Foon KA (2008) Approved monoclonal antibodies for cancer therapy. Expert Opin Biol Ther 8:1151–1158

    PubMed  CAS  Google Scholar 

  • Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005) Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749

    PubMed  CAS  Google Scholar 

  • Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, Recht LD, Sikic BI (2005) Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res 65:8679–8689

    PubMed  CAS  Google Scholar 

  • Burghoff S, Ding Z, Gödecke S, Assmann A, Wirrwar A, Buchholz D, Sergeeva O, Leurs C, Hanenberg H, MĂĽller HW, Bloch W, Schrader J (2008) Horizontal gene transfer from human endothelial cells to rat cardiomyocytes after intracoronary transplantation. Cardiovasc Res 77:534–543

    PubMed  CAS  Google Scholar 

  • Calaluce R, Gubin MM, Davis JW, Magee JD, Chen J, Kuwano Y, Gorospe M, Atasoy U (2010) The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer. BMC Cancer 10:126

    PubMed  Google Scholar 

  • Caswell P, Norman J (2008) Endocytic transport of integrins during cell migration and invasion. Trends Cell Biol 18:257–263

    PubMed  CAS  Google Scholar 

  • Charrin S, ManiĂ© S, Oualid M, Billard M, Boucheix C, Rubinstein E (2002) Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett 516:139–144

    PubMed  CAS  Google Scholar 

  • Chen Z, Mustafa T, Trojanowicz B, Brauckhoff M, Gimm O, Schmutzler C, Kohrle J, Holzhausen HJ, Kehlen A, Klonisch T, Finke R, Dralle H, Hoang-Vu C (2004) CD82, and CD63 in thyroid cancer. Int J Mol Med 14:517–527

    PubMed  CAS  Google Scholar 

  • Chen L, Li X, Wang GL, Wang Y, Zhu YY, Zhu J (2008) Clinicopathological significance of overexpression of TSPAN1, Ki67 and CD34 in gastric carcinoma. Tumori 94:531–538

    PubMed  Google Scholar 

  • Chen L, Zhu YY, Zhang XJ, Wang GL, Li XY, He S, Zhang JB, Zhu JW (2009) TSPAN1 Protein expression: a significant prognostic indicator for patients with colorectal adenocarcinoma. World J Gastroenterol 15:2270–2276

    PubMed  CAS  Google Scholar 

  • Chen L, Zhu Y, Li H, Wang GL, Wu YY, Lu YX, Qin J, Tuo J, Wang JL, Zhu J (2010) Knockdown of TSPAN1 by RNA silencing and antisense technique inhibits proliferation and infiltration of human skin squamous carcinoma cells. Tumori 96:289–295

    PubMed  CAS  Google Scholar 

  • Chien CW, Lin SC, Lai YY, Lin BW, Lin SC, Lee JC, Tsai SJ (2008) Regulation of CD151 by hypoxia controls cell adhesion and metastasis in colorectal cancer. Clin Cancer Res 14:8043–8051

    PubMed  CAS  Google Scholar 

  • Christgen M, Bruchhardt H, Ballmaier M, Krech T, Langer F, Kreipe H, Lehmann U (2008) KAI1/CD82 is a novel target of estrogen receptor-mediated gene repression and downregulated in primary human breast cancer. Int J Cancer 123:2239–2246

    PubMed  CAS  Google Scholar 

  • Christgen M, Christgen H, Heil C, Krech T, Langer F, Kreipe H, Lehmann U (2009) Expression of KAI1/CD82 in distant metastases from estrogen receptor-negative breast cancer. Cancer Sci 100:1767–1771

    PubMed  CAS  Google Scholar 

  • Claas C, Seiter S, Claas A, Savelyeva L, Schwab M, Zöller M (1998) Association between the rat homologue of CO-029, a metastasis-associated tetraspanin molecule and consumption coagulopathy. J Cell Biol 141:267–280

    PubMed  CAS  Google Scholar 

  • Claas C, Wahl J, Orlicky DJ, Karaduman H, Schnölzer M, Kempf T, Zöller M (2005) The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. Biochem J 389:99–110

    PubMed  CAS  Google Scholar 

  • Coombs GS, Covey TM, Virshup DM (2008) Wnt signaling in development, disease and translational medicine. Curr Drug Targets 9:513–531

    PubMed  CAS  Google Scholar 

  • De Bruyne E, Andersen TL, De Raeve H, Van Valckenborgh E, Caers J, Van Camp B, Delaisse JM, Van Riet I, Vanderkerken K (2006) Endothelial cell-driven regulation of CD9 or motility-­related protein-1 expression in multiple myeloma cells within the murine 5T33MM model and myeloma patients. Leukemia 20:1870–1879

    PubMed  Google Scholar 

  • De Bruyne E, Bos TJ, Asosingh K, Vande Broek I, Menu E, Van Valckenborgh E, Atadja P, Coiteux V, Leleu X, Thielemans K, Van Camp B, Vanderkerken K, Van Riet I (2008) Epigenetic silencing of the tetraspanin CD9 during disease progression in multiple myeloma cells and correlation with survival. Clin Cancer Res 14:2918–2926

    PubMed  Google Scholar 

  • De Cicco M (2004) The prothrombotic state in cancer: pathogenic mechanisms. Crit Rev Oncol Hematol 50:187–196

    PubMed  Google Scholar 

  • de Gassart A, GĂ©minard C, Hoekstra D, Vidal M (2004) Exosome secretion: the art of reutilizing nonrecycled proteins? Traffic 5:896–903

    PubMed  Google Scholar 

  • Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B, Camussi G (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110:2440–2448

    PubMed  CAS  Google Scholar 

  • Dev KK (2004) Making protein interactions druggable: targeting PDZ domains. Nat Rev Drug Discov 3:1047–1056

    PubMed  CAS  Google Scholar 

  • Dong JT, Lamb PW, Rinker-Schaeffer CW, Vukanovic J, Ichikawa T, Isaacs JT, Barrett JC (1995) KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science 268:884–886

    PubMed  CAS  Google Scholar 

  • Dong JT, Suzuki H, Pin SS, Bova GS, Schalken JA, Isaacs WB, Barrett JC, Isaacs JT (1996) Down-­regulation of the KAI1 metastasis suppressor gene during the progression of human prostatic cancer infrequently involves gene mutation or allelic loss. Cancer Res 56:4387–4390

    PubMed  CAS  Google Scholar 

  • Drucker L, Tohami T, Tartakover-Matalon S, Zismanov V, Shapiro H, Radnay J, Lishner M (2006) Promoter hypermethylation of tetraspanin members contributes to their silencing in myeloma cell lines. Carcinogenesis 27:197–204

    PubMed  CAS  Google Scholar 

  • Dumartin L, Quemener C, Laklai H, Dumartin L, Quemener C, Laklai H (2010) Netrin-1 mediates early events in pancreatic adenocarcinoma progression, acting on tumor and endothelial cells. Gastroenterology 138:1595–1606

    PubMed  CAS  Google Scholar 

  • Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273:20121–20127

    PubMed  CAS  Google Scholar 

  • Fan J, Zhu GZ, Niles RM (2010) Expression and function of CD9 in melanoma cells. Mol Carcinog 49:85–93

    PubMed  CAS  Google Scholar 

  • Fang Y, Wu N, Gan X, Yan W, Morrell JC, Gould SJ (2007) Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 5:e158

    PubMed  Google Scholar 

  • Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16:415–421

    PubMed  CAS  Google Scholar 

  • Fitter S, Tetaz T, Berndt MC, Ashman LK (1995) Molecular cloning of cDNA encoding a novel platelet, endothelial tetraspan antigen, PETA-3. Blood 86:1348–1355

    PubMed  CAS  Google Scholar 

  • Flaumenhaft R (2006) Formation and fate of platelet microparticles. Blood Cells Mol Dis 36:182–187

    PubMed  CAS  Google Scholar 

  • Folkman J (2004) Endogenous angiogenesis inhibitors. APMIS 112:496–507

    PubMed  CAS  Google Scholar 

  • Fraley TS, Tran TC, Corgan AM, Nash CA, Hao J, Critchley DR, Greenwood JA (2003) Phosphoinositide binding inhibits alpha-actinin bundling activity. J Biol Chem 278:24039–24045

    PubMed  CAS  Google Scholar 

  • Franchini M, Montagnana M, Targher G, Lippi G (2007) Reduced von Willebrand factor-cleaving protease levels in secondary thrombotic microangiopathies and other diseases. J Thromb Thrombolysis 24:29–38

