Skip to main content

Principles of Solid-State Fermentation Engineering and Its Scale-Up

  • Chapter
  • First Online:

Abstract

Industrial solid-state fermentation (SSF) is not widely used because of engineering difficulties and the lack of guided principles on the fermentation process and scale-up from the physics aspect and porous medium. From the nature of the biological processes, SSF can be featured as the continuous phase of the gas phase compared with the continuous phase of the liquid phase in submerged fermentation. It is important to recognize traditional SSF from the aspect of the gas-liquid-solid phase. In SSF, mass and heat transfer are crucial for understanding and applying this old technology. This chapter introduces the essence of SSF and its related influencing factors from the engineering aspect. It includes the essence of SSF, transfer principles, thermal physics phenomenon, and design and scale-up of bioreactors. The hope is to find novel means to solve the problems of mass and heat transfer in SSF and eventually achieve its industrialization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ashley VM, Mitchell DA, Howes T. Evaluating strategies for overcoming overheating problems during solid-state fermentation in packed bed bioreactors. Biochem Eng J. 1999;3:141–50.

    Article  CAS  Google Scholar 

  • Barstow LM, Dale BE, Tengerdy RP. Evaporative temperature and moisture control in solid substrate fermentation. Biotechnol Technol. 1988;2:237–42.

    Article  Google Scholar 

  • Cassel D, Biggar J, Nielsen D. Soil-water movement in response to imposed temperature gradients. Soil Sci Soc Am J. 1969;33:493–500.

    Article  Google Scholar 

  • Chen HZ, Li ZH. Gas dual-dynamic solid state fermentation technique and apparatus. US Patent 20,030/138,943; 2003.

    Google Scholar 

  • Chen HZ, Xu J. Principle and application of modern solid-state fermentation. Beijing: Chemical Industry Press; 2004.

    Google Scholar 

  • Chen HZ, Han YJ, Xu J. Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochem. 2008;43:1462–6.

    Article  CAS  Google Scholar 

  • Chinn MS, Nokes SE. Temperature control of a solid substrate cultivation deep-bed reactor using an internal heat exchanger. Trans Am Soc Agric Eng. 2003;46:1741–9.

    Google Scholar 

  • Constantz J, Murphy F. The temperature dependence of ponded infiltration under isothermal conditions. J Hydrol. 1991;122:119–28.

    Article  Google Scholar 

  • Corona A, Sáez D, Agosin E. Effect of water activity on gibberellic acid production by Gibberella fujikuroi under solid-state fermentation conditions. Process Biochem. 2005;40:2655–8.

    Article  CAS  Google Scholar 

  • Costa JAV, Alegre RM, Hasan SDM. Packing density and thermal conductivity determination for rice bran solid-state fermentation. Biotechnol Technol. 1998;12:747–50.

    Article  CAS  Google Scholar 

  • De Vries D. Simultaneous transfer of heat and moisture in porous media. Trans Am Geophys Union. 1958;39:909–16.

    Article  Google Scholar 

  • Duan YY, Chen HZ. Effect of three-phase structure of solid-state fermentation substrates on its transfer properties. CIESC J. 2012;63:1204–10.

    CAS  Google Scholar 

  • Favela-Torres E, Córdova-López J, García-Rivero M, et al. Kinetics of growth of Aspergillus niger during submerged, agar surface and solid state fermentations. Process Biochem. 1998;33:103–7.

    Article  CAS  Google Scholar 

  • Gardner W. Solutions of the flow equation for the drying of soils and other porous media. Soil Sci Soc Am J. 1959;23:183–7.

    Article  Google Scholar 

  • Gervais P, Molin P. The role of water in solid-state fermentation. Biochem Eng J. 2003;13:85–101.

    Article  CAS  Google Scholar 

  • GutierrezRojas M, Hosn SAA, Auria R, et al. Heat transfer in citric acid production by solid state fermentation. Process Biochem. 1996;31:363–9.

    Article  CAS  Google Scholar 

  • Hölker U, Höfer M, Lenz J. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol. 2004;64:175–86.

    Article  PubMed  Google Scholar 

  • Ikasari L, Mitchell DA. Oxygen uptake kinetics during solid state fermentation with Rhizopus oligosporus. Biotechnol Technol. 1998;12:171–5.

    Article  CAS  Google Scholar 

  • Jensen R, Haridasan M. Effect of temperature on pressure head-water content relationship and conductivity of two soils. Soil Sci Soc Am J. 1972;36:703–8.

    Article  Google Scholar 

  • Jia SR. Bioreaction engineering principles. Beijing: Science Press; 2003.

    Google Scholar 

  • Jou RY, Lo CT. Heat and mass transfer measurements for tray-fermented fungal products. Int J Thermophys. 2011;32:523–36.

    Article  CAS  Google Scholar 

  • Liu BC. Study on the heat and mass transfer in soil with phase change and simulation of the growing of plant roots system. Dissertation, Huazhong University of Science and Technology; 2004.

    Google Scholar 

  • Liu J, Yang J. Process calorimetry on solid-state fermentation of vinegar wastes in bioreactor with air pressure pulsation. Chem Biochem Eng Q. 2006;20:449–55.

    Google Scholar 

  • Liu W, Fan AW, Huang XM. Theory and application of heat and mass transfer in porous media. Beijing: Science Press; 2006.

    Google Scholar 

  • Lonsane B, Saucedo-Castaneda G, Raimbault M, et al. Scale-up strategies for solid state fermentation systems. Process Biochem. 1992;27:259–73.

    Article  CAS  Google Scholar 

  • Martynenko OG, Pavlyukevich NV. Heat and mass transfer in porous media. 1998;71:1–13.