    PubMed  Google Scholar 

  • Furuya M, Kato H, Nishimura N, Ishiwata I, Ikeda H, Ito R, Yoshiki T, Ishikura H (2005) Down-­regulation of CD9 in human ovarian carcinoma cell might contribute to peritoneal dissemination: morphologic alteration and reduced expression of beta1 integrin subsets. Cancer Res 65:2617–2625

    PubMed  CAS  Google Scholar 

  • Gao AC, Lou W, Dong JT, Barrett JC, Danielpour D, Isaacs JT (2003) Defining regulatory elements in the human KAI1 (CD 82) metastasis suppressor gene. Prostate 57:256–260

    PubMed  CAS  Google Scholar 

  • Garcia-Lopez MA, Barreiro O, Garcia-Diez A, Sanchez-Madrid F, Penas PF (2005) Role of tetraspanins CD9 and CD151 in primary melanocyte motility. J Invest Dermatol 125:1001–1009

    PubMed  CAS  Google Scholar 

  • Geary SM, Cambareri AC, Sincock PM, Fitter S, Ashman LK et al (2001) Differential tissue expression of epitopes of the tetraspanin CD151 recognised by monoclonal antibodies. Tissue Antigens 58:141–153

    PubMed  CAS  Google Scholar 

  • Geiger TR, Peeper DS (2009) Metastasis mechanisms. Biochim Biophys Acta 1796:293–308

    PubMed  CAS  Google Scholar 

  • Gesierich S, Paret C, Hildebrand D, Weitz J, Zgraggen K, Schmitz-Winnenthal FH, Horejsi V, Yoshie O, Herlyn D, Ashman LK, Zöller M (2005) Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clin Cancer Res 11:2840–2852

    PubMed  CAS  Google Scholar 

  • Gesierich S, Berezovskiy I, Ryschich E, Zöller M (2006) Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res 66:7083–7094

    PubMed  CAS  Google Scholar 

  • Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11:1143–1149

    PubMed  CAS  Google Scholar 

  • Greco C, Bralet MP, Ailane N, Dubart-Kupperschmitt A, Rubinstein E, Le Naour F, Boucheix C (2010) E-cadherin/p120-catenin and tetraspanin Co-029 cooperate for cell motility control in human colon carcinoma. Cancer Res 70:7674–7683

    PubMed  CAS  Google Scholar 

  • Griffith L, Slupsky J, Seehafer J, Boshkov L, Shaw AR (1991) Platelet activation by immobilized monoclonal antibody: evidence for a CD9 proximal signal. Blood 78:1753–1759

    PubMed  CAS  Google Scholar 

  • Gruenberg J, Stenmark H (2004) The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Biol 5:317–323

    PubMed  CAS  Google Scholar 

  • GrĂĽnwald V, Soltau J, Ivanyi P, Rentschler J, Reuter C, Drevs J (2009) Molecular targeted therapies for solid tumors: management of side effects. Onkologie 32:129–138

    PubMed  Google Scholar 

  • GutiĂ©rrez-LĂłpez MD, Gilsanz A, Yáñez-MĂł M, Ovalle S, Lafuente EM, DomĂ­nguez C, Monk PN, González-Alvaro I, Sánchez-Madrid F, Cabañas C (2011) The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9. Cell Mol Life Sci 68:3275–3292

    PubMed  Google Scholar 

  • Hakomori SI (2010) Glycosynaptic microdomains controlling tumor cell phenotype through alteration of cell growth, adhesion, and motility. FEBS Lett 584:1901–1906

    PubMed  CAS  Google Scholar 

  • Hao S, Ye Z, Li F, Meng Q, Qureshi M, Yang J, Xiang J (2006) Epigenetic transfer of metastatic activity by uptake of highly metastatic B16 melanoma cell-released exosomes. Exp Oncol 28:126–131

    PubMed  CAS  Google Scholar 

  • Hasegawa M, Furuya M, Kasuya Y, Nishiyama M, Sugiura T, Nikaido T, Momota Y, Ichinose M, Kimura S (2007) CD151 dynamics in carcinoma-stroma interaction: integrin expression, adhesion strength and proteolytic activity. Lab Invest 87:882–892

    PubMed  CAS  Google Scholar 

  • Hashida H, Takabayashi A, Tokuhara T, Hattori N, Taki T, Hasegawa H, Satoh S, Kobayashi N, Yamaoka Y, Miyake M (2003) Clinical significance of transmembrane 4 superfamily in colon cancer. Br J Cancer 89:158–167

    PubMed  CAS  Google Scholar 

  • He B, Liu L, Cook GA, Grgurevich S, Jennings LK, Zhang XA (2005) Tetraspanin CD82 attenuates cellular morphogenesis through down-regulating integrin alpha6-mediated cell adhesion. J Biol Chem 280:3346–3354

    PubMed  CAS  Google Scholar 

  • Heinonen M, Bono P, Narko K, Chang SH, Lundin J, Joensuu H, Furneaux H, Hla T, Haglund C, Ristimaki A (2005) Cytoplasmic HuR expression is a prognostic factor in invasive ductal breast carcinoma. Cancer Res 65:2157–2161

    PubMed  CAS  Google Scholar 

  • Hemler ME (2003) Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 19:397–422

    PubMed  CAS  Google Scholar 

  • Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811

    PubMed  CAS  Google Scholar 

  • Hemler ME (2008) Targeting of tetraspanin proteins-potential benefits and strategies. Nat Rev Drug Discov 7:747–758

    PubMed  CAS  Google Scholar 

  • Herlevsen M, Schmidt DS, Miyazaki K, Zöller M (2003) The association of the tetraspanin D6.1A with the alpha6beta4 integrin supports cell motility and liver metastasis formation. J Cell Sci 116:4373–4390

    PubMed  CAS  Google Scholar 

  • Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Metastasis Rev 26:489–502

    Google Scholar 

  • Hirano C, Nagata M, Noman AA, Kitamura N, Ohnishi M, Ohyama T, Kobayashi T, Suzuki K, Yoshizawa M, Izumi N, Fujita H, Takagi R (2009) Tetraspanin gene expression levels as potential biomarkers for malignancy of gingival squamous cell carcinoma. Int J Cancer 124:2911–2916

    PubMed  CAS  Google Scholar 

  • Holderfield MT, Hughes CC (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 102:637–652

    PubMed  CAS  Google Scholar 

  • Hong IK, Jin YJ, Byun HJ, Jeoung DI, Kim YM, Lee H (2006) Homophilic interactions of tetraspanin CD151 up-regulate motility and matrix metalloproteinase-9 expression of human melanoma cells through adhesion-dependent c-Jun activation signaling pathways. J Biol Chem 281:24279–24292

    PubMed  CAS  Google Scholar 

  • Hori H, Yano S, Koufuji K, Takeda J, Shirouzu K (2004) CD9 expression in gastric cancer and its significance. J Surg Res 117:208–215

    PubMed  CAS  Google Scholar 

  • Hotta H, Ross AH, Huebner K, Isobe M, Wendeborn S, Chao MV, Ricciardi RP, Tsujimoto Y, Croce CM, Koprowski H (1988) Molecular cloning and characterization of an antigen associated with early stages of melanoma tumor progression. Cancer Res 48:2955–2962

    PubMed  CAS  Google Scholar 

  • Huang CI, Kohno N, Ogawa E, Adachi M, Taki T, Miyake M (1998) Correlation of reduction in MRP-1/CD9 and KAI1/CD82 expression with recurrences in breast cancer patients. Am J Pathol 153:973–983

    PubMed  CAS  Google Scholar 

  • Huang CL, Liu D, Masuya D, Kameyama K, Nakashima T, Yokomise H, Ueno M, Miyake M (2004) MRP-1/CD9 gene transduction downregulates Wnt signal pathways. Oncogene 23:7475–7483

    PubMed  CAS  Google Scholar 

  • Huang H, Groth J, Sossey-Alaoui K, Hawthorn L, Beall S, Geradts J (2005) Aberrant expression of novel and previously described cell membrane markers in human breast cancer cell lines and tumors. Clin Cancer Res 11:4357–4364

    PubMed  CAS  Google Scholar 

  • Huang CL, Ueno M, Liu D, Masuya D, Nakano J, Yokomise H, Nakagawa T, Miyake M (2006) MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2. Oncogene 25:6480–6488

    PubMed  CAS  Google Scholar 

  • Huang H, Sossey-Alaoui K, Beachy SH, Geradts J (2007) The tetraspanin superfamily member NET-6 is a new tumor suppressor gene. J Cancer Res Clin Oncol 133:761–769

    PubMed  CAS  Google Scholar 

  • Huang XY, Ke AW, Shi GM, Ding ZB, Devbhandari RP, Gu FM, Li QL, Dai Z, Zhou J, Fan J (2010) Overexpression of CD151 as an adverse marker for intrahepatic cholangiocarcinoma patients. Cancer 116:5440–5451

    PubMed  CAS  Google Scholar 

  • Huerta S, Harris DM, Jazirehi A, Bonavida B, Elashoff D, Livingston EH, Heber D (2003) Gene expression profile of metastatic colon cancer cells resistant to cisplatin-induced apoptosis. Int J Oncol 22:663–670

    PubMed  CAS  Google Scholar 

  • Hurley JH, Emr SD (2006) The ESCRT complexes: structure and mechanism of a membrane-­trafficking network. Annu Rev Biophys Biomol Struct 35:277–298

    PubMed  CAS  Google Scholar 

  • Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, Rivoltini L (2008) Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15:80–88

    PubMed  CAS  Google Scholar 

  • Ikeyama S, Koyama M, Yamaoko M, Sasada R, Miyake M (1993) Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA. J Exp Med 177:1231–1237

    PubMed  CAS  Google Scholar 

  • Jackson P, Millar D, Kingsley E, Yardley G, Ow K, Clark S, Russell PJ (2000) Methylation of a CpG island within the promoter region of the KAI1 metastasis suppressor gene is not responsible for down-regulation of KAI1 expression in invasive cancers or cancer cell lines. Cancer Lett 157:169–176

    PubMed  CAS  Google Scholar 

  • Jackson P, Marreiros A, Russell PJ (2005) KAI1 tetraspanin and metastasis suppressor. Int J Biochem Cell Biol 37:530–534

    PubMed  CAS  Google Scholar 

  • Jackson P, Rowe A, Grimm MO (2007) An alternatively spliced KAI1 mRNA is expressed at low levels in human bladder cancers and bladder cancer cell lines and is not associated with invasive behaviour. Oncol Rep 18:1357–1363

    PubMed  CAS  Google Scholar 

  • Jankowski SA, De Jong P, Meltzer PS (1995) Genomic structure of SAS, a member of the transmembrane 4 superfamily amplified in human sarcomas. Genomics 25:501–506

    PubMed  CAS  Google Scholar 

  • Janmey PA, Lindberg U (2004) Cytoskeletal regulation: rich in lipids. Nat Rev Mol Cell Biol 5:658–666

    PubMed  CAS  Google Scholar 

  • Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, Ratajczak MZ (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113:752–760

    PubMed  CAS  Google Scholar 

  • Johnson JL, Winterwood N, DeMali KA, Stipp CS (2009) Tetraspanin CD151 regulates RhoA activation and the dynamic stability of carcinoma cell-cell contacts. J Cell Sci 122:2263–2273

    PubMed  CAS  Google Scholar 

  • Johnstone RM (2006) Exosomes biological significance: a concise review. Blood Cells Mol Dis 36:315–321

    PubMed  CAS  Google Scholar 

  • Joshi B, Li L, Nabi IR (2010) A role for KAI1 in promotion of cell proliferation and mammary gland hyperplasia by the gp78 ubiquitin ligase. J Biol Chem 285:8830–8839

    PubMed  CAS  Google Scholar 

  • Jung T, Castellana D, Klingbeil P, Cuesta Hernández I, Vitacolonna M, Orlicky DJ, Roffler SR, Brodt P, Zöller M (2009) CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia 11:1093–1105

    PubMed  CAS  Google Scholar 

  • Kanetaka K, Sakamoto M, Yamamoto Y, Yamasaki S, Lanza F, Kanematsu T, Hirohashi S (2001) Overexpression of tetraspanin CO-029 in hepatocellular carcinoma. J Hepatol 35:637–642

    PubMed  CAS  Google Scholar 

  • Kanetaka K, Sakamoto M, Yamamoto Y, Takamura M, Kanematsu T, Hirohashi S et al (2003) Possible involvement of tetraspanin CO-029 in hematogenous intrahepatic metastasis of liver cancer cells. J Gastroenterol Hepatol 18:1309–1314

    PubMed  CAS  Google Scholar 

  • Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093

    PubMed  CAS  Google Scholar 

  • Karamatic Crew V, Burton N, Kagan A, Green CA, Levene C, Flinter F, Brady RL, Daniels G, Anstee DJ (2004) CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood 104:2217–2223

    PubMed  Google Scholar 

  • Ke AW, Shi GM, Zhou J, Wu FZ, Ding ZB, Hu MY, Xu Y, Song ZJ, Wang ZJ, Wu JC, Bai DS, Li JC, Liu KD, Fan J (2009) Role of overexpression of CD151 and/or c-Met in predicting prognosis of hepatocellular carcinoma. Hepatology 49:491–503

    PubMed  CAS  Google Scholar 

  • Kim YJ, Yu JM, Joo HJ, Kim HK, Cho HH, Bae YC, Jung JS (2007) Role of CD9 in proliferation and proangiogenic action of human adipose-derived mesenchymal stem cells. Pflugers Arch 455:283–296

    PubMed  CAS  Google Scholar 

  • Kim B, Boo K, Lee JS, Kim KI, Kim WH, Cho HJ, Park YB, Kim HS, Baek SH (2010) Identification of the KAI1 metastasis suppressor gene as a hypoxia target gene. Biochem Biophys Res Commun 393:179–184

    PubMed  CAS  Google Scholar 

  • Klosek SK, Nakashiro K, Hara S, Shintani S, Hasegawa H, Hamakawa H (2005) CD151 forms a functional complex with c-Met in human salivary gland cancer cells. Biochem Biophys Res Commun 336:408–416

    PubMed  CAS  Google Scholar 

  • Kohmo S, Kijima T, Otani Y, Mori M, Minami T, Takahashi R, Nagatomo I, Takeda Y, Kida H, Goya S, Yoshida M, Kumagai T, Tachibana I, Yokota S, Kawase I (2010) Cell surface ­tetraspanin CD9 mediates chemoresistance in small cell lung cancer. Cancer Res 70:8025–8035

    PubMed  CAS  Google Scholar 

  • Kohno M, Hasegawa H, Miyake M, Yamamoto T, Fujita S (2002) CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase. Int J Cancer 97:336–343

    PubMed  CAS  Google Scholar 

  • Kovalenko OV, Metcalf DG, DeGrado WF, Hemler ME (2005) Structural organization and interactions of transmembrane domains in tetraspanin proteins. BMC Struct Biol 5:11

    PubMed  Google Scholar 

  • Kuhn S, Koch M, NĂĽbel T, Ladwein M, Antolovic D, Klingbeil P, Hildebrand D, Moldenhauer G, Langbein L, Franke WW, Weitz J, Zöller M (2007) A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Mol Cancer Res 5:553–567

    PubMed  CAS  Google Scholar 

  • Kwon MS, Shin SH, Yim SH, Lee KY, Kang HM, Kim TM, Chung YJ (2007) CD63 as a biomarker for predicting the clinical outcomes in adenocarcinoma of lung. Lung Cancer 57:46–53

    PubMed  Google Scholar 

  • Lafleur MA, Xu D, Hemler ME (2009) Tetraspanin proteins regulate membrane type-1 matrix metalloproteinase-dependent pericellular proteolysis. Mol Biol Cell 20:2030–2040

    PubMed  CAS  Google Scholar 

  • Lakkaraju A, Rodriguez-Boulan E (2008) Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol 18:199–209

    PubMed  CAS  Google Scholar 

  • Lan RF, Liu ZX, Liu XC, Song YE, Wang DW (2005) CD151 promotes neovascularization and improves blood perfusion in a rat hind-limb ischemia model. J Endovasc Ther 12:469–478

    PubMed  Google Scholar 

  • Latysheva N, Muratov G, Rajesh S, Padgett M, Hotchin NA, Overduin M, Berditchevski F (2006) Syntenin-1 is a new component of tetraspanin-enriched microdomains: mechanisms and consequences of the interaction of syntenin-1 with CD63. Mol Cell Biol 26:7707–7718

    PubMed  CAS  Google Scholar 

  • Lau LM, Wee JL, Wright MD, Moseley GW, Hogarth PM, Ashman LK, Jackson DE (2004) The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3 signaling and platelet function. Blood 104:2368–2375

    PubMed  CAS  Google Scholar 

  • Le Naour F, AndrĂ© M, Boucheix C, Rubinstein E (2006) Membrane microdomains and proteomics: lessons from tetraspanin microdomains and comparison with lipid rafts. Proteomics 6:6447–6454

    PubMed  Google Scholar 

  • Le Tonqueze O, Gschloessl B, Namanda-Vanderbeken A, Legagneux V, Paillard L, Audic Y (2010) Chromosome wide analysis of CUGBP1 binding sites identifies the tetraspanin CD9 mRNA as a target for CUGBP1-mediated down-regulation. Biochem Biophys Res Commun 394:884–889