    Google Scholar 

  • Membrillo I, Sánchez C, Meneses M, et al. Particle geometry affects differentially substrate composition and enzyme profiles by Pleurotus ostreatus growing on sugar cane bagasse. Bioresour Technol. 2011;102:1581–6.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DA, von Meien OF. Mathematical modeling as a tool to investigate the design and operation of the Zymotis packed-bed bioreactor for solid-state fermentation. Biotechnol Bioeng. 2000;68:127–35.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DA, Do DD, Greenfield PF, et al. A semimechanistic mathematical model for growth of Rhizopus oligosporus in a model solid-state fermentation system. Biotechnol Bioeng. 1991;38:353–62.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DA, Pandey A, Sangsurasak P, et al. Scale-up strategies for packed-bed bioreactors for solid-state fermentation. Process Biochem. 1999;35:167–78.

    Article  CAS  Google Scholar 

  • Mitchell DA, Krieger N, Stuart DM, et al. New developments in solid-state fermentation II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochem. 2000;35:1211–25.

    Article  CAS  Google Scholar 

  • Mitchell DA, von Meien OF, Krieger N. Recent developments in modeling of solid-state fermentation: heat and mass transfer in bioreactors. Biochem Eng J. 2003;13:137–47.

    Article  CAS  Google Scholar 

  • Mitchell DA, Krieger N, Berovic M. Solid-state fermentation bioreactors: fundamentals of design and operation. New York: Springer; 2006.

    Book  Google Scholar 

  • Nagel FJJI, Tramper J, Bakker MSN, et al. Model for on-line moisture-content control during solid-state fermentation. Biotechnol Bioeng. 2001;72:231–43.

    Article  PubMed  CAS  Google Scholar 

  • Nagel FJ, Van As H, Tramper J, et al. Water and glucose gradients in the substrate measured with NMR imaging during solid-state fermentation with Aspergillus oryzae. Biotechnol Bioeng. 2002;79:653–63.

    Article  PubMed  CAS  Google Scholar 

  • Oostra J, Le Comte E, Van den Heuvel J, et al. Intra-particle oxygen diffusion limitation in solid-state fermentation. Biotechnol Bioeng. 2001;75:13–24.

    Article  PubMed  CAS  Google Scholar 

  • Pandey A. Effect of particle size of substrate of enzyme production in solid-state fermentation. Bioresour Technol. 1991;37:169–72.

    Article  CAS  Google Scholar 

  • Philip J, De Vries D. Moisture movement in porous materials under temperature gradients. Trans Am Geophys Union. 1957;38:222–32.

    Article  Google Scholar 

  • Raghavarao K, Ranganathan T, Karanth N. Some engineering aspects of solid-state fermentation. Biochem Eng J. 2003;13:127–35.

    Article  CAS  Google Scholar 

  • Roukas T. Solid-state fermentation of carob pods for ethanol-production. Appl Microbiol Biotechnol. 1994;41:296–301.

    Article  CAS  Google Scholar 

  • Sabu A, Sarita S, Pandey A, et al. Solid-state fermentation for production of phytase by Rhizopus oligosporus. Appl Biochem Biotechnol. 2002;102:251–60.

    Article  PubMed  Google Scholar 

  • Sangsurasak P, Nopharatana M, Mitchell DA. Mathematical modeling of the growth of filamentous fungi in solid state fermentation. J Sci Res Ind Res. 1996;55:333–42.

    CAS  Google Scholar 

  • Saucedo-Castaneda G, Lonsane BK, Krishnaiah MM, et al. Maintenance of heat and water balances as a scale-up criterion for the production of ethanol by Schwanniomyces castellii in a solid state fermentation system. Process Biochem. 1992;27:97–107.

    Article  CAS  Google Scholar 

  • Schutyser M, Padding J, Weber F, et al. Discrete particle simulations predicting mixing behavior of solid substrate particles in a rotating drum fermenter. Biotechnol Bioeng. 2001;75:666–75.

    Article  PubMed  CAS  Google Scholar 

  • Schutyser MAI, Weber FJ, Briels WJ, et al. Heat and water transfer in a rotating drum containing solid substrate particles. Biotechnol Bioeng. 2003;82:552–63.

    Article  PubMed  CAS  Google Scholar 

  • Shao MA, Wang XJ, Huang MB. Soil physics. Beijing: Higher Education Press; 2006.

    Google Scholar 

  • Stuart D, Mitchell DA, Johns M, et al. Solid-state fermentation in rotating drum bioreactors: operating variables affect performance through their effects on transport phenomena. Biotechnol Bioeng. 1999;63:383–91.

    Article  PubMed  CAS  Google Scholar 

  • Thibault J, Pouliot K, Agosin E, et al. Reassessment of the estimation of dissolved oxygen concentration profile and KLa in solid-state fermentation. Process Biochem. 2000;36:9–18.

    Article  CAS  Google Scholar 

  • Weber FJ, Oostra J, Tramper J, et al. Validation of a model for process development and scale-up of packed-bed solid-state bioreactors. Biotechnol Bioeng. 2002;77:381–93.

    Article  PubMed  CAS  Google Scholar 

  • Zambra C, Moraga N, Escudey M. Heat and mass transfer in unsaturated porous media: moisture effects in compost piles self-heating. Int J Heat Mass Trans. 2011;54:2801–10.

    Article  CAS  Google Scholar 

  • Zhang YP, Bai JL. Effect of temperature on soil water potential. Acta Pedol Sin. 1990;27:454–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, H. (2013). Principles of Solid-State Fermentation Engineering and Its Scale-Up. In: Modern Solid State Fermentation. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6043-1_3

Download citation

Publish with us

Policies and ethics