    PubMed  Google Scholar 

  • Lee JH, Seo YW, Park SR, Kim YJ, Kim KK (2003) Expression of a splice variant of KAI1, a tumor metastasis suppressor gene, influences tumor invasion and progression. Cancer Res 63:7247–7255

    PubMed  CAS  Google Scholar 

  • Lee JH, Park SR, Chay KO, Seo YW, Kook H, Ahn KY, Kim YJ, Kim KK (2004) KAI1 COOH-terminal interacting tetraspanin (KITENIN), a member of the tetraspanin family, interacts with KAI1, a tumor metastasis suppressor, and enhances metastasis of cancer. Cancer Res 64:4235–4243

    PubMed  CAS  Google Scholar 

  • Lee JH, Bae JA, Lee JH, Seo YW, Kho DH, Sun EG, Lee SE, Cho SH, Joo YE, Ahn KY, Chung IJ, Kim KK (2010) Glycoprotein 90 K, downregulated in advanced colorectal cancer tissues, interacts with CD9/CD82 and suppresses the Wnt/beta-catenin signal via ISGylation of beta-catenin. Gut 59:907–917

    PubMed  CAS  Google Scholar 

  • Lekishvili T, Fromm E, Mujoomdar M, Berditchevski F (2008) The tumour-associated antigen L6 (L6-Ag) is recruited to the tetraspanin-enriched microdomains: implication for tumour cell motility. J Cell Sci 121:685–694

    PubMed  CAS  Google Scholar 

  • Levy S, Shoham T (2005) Protein-protein interactions in the tetraspanin web. Physiology (Bethesda) 20:218–224

    CAS  Google Scholar 

  • Levy S, Todd SC, Maecker HT (1998) CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Annu Rev Immunol 16:89–109

    PubMed  CAS  Google Scholar 

  • Lewis TB, Robison JE, Bastien R, Milash B, Boucher K, Samlowski WE, Leachman SA, Dirk Noyes R, Wittwer CT, Perreard L, Bernard PS (2005) Molecular classification of melanoma using real-­time quantitative reverse transcriptase-polymerase chain reaction. Cancer 104:1678–1686

    PubMed  CAS  Google Scholar 

  • Li Q, Li L, Shi W, Jiang X, Xu Y, Gong F, Zhou M, Edwards CK III, Li Z (2006) Mechanism of action differences in the antitumor effects of transmembrane and secretory tumor necrosis factor-­alpha in vitro and in vivo. Cancer Immunol Immunother 55:1470–1479

    PubMed  CAS  Google Scholar 

  • Lineberry N, Su L, Soares L, Fathman CG (2008) The single subunit transmembrane E3 ligase gene related to anergy in lymphocytes (GRAIL) captures and then ubiquitinates transmembrane proteins across the cell membrane. J Biol Chem 283:28497–28505

    PubMed  CAS  Google Scholar 

  • Little KD, Hemler ME, Stipp CS (2004) Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-galpha q/11 association. Mol Biol Cell 15:2375–2387

    PubMed  CAS  Google Scholar 

  • Liu WM, Zhang XA (2006) KAI1/CD82, a tumor metastasis suppressor. Cancer Lett 240:183–194

    PubMed  CAS  Google Scholar 

  • Liu FS, Dong JT, Chen JT, Hsieh YT, Ho ES, Hung MJ (2000) Frequent down-regulation and lack of mutation of the KAI1 metastasis suppressor gene in epithelial ovarian carcinoma. Gynecol Oncol 78:10–15

    PubMed  CAS  Google Scholar 

  • Liu L, He B, Liu WM, Zhou D, Cox JV, Zhang XA (2007) Tetraspanin CD151 promotes cell migration by regulating integrin trafficking. J Biol Chem 282:31631–31642

    PubMed  CAS  Google Scholar 

  • Liu WF, Zuo HJ, Chai BL, Peng D, Fei YJ, Lin JY, Yu XH, Wang DW, Liu ZX (2011) Role of tetraspanin CD151-α3/α6 integrin complex: implication in angiogenesis CD151-integrin complex in angiogenesis. Int J Biochem Cell Biol 43:642–650

    PubMed  CAS  Google Scholar 

  • Lombardi DP, Geradts J, Foley JF, Chiao C, Lamb PW, Barrett JC (1999) Loss of KAI1 expression in the progression of colorectal cancer. Cancer Res 59:5724–5731

    PubMed  CAS  Google Scholar 

  • Longo N, Yáñez-MĂł M, Mittelbrunn M, de la Rosa G, Muñoz ML, Sánchez-Madrid F, Sánchez-­Mateos P (2001) Regulatory role of tetraspanin CD9 in tumor-endothelial cell interaction during transendothelial invasion of melanoma cells. Blood 98:3717–3726

    PubMed  CAS  Google Scholar 

  • Lopez de Silanes I, Lal A, Gorospe M (2005) HuR: post-transcriptional paths to malignancy. RNA Biol 2:11–13

    PubMed  CAS  Google Scholar 

  • Louvet-VallĂ©e S (2000) ERM proteins: from cellular architecture to cell signaling. Biol Cell 92:305–316

    PubMed  Google Scholar 

  • Maecker HT, Todd SC, Levy S (1997) The tetraspanin superfamily: molecular facilitators. FASEB J 11:428–442

    PubMed  CAS  Google Scholar 

  • Mangin PH, Kleitz L, Boucheix C, Gachet C, Lanza F (2009) CD9 negatively regulates integrin alphaIIbbeta3 activation and could thus prevent excessive platelet recruitment at sites of vascular injury. J Thromb Haemost 7:900–902

    PubMed  CAS  Google Scholar 

  • Marks MS, Ohno H, Kirchnausen T, Bonracino JS (1997) Protein sorting by tyrosine-based signals: adapting to the Ys and wherefores. Trends Cell Biol 7:124–128

    PubMed  CAS  Google Scholar 

  • Marreiros A, Czolij R, Yardley G, Crossley M, Jackson P (2003) Identification of regulatory regions within the KAI1 promoter: a role for binding of AP1, AP2 and p53. Gene 302:155–164

    PubMed  CAS  Google Scholar 

  • Marreiros A, Dudgeon K, Dao V, Grimm MO, Czolij R, Crossley M, Jackson P (2005) KAI1 promoter activity is dependent on p53, junB and AP2: evidence for a possible mechanism underlying loss of KAI1 expression in cancer cells. Oncogene 24:637–649

    PubMed  CAS  Google Scholar 

  • Mathivanan S, Lim JW, Tauro BJ, Ji H, Moritz RL, Simpson RJ (2010) Proteomic analysis of A33-­immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9:197–208

    PubMed  CAS  Google Scholar 

  • Maurer CA, Graber HU, Friess H, Beyermann B, Willi D, Netzer P, Zimmermann A, Buchler MW (1999) Reduced expression of the metastasis suppressor gene KAI1 in advanced colon cancer and its metastases. Surgery 126:869–880

    PubMed  CAS  Google Scholar 

  • Mazzocca A, Liotta F, Carloni V (2008) Tetraspanin CD81-regulated cell motility plays a critical role in intrahepatic metastasis of hepatocellular carcinoma. Gastroenterology 135:244–256

    PubMed  CAS  Google Scholar 

  • Miranti CK (2009) Controlling cell surface dynamics and signaling: how CD82/KAI1 suppresses metastasis. Cell Signal 21:196–211

    PubMed  CAS  Google Scholar 

  • Mischiati C, Natali PG, Sereni A, Sibilio L, Giorda E, Cappellacci S, Nicotra MR, Mariani G, Di Filippo F, Catricala C, Gambari R, Grammatico P, Giacomini P (2006) cDNA-array profiling of melanomas and paired melanocyte cultures. J Cell Physiol 207:697–705

    PubMed  CAS  Google Scholar 

  • Mitsuzuka K, Handa K, Satoh M, Arai Y, Hakomori S (2005) A specific microdomain (“glycosynapse 3”) controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of alpha3beta1 integrin with CD9. J Biol Chem 280:35545–35553

    PubMed  CAS  Google Scholar 

  • Miura Y, Kainuma M, Jiang H, Velasco H, Vogt PK, Hakomori S (2004) Reversion of the ­Jun-­induced oncogenic phenotype by enhanced synthesis of sialosyllactosylceramide (GM3 ganglioside). Proc Natl Acad Sci USA 101:16204–16209

    PubMed  CAS  Google Scholar 

  • Miyake M, Koyama M, Seno M, Ikeyama S (1991) Identification of the motility-related protein (MRP-1), recognized by monoclonal antibody M31-15, which inhibits cell motility. J Exp Med 174:1347–1354

    PubMed  CAS  Google Scholar 

  • Miyazaki T, MĂĽller U, Campbell KS (1997) Normal development but differentially altered proliferative responses of lymphocytes in mice lacking CD81. EMBO J 16:4217–4225

    PubMed  CAS  Google Scholar 

  • Molina S, Castet V, Pichard-Garcia L, Wychowski C, Meurs E, Pascussi JM, Sureau C, Fabre JM, Sacunha A, Larrey D, Dubuisson J, Coste J, McKeating J, Maurel P, Fournier-Wirth C (2008) Serum-derived hepatitis C virus infection of primary human hepatocytes is tetraspanin CD81 dependent. J Virol 82:569–574

    PubMed  CAS  Google Scholar 

  • Morel O, Hugel B, Jesel L, Mallat Z, Lanza F, Douchet MP, Zupan M, Chauvin M, Cazenave JP, Tedgui A, Freyssinet JM, Toti F (2004) Circulating procoagulant microparticles and soluble GPV in myocardial infarction treated by primary percutaneous transluminal coronary angioplasty. A possible role for GPIIb-IIIa antagonists. J Thromb Haemost 2:1118–1126

    PubMed  CAS  Google Scholar 

  • Moseley GW, Elliott J, Wright MD, Partridge LJ, Monk PN (2003) Interspecies contamination of the KM3 cell line: implications for CD63 function in melanoma metastasis. Int J Cancer 105:613–616

    PubMed  CAS  Google Scholar 

  • Moss ML, Bartsch JW (2004) Therapeutic benefits from targeting of ADAM family members. Biochemistry 43:7227–7235

    PubMed  CAS  Google Scholar 

  • Murayama Y, Miyagawa J, Oritani K, Yoshida H, Yamamoto K, Kishida O, Miyazaki T, Tsutsui S, Kiyohara T, Miyazaki Y, Higashiyama S, Matsuzawa Y, Shinomura Y (2004) CD9-mediated activation of the p46 Shc isoform leads to apoptosis in cancer cells. J Cell Sci 117:3379–3388

    PubMed  CAS  Google Scholar 

  • Murayama Y, Shinomura Y, Oritani K, Miyagawa J, Yoshida H, Nishida M, Katsube F, Shiraga M, Miyazaki T, Nakamoto T, Tsutsui S, Tamura S, Higashiyama S, Shimomura I, Hayashi N (2008) The tetraspanin CD9 modulates epidermal growth factor receptor signaling in cancer cells. J Cell Physiol 216:135–143

    PubMed  CAS  Google Scholar 

  • Nakamoto T, Murayama Y, Oritani K, Boucheix C, Rubinstein E, Nishida M, Katsube F, Watabe K, Kiso S, Tsutsui S, Tamura S, Shinomura Y, Hayashi N (2009) A novel therapeutic strategy with anti-CD9 antibody in gastric cancers. J Gastroenterol 44:889–896

    PubMed  CAS  Google Scholar 

  • Nakazawa Y, Sato S, Naito M, Kato Y, Mishima K, Arai H, Tsuruo T, Fujita N (2008) Tetraspanin family member CD9 inhibits aggrus/podoplanin-induced platelet aggregation and suppresses pulmonary metastasis. Blood 112:1730–1739

    PubMed  CAS  Google Scholar 

  • Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT, Zöller M (2010) Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 70:1668–1678

    PubMed  CAS  Google Scholar 

  • Nishiuchi R, Sanzen N, Nada S, Sumida Y, Wada Y, Okada M, Takagi J, Hasegawa H, Sekiguchi K (2005) Potentiation of the ligand-binding activity of integrin alpha3beta1 via association with tetraspanin CD151. Proc Natl Acad Sci USA 102:1939–1944

    PubMed  CAS  Google Scholar 

  • Novitskaya V, Romanska H, Dawoud M, Jones JL, Berditchevski F (2010) Tetraspanin CD151 regulates growth of mammary epithelial cells in three-dimensional extracellular matrix: implication for mammary ductal carcinoma in situ. Cancer Res 70:4698–4708

    PubMed  CAS  Google Scholar 

  • NĂĽbel T, Preobraschenski J, Tuncay H, Weiss T, Kuhn S, Ladwein M, Langbein L, Zöller M (2009) Claudin-7 regulates EpCAM-mediated functions in tumor progression. Mol Cancer Res 7:285–299

    PubMed  Google Scholar 

  • Odintsova E, Sugiura T, Berditchevski F (2000) Attenuation of EGF receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI-1. Curr Biol 10:1009–1012

    PubMed  CAS  Google Scholar 

  • Odintsova E, Voortman J, Gilbert E, Berditchevski F (2003) Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR. J Cell Sci 116:4557–4566

    PubMed  CAS  Google Scholar 

  • Odintsova E, Butters TD, Monti E, Sprong H, van Meer G, Berditchevski F (2006) Gangliosides play an important role in the organization of CD82-enriched microdomains. Biochem J 400:315–325

    PubMed  CAS  Google Scholar 

  • Ono M, Handa K, Withers DA, Hakomori S (1999) Motility inhibition and apoptosis are induced by metastasis-suppressing gene product CD82 and its analogue CD9, with concurrent glycosylation. Cancer Res 59:2335–2339

    PubMed  CAS  Google Scholar 

  • Oren R, Takahashi S, Doss C, Levy R, Levy S et al (1990) TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell Biol 10:4007–4015

    PubMed  CAS  Google Scholar 

  • Orlowski E, Chand R, Yip J, Wong C, Goschnick MW, Wright MD, Ashman LK, Jackson DE (2009) Platelet tetraspanin superfamily member, CD151 is required for regulation of thrombus stability in vivo. J Thromb Haemost 7:2074–2084

    PubMed  CAS  Google Scholar 

  • Ovalle S, GutiĂ©rrez-LĂłpez MD, Olmo N, Turnay J, Lizarbe MA, Majano P, Molina-JimĂ©nez F, LĂłpez-­Cabrera M, Yáñez-MĂł M, Sánchez-Madrid F, Cabañas C (2007) The tetraspanin CD9 inhibits the proliferation and tumorigenicity of human colon carcinoma cells. Int J Cancer 121:2140–2152

    PubMed  CAS  Google Scholar 

  • Pap E, Pállinger E, PásztĂłi M, Falus A (2009) Highlights of a new type of intercellular communication: microvesicle-based information transfer. Inflamm Res 58:1–8

    PubMed  CAS  Google Scholar 

  • Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, Lim SK, Sze SK (2010) Hypoxia modulates tumor microenvironment to enhance angiogenic and metastastic potential by secretion of proteins and exosomes. Mol Cell Proteomics 9:1085–1099

    PubMed  CAS  Google Scholar 

  • Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M (2008) Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319:627–630

    PubMed  CAS  Google Scholar 

  • Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Exp Cell Res 315:1584–1592

    PubMed  CAS  Google Scholar 

  • Potolicchio I, Carven GJ, Xu X, Stipp C, Riese RJ, Stern LJ, Santambrogio L (2005) Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol 175:2237–2243

    PubMed  CAS  Google Scholar 

  • Press OW, Eary JF, Badger CC, Martin PJ, Appelbaum FR, Levy R, Miller R, Brown S, Nelp WB, Krohn KA et al (1989) Treatment of refractory non-Hodgkin’s lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J Clin Oncol 7:1027–1038

    PubMed  CAS  Google Scholar 

  • Prince S, Carreira S, Vance KW, Abrahams A, Goding CR (2004) Tbx2 directly represses the expression of the p21(WAF1) cyclin-dependent kinase inhibitor. Cancer Res 64:1669–1674

    PubMed  CAS  Google Scholar 

  • Radford KJ, Thorne RF, Hersey P (1997) Regulation of tumor cell motility and migration by CD63 in a human melanoma cell line. J Immunol 158:3353–3358

    PubMed  CAS  Google Scholar 

  • Rana S, Claas C, Kretz CC, Nazarenko I, Zöller M et al (2011) Activation-induced internalization differs for the tetraspanins CD9 and Tspan8: impact on tumor cell motility. Int J Biochem Cell Biol 43:106–119

    PubMed  CAS  Google Scholar 

  • Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856

    PubMed  CAS  Google Scholar 

  • Razmara M, Hu H, Masquelier M, Li N (2007) Glycoprotein IIb/IIIa blockade inhibits platelet aminophospholipid exposure by potentiating translocase and attenuating scramblase activity. Cell Mol Life Sci 64:999–1008

    PubMed  CAS  Google Scholar 

  • Rous BA, Reaves BJ, Ihrke G, Briggs JA, Gray SR, Stephens DJ, Banting G, Luzio JP (2002) Role of adaptor complex AP-3 in targeting wild-type and mutated CD63 to lysosomes. Mol Biol Cell 13:1071–1082

    PubMed  CAS  Google Scholar 

  • Rowe A, Jackson P (2006) Expression of KITENIN, a KAI1/CD82 binding protein and metastasis enhancer, in bladder cancer cell lines: relationship to KAI1/CD82 levels and invasive behaviour. Oncol Rep 16:1267–1272

    PubMed  CAS  Google Scholar 

  • Ruf W, Mueller BM (2006) Thrombin generation and the pathogenesis of cancer. Semin Thromb Hemost 32(Suppl 1):61–68

    PubMed  CAS  Google Scholar 

  • Ruseva Z, Geiger PX, Hutzler P, Kotzsch M, Luber B, Schmitt M, Gross E, Reuning U (2009) Tumor suppressor KAI1 affects integrin alphavbeta3-mediated ovarian cancer cell adhesion, ­motility, and proliferation. Exp Cell Res 315:1759–1771

    PubMed  CAS  Google Scholar 

  • Sachs N, Kreft M, van den Bergh Weerman MA, Beynon AJ, Peters TA, Weening JJ, Sonnenberg A (2006) Kidney failure in mice lacking the tetraspanin CD151. J Cell Biol 175:33–39

    PubMed  CAS  Google Scholar 

  • Sadej R, Romanska H, Baldwin G, Gkirtzimanaki K, Novitskaya V, Filer AD, Krcova Z, Kusinska R, Ehrmann J, Buckley CD, Kordek R, Potemski P, Eliopoulos AG, el Lalani N, Berditchevski F (2009) CD151 regulates tumorigenesis by modulating the communication between tumor cells and endothelium. Mol Cancer Res 7:787–798

    PubMed  CAS  Google Scholar 

  • Safe S, Abdelrahim M (2005) Sp transcription factor family and its role in cancer. Eur J Cancer 41:2438–2448

    PubMed  CAS  Google Scholar 

  • Sakakura C, Hagiwara A, Nakanishi M, Shimomura K, Takagi T, Yasuoka R, Fujita Y, Abe T, Ichikawa Y, Takahashi S, Ishikawa T, Nishizuka I, Morita T, Shimada H, Okazaki Y, Hayashizaki Y, Yamagishi H (2002) Differential gene expression profiles of gastric cancer cells established from primary tumour and malignant ascites. Br J Cancer 87:1153–1161

    PubMed  CAS  Google Scholar 

  • Sala-ValdĂ©s M, Ursa A, Charrin S, Rubinstein E, Hemler ME, Sánchez-Madrid F, Yáñez-MĂł M (2006) EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J Biol Chem 281:19665–19675

    PubMed  Google Scholar 

  • Sauer G, Windisch J, Kurzeder C, Heilmann V, Kreienberg R, Deissler H (2003) Progression of cervical carcinomas is associated with down-regulation of CD9 but strong local re-­expression at sites of transendothelial invasion. Clin Cancer Res 9:6426–6431

    PubMed  CAS  Google Scholar 

  • Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9:871–881

    PubMed  CAS  Google Scholar 

  • Schröder J, LĂĽllmann-Rauch R, Himmerkus N, Pleines I, Nieswandt B, Orinska Z, Koch-Nolte F, Schröder B, Bleich M, Saftig P (2009) Deficiency of the tetraspanin CD63 associated with kidney pathology but normal lysosomal function. Mol Cell Biol 29:1083–1094

    PubMed  Google Scholar 

  • Seigneuret M (2006) Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily. Biophys J 90:212–227

    PubMed  CAS  Google Scholar 

  • Seow Y, Wood MJ (2009) Biological gene delivery vehicles: beyond viral vectors. Mol Ther 17:767–777

    PubMed  CAS  Google Scholar 

  • Serru V, Le Naour F, Billard M, Azorsa DO, Lanza F, Boucheix C, Rubinstein E (1999) Selective tetraspan-­integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1) under conditions disrupting tetraspan interactions. Biochem J 340:103–111

    PubMed  CAS  Google Scholar 

  • Sharma C, Yang XH, Hemler ME (2008) DHHC2 affects palmitoylation, stability, and functions of tetraspanins CD9 and CD151. Mol Biol Cell 19:3415–3425

    PubMed  CAS  Google Scholar 

  • Shet AS, Aras O, Gupta K, Hass MJ, Rausch DJ, Saba N, Koopmeiners L, Key NS, Hebbel RP (2003) Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 102:2678–2683

    PubMed  CAS  Google Scholar 

  • Shi W, Fan H, Shum L, Derynck R (2000) The tetraspanin CD9 associates with transmembrane TGF-alpha and regulates TGF-alpha-induced EGF receptor activation and cell proliferation. J Cell Biol 148:591–602

    PubMed  CAS  Google Scholar 

  • Shi GM, Ke AW, Zhou J, Wang XY, Xu Y, Ding ZB, Devbhandari RP, Huang XY, Qiu SJ, Shi YH, Dai Z, Yang XR, Yang GH, Fan J (2010) CD151 modulates expression of matrix metalloproteinase 9 and promotes neoangiogenesis and progression of hepatocellular carcinoma. Hepatology 52:183–196

    PubMed  CAS  Google Scholar 

  • Shiomi T, Inoki I, Kataoka F, Ohtsuka T, Hashimoto G, Nemori R, Okada Y (2005) Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151. Lab Invest 85:1489–1506

    PubMed  CAS  Google Scholar 

  • Sho M, Adachi M, Taki T, Hashida H, Konishi T, Huang CL, Ikeda N, Nakajima Y, Kanehiro H, Hisanaga M, Nakano H, Miyake M (1998) Transmembrane 4 superfamily as a prognostic ­factor in pancreatic cancer. Int J Cancer 79:509–516

    PubMed  CAS  Google Scholar 

  • Si Z, Hersey P (1993) Expression of the neuroglandular antigen and analogues in melanoma. CD9 expression appears inversely related to metastatic potential of melanoma. Int J Cancer 54:37–43

    PubMed  CAS  Google Scholar 

  • Sierko E, Wojtukiewicz MZ (2007) Inhibition of platelet function: does it offer a chance of better cancer progression control? Semin Thromb Hemost 33:712–721

    PubMed  CAS  Google Scholar 

  • Sigala S, Faraoni I, Botticini D, Paez-Pereda M, Missale C, Bonmassar E, Spano P (1999) Suppression of telomerase, reexpression of KAI1, and abrogation of tumorigenicity by nerve growth factor in prostate cancer cell lines. Clin Cancer Res 5:1211–1218

    PubMed  CAS  Google Scholar 

  • Simons M, Raposo G (2009) Exosomes-vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581

    PubMed  CAS  Google Scholar 

  • Simpson RJ, Lim JW, Moritz RL, Mathivanan S (2009) Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 6:267–283

    PubMed  CAS  Google Scholar 

  • Sincock PM, Fitter S, Parton RG, Berndt MC, Gamble JR, Ashman LK (1999) PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. J Cell Sci 112:833–844

    PubMed  CAS  Google Scholar 

  • Smalheiser NR (2007) Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol Direct 2:35

    PubMed  Google Scholar 

  • Soyuer S, Soyuer I, Unal D, Ucar K, Yildiz OG, Orhan O (2010) Prognostic significance of CD9 expression in loc.lly advanced gastric cancer treated with surgery and adjuvant chemoradiotherapy. Pathol Res Pract 206:607–610

    PubMed  CAS  Google Scholar 

  • Sridhar SC, Miranti CK (2006) Tetraspanin KAI1/CD82 suppresses invasion by inhibiting integrin-­dependent crosstalk with c-Met receptor and Src kinases. Oncogene 25:2367–2378

    PubMed  CAS  Google Scholar 

  • Stipp CS (2010) Laminin-binding integrins and their tetraspanin partners as potential antimetastatic targets. Expert Rev Mol Med 18(12):e3

    Google Scholar 

  • Stipp CS, Kolesnikova TV, Hemler ME (2003) Functional domains in tetraspanin proteins. Trends Biochem Sci 28:106–112

    PubMed  CAS  Google Scholar 

  • Stoeck A, Keller S, Riedle S, Sanderson MP, Runz S, Le Naour F, Gutwein P, Ludwig A, Rubinstein E, Altevogt P (2006) A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem J 393:609–618

    PubMed  CAS  Google Scholar 

  • Su JS, Arima K, Hasegawa M, Franco OE, Umeda Y, Yanagawa M, Sugimura Y, Kawamura J (2004) Decreased expression of KAI1 metastasis suppressor gene is a recurrence predictor in primary pTa and pT1 urothelial bladder carcinoma. Int J Urol 11:74–82

    PubMed  CAS  Google Scholar 

  • Subra C, Laulagnier K, Perret B, Record M (2007) Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89:205–212

    PubMed  CAS  Google Scholar 

  • Suzuki S, Miyazaki T, Tanaka N, Sakai M, Sano A, Inose T, Sohda M, Nakajima M, Kato H, Kuwano H (2011) Prognostic significance of CD151 expression in esophageal squamous cell carcinoma with aggressive cell proliferation and invasiveness. Ann Surg Oncol 18:888–893

    PubMed  Google Scholar 

  • Suzuki-Inoue K, Fuller GL, GarcĂ­a A, Eble JA, Pöhlmann S, Inoue O, Gartner TK, Hughan SC, Pearce AC, Laing GD, Theakston RD, Schweighoffer E, Zitzmann N, Morita T, Tybulewicz VL, Ozaki Y, Watson SP (2006) A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107:542–549

    PubMed  CAS  Google Scholar 

  • Szala S, Kasai Y, Steplewski Z, Rodeck U, Koprowski H, Linnenbach AJ (1990) Molecular cloning of cDNA for the human tumor-associated antigen CO-029 and identification of related transmembrane antigens. Proc Natl Acad Sci USA 87:6833–6837

    PubMed  CAS  Google Scholar 

  • Tagawa K, Arihiro K, Takeshima Y, Hiyama E, Yamasaki M, Inai K (1999) Down-regulation of KAI1 messenger RNA expression is not associated with loss of heterozygosity of the KAI1 gene region in lung adenocarcinoma. Jpn J Cancer Res 90:970–976

    PubMed  CAS  Google Scholar 

  • Takahashi M, Sugiura T, Abe M, Ishii K, Shirasuna K (2007) Regulation of c-Met signaling by the tetraspanin KAI-1/CD82 affects cancer cell migration. Int J Cancer 121:1919–1929

    PubMed  CAS  Google Scholar 

  • Takeda T, Hattori N, Tokuhara T, Nishimura Y, Yokoyama M, Miyake M (2007a) Adenoviral transduction of MRP-1/CD9 and KAI1/CD82 inhibits lymph node metastasis in orthotopic lung cancer model. Cancer Res 67:1744–1749

    PubMed  CAS  Google Scholar 

  • Takeda Y, Kazarov AR, Butterfield CE, Hopkins BD, Benjamin LE, Kaipainen A, Hemler ME (2007b) Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood 109:1524–1532

    PubMed  CAS  Google Scholar 

  • Tanaka F, Hori N, Sato K (2002) Identification of differentially expressed genes in rat hepatoma cell lines using subtraction and microarray. J Biochem 131:39–44

    PubMed  CAS  Google Scholar 

  • Tarasova NI, Rice WG, Michejda CJ (1999) Inhibition of G-protein-coupled receptor function by disruption of transmembrane domain interactions. J Biol Chem 274:34911–34915

    PubMed  CAS  Google Scholar 

  • Telese F, Bruni P, Donizetti A, Gianni D, D’Ambrosio C, Scaloni A, Zambrano N, Rosenfeld MG, Russo T (2005) Transcription regulation by the adaptor protein Fe65 and the nucleosome assembly factor SET. EMBO Rep 6:77–82

    PubMed  CAS  Google Scholar 

  • Testa JE, Brooks PC, Lin JM, Quigley JP (1999) Eukaryotic expression cloning with an antimetastatic monoclonal antibody identifies a tetraspanin (PETA-3/CD151) as an effector of human tumor cell migration and metastasis. Cancer Res 59:3812–3820

    PubMed  CAS  Google Scholar 

  • Todeschini RA, Hakomori SI (2008) Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780:421–433

    Google Scholar 

  • Todeschini AR, Dos Santos JN, Handa K, Hakomori SI (2008) Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway. Proc Natl Acad Sci USA 105:1925–1930

    PubMed  CAS  Google Scholar 

  • Tohami T, Drucker L, Shapiro H, Radnay J, Lishner M (2007) Overexpression of tetraspanins affects multiple myeloma cell survival and invasive potential. FASEB J 21:691–699

    PubMed  CAS  Google Scholar 

  • Tokuhara T, Hasegawa H, Hattori N, Ishida H, Taki T, Tachibana S, Sasaki S, Miyake M (2001) Clinical significance of CD151 gene expression in non-small cell lung cancer. Clin Cancer Res 7:4109–4114

    PubMed  CAS  Google Scholar 

  • Tonoli H, Barrett JC (2005) CD82 metastasis suppressor gene: a potential target for new therapeutics? Trends Mol Med 11:563–570

    PubMed  CAS  Google Scholar 

  • Tsai YC, Mendoza A, Mariano JM, Zhou M, Kostova Z, Chen B, Veenstra T, Hewitt SM, Helman LJ, Khanna C, Weissman AM (2007) The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat Med 13:1504–1509

    PubMed  CAS  Google Scholar 

  • Tsitsikov EN, Gutierrez-Ramos JC, Geha RS (1997) Impaired CD19 expression and signaling, enhanced antibody response to type II T independent antigen and reduction of B-1 cells in CD81-deficient mice. Proc Natl Acad Sci USA 94:10844–10849

    PubMed  CAS  Google Scholar 

  • Tsopanoglou NE, Maragoudakis ME (2007) Inhibition of angiogenesis by small-molecule antagonists of protease-activated receptor-1. Semin Thromb Hemost 33:680–687

    PubMed  CAS  Google Scholar 

  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    PubMed  CAS  Google Scholar 

  • Wang JC, Begin LR, Berube NG, Chevalier S, Aprikian AG, Gourdeau H, Chevrette M (2007a) Down-regulation of CD9 expression during prostate carcinoma progression is associated with CD9 mRNA modifications. Clin Cancer Res 13:2354–2361

    PubMed  CAS  Google Scholar 

  • Wang XQ, Yan Q, Sun P, Liu JW, Go L, McDaniel SM, Paller AS (2007b) Suppression of epidermal growth factor receptor signaling by protein kinase C-alpha activation requires CD82, caveolin-­1, and ganglioside. Cancer Res 67:9986–9995

    PubMed  CAS  Google Scholar 

  • Wang J, Liu X, Ni P, Gu Z, Fan Q (2010) SP1 is required for basal activation and chromatin accessibility of CD151 promoter in liver cancer cells. Biochem Biophys Res Commun 393:291–296

    PubMed  CAS  Google Scholar 

  • Weigelt B, Peterse JL, van ’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    PubMed  CAS  Google Scholar 

  • Wilson KS, Roberts H, Leek R, Harris AL, Geradts J (2002) Differential gene expression patterns in HER2/neu-positive and -negative breast cancer cell lines and tissues. Am J Pathol 161:1171–1185

    PubMed  CAS  Google Scholar 

  • Winterwood NE, Varzavand A, Meland MN, Ashman LK, Stipp CS (2006) A critical role for tetraspanin CD151 in alpha3beta1 and alpha6beta4 integrin-dependent tumor cell functions on laminin-5. Mol Biol Cell 17:2707–2721

    PubMed  CAS  Google Scholar 

  • Woegerbauer M, Thurnher D, Houben R, Pammer J, Kloimstein P, Heiduschka G, Petzelbauer P, Erovic BM (2010) Expression of the tetraspanins CD9, CD37, CD63, and CD151 in Merkel cell carcinoma: strong evidence for a posttranscriptional fine-tuning of CD9 gene expression. Mod Pathol 23:751–762

    PubMed  CAS  Google Scholar 

  • Wollscheid V, Kuhne-Heid R, Stein I, Jansen L, Kollner S, Schneider A, Durst M (2002) Identification of a new proliferation-associated protein NET-1/C4.8 characteristic for a subset of high-­grade cervical intraepithelial neoplasia and cervical carcinomas. Int J Cancer 99:771–775

    PubMed  CAS  Google Scholar 

  • Wright MD, Tomlinson MG (1994) The ins and outs of the transmembrane 4 superfamily. Immunol Today 15:588–594

    PubMed  CAS  Google Scholar 

  • Wright MD, Geary SM, Fitter S, Moseley GW, Lau LM, Sheng KC, Apostolopoulos V, Stanley EG, Jackson DE, Ashman LK (2004) Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol 24:5978–5988

    PubMed  CAS  Google Scholar 

  • Xiao Z, Blonder J, Zhou M, Veenstra TD (2009) Proteomic analysis of extracellular matrix and vesicles. J Proteomics 72:34–45

    PubMed  CAS  Google Scholar 

  • Xu L, Hynes RO (2007) GPR56 and TG2: possible roles in suppression of tumor growth by the microenvironment. Cell Cycle 6:160–165

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Vinitketkumnuen A, Adachi Y, Taniguchi H, Hirata T, Miyamoto N, Nosho K, Imsumran A, Fujita M, Hosokawa M, Hinoda Y, Imai K (2004) Association of matrilysin-2 (MMP-26) expression with tumor progression and activation of MMP-9 in esophageal squamous cell carcinoma. Carcinogenesis 25:2353–2360

    PubMed  CAS  Google Scholar 

  • Yamane H, Tachibana I, Takeda Y, Saito Y, Tamura Y, He P, Suzuki M, Shima Y, Yoneda T, Hoshino S, Inoue K, Kijima T, Yoshida M, Kumagai T, Osaki T, Eishi Y, Kawase I (2005) Propionibacterium acnes-induced hepatic granuloma formation is impaired in mice lacking tetraspanin CD9. J Pathol 206:486–492

    PubMed  CAS  Google Scholar 

  • Yanez-Mo M, Barreiro O, Gonzalo P, Batista A, MegĂ­as D, GenĂ­s L, Sachs N, Sala-ValdĂ©s M, Alonso MA, Montoya MC, Sonnenberg A, Arroyo AG, Sánchez-Madrid F (2008) MT1-MMP collagenolytic activity is regulated through association with tetraspanin CD151 in primary endothelial cells. Blood 112:3217–3226

    PubMed  CAS  Google Scholar 

  • Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–829

    PubMed  CAS  Google Scholar 

  • Yang X, Claas C, Kraeft SK, Chen LB, Wang Z, Kreidberg JA, Hemler ME (2002) Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell 13:767–781

    PubMed  CAS  Google Scholar 

  • Yang X, Kovalenko OV, Tang W, Claas C, Stipp CS, Hemler ME (2004) Palmitoylation supports assembly and function of integrin-tetraspanin complexes. J Cell Biol 167:1231–1240

    PubMed  CAS  Google Scholar 

  • Yang XH, Kovalenko OV, Kolesnikova TV, Andzelm MM, Rubinstein E, Strominger JL, Hemler ME (2006) Contrasting effects of EWI proteins, integrins, and protein palmitoylation on cell surface CD9 organization. J Biol Chem 281:12976–12985

    PubMed  CAS  Google Scholar 

  • Yang XH, Richardson AL, Torres-Arzayus MI, Zhou P, Sharma C, Kazarov AR, Andzelm MM, Strominger JL, Brown M, Hemler ME (2008) CD151 accelerates breast cancer by regulating alpha 6 integrin function, signaling, and molecular organization. Cancer Res 68:3204–3213

    PubMed  CAS  Google Scholar 

  • Yauch RL, Kazarov AR, Desai B, Lee RT, Hemler ME (2000) Direct extracellular contact between integrin alpha(3)beta(1) and TM4SF protein CD151. J Biol Chem 275:9230–9238

    PubMed  CAS  Google Scholar 

  • Yoo SH, Lee K, Chae JY, Moon KC (2011) CD151 expression can predict cancer progression in clear cell renal cell carcinoma. Histopathology 58:191–197

    PubMed  Google Scholar 

  • Yoon SO, Zhang X, Freedman AS, Zahrieh D, Lossos IS, Li L, Choi YS (2010) Down-regulation of CD9 expression and its correlation to tumor progression in B lymphomas. Am J Pathol 177:377–386

    PubMed  CAS  Google Scholar 

  • Zakharova L, Svetlova M, Fomina AF (2007) T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. J Cell Physiol 212:174–181

    PubMed  CAS  Google Scholar 

  • Zevian S, Winterwood NE, Stipp CS (2011) Structure-function analysis of tetraspanin CD151 reveals distinct requirements for tumor cell behaviors mediated by alpha3beta1 versus alpha6beta4 integrin. J Biol Chem 286:7496–7506

    PubMed  CAS  Google Scholar 

  • Zhang XA, Kazarov AR, Yang X, Bontrager AL, Stipp CS, Hemler ME (2002) Function of the tetraspanin CD151-alpha6beta1 integrin complex during cellular morphogenesis. Mol Biol Cell 13:1–11

    PubMed  Google Scholar 

  • Zhang XA, He B, Zhou B, Liu L (2003a) Requirement of the p130CAS-Crk coupling for metastasis suppressor KAI1/CD82-mediated inhibition of cell migration. J Biol Chem 278:27319–27328

    PubMed  CAS  Google Scholar 

  • Zhang XA, Lane WS, Charrin S, Rubinstein E, Liu L (2003b) EWI2/PGRL associates with the metastasis suppressor KAI1/CD82 and inhibits the migration of prostate cancer cells. Cancer Res 63:2665–2674

    PubMed  CAS  Google Scholar 

  • Zhang F, Kotha J, Jennings LK, Zhang XA (2009) Tetraspanins and vascular functions. Cardiovasc Res 83:7–15

    PubMed  CAS  Google Scholar 

  • Zhao X, Lapalombella R, Joshi T, Cheney C, Gowda A, Hayden-Ledbetter MS, Baum PR, Lin TS, Jarjoura D, Lehman A, Kussewitt D, Lee RJ, Caligiuri MA, Tridandapani S, Muthusamy N, Byrd JC (2007) Targeting CD37-positive lymphoid malignancies with a novel engineered small modular immunopharmaceutical. Blood 110:2569–2577

    PubMed  CAS  Google Scholar 

  • Zheng Z, Liu Z (2006) CD151 gene delivery activates PI3K/Akt pathway and promotes neovascularization after myocardial infarction in rats. Mol Med 12:214–220

    PubMed  CAS  Google Scholar 

  • Zheng ZZ, Liu ZX (2007) Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates CD151-induced endothelial cell proliferation and cell migration. Int J Biochem Cell Biol 39:340–348

    PubMed  CAS  Google Scholar 

  • Zheng R, Yano S, Zhang H, Nakataki E, Tachibana I, Kawase I, Hayashi S, Sone S (2005) CD9 overexpression suppressed the liver metastasis and malignant ascites via inhibition of proliferation and motility of small-cell lung cancer cells in NK cell-depleted SCID mice. Oncol Res 15:365–372

    PubMed  Google Scholar 

  • Zhijun X, Shulan Z, Zhuo Z (2007) Expression and significance of the protein and mRNA of metastasis suppressor gene ME491/CD63 and integrin alpha5 in ovarian cancer tissues. Eur J Gynaecol Oncol 28:179–183

    PubMed  CAS  Google Scholar 

  • Zhong S, Fields CR, Su N, Pan YX, Robertson KD (2007) Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene 26:2621–2634

    PubMed  CAS  Google Scholar 

  • Zhou B, Liu L, Reddivari M, Zhang XA (2004) The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity. Cancer Res 64:7455–7463

    PubMed  CAS  Google Scholar 

  • Zhou Z, Ran YL, Hu H, Pan J, Li ZF, Chen LZ, Sun LC, Peng L, Zhao XL, Yu L, Sun LX, Yang ZH (2008) TM4SF3 promotes esophageal carcinoma metastasis via upregulating ADAM12m expression. Clin Exp Metastasis 25:537–548

    PubMed  CAS  Google Scholar 

  • Zhu GZ, Miller BJ, Boucheix C, Rubinstein E, Liu CC, Hynes RO, Myles DG, Primakoff P (2002) Residues SFQ (173–175) in the large extracellular loop of CD9 are required for gamete fusion. Development 129:1995–2002

    PubMed  CAS  Google Scholar 

  • Zhu GH, Huang C, Qiu ZJ, Liu J, Zhang ZH, Zhao N, Feng ZZ, Lv XH (2010) Expression and prognostic significance of CD151, c-Met, and integrin alpha3/alpha6 in pancreatic ductal adenocarcinoma. Dig Dis Sci 56(4):1090–1098, Oct 7—Epub ahead of print

    PubMed  Google Scholar 

  • Zijlstra A, Lewis J, Degryse B, Stuhlmann H, Quigley JP (2008) The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell 13:221–234

    PubMed  CAS  Google Scholar 

  • Zöller M (2006) Gastrointestinal tumors: metastasis and tetraspanins. Z Gastroenterol 44:573–586

    PubMed  Google Scholar 

  • Zöller M (2009) Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer 9:40–55

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leonie K. Ashman or Margot Zöller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ashman, L.K., Zöller, M. (2013). Tetraspanins in Cancer. In: Berditchevski, F., Rubinstein, E. (eds) Tetraspanins. Proteins and Cell Regulation, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6070-7_11

Download citation

Publish with us

Policies and ethics