Skip to main content

Tight Junctions in Colorectal Cancer

  • Chapter
  • First Online:

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 19))

Abstract

The intestine plays a major role in the absorption of nutrients, water, and electrolytes during digestion and protects the inner organs from the external environment. One of the major characteristics of this organ is that, while maintaining its function, it undergoes constant renewal at a very high rate, with the entire intestine renewed every 5–7 days in humans. This process occurs without disrupting the epithelial barrier, thus guaranteeing that the separation between external (lumen) and internal compartments is maintained, and that cell polarity is preserved. Tight junctions (TJ) are among the multi-protein complexes that play an essential role in the maintenance of this epithelial barrier. A number of observations have been made that the structure of tight junctions can be disrupted from early stages of neoplastic development in the intestine, and alterations of tight junction protein expression and/or localization have been reported in epithelial cancers, which significantly impacts on early tumorigenesis as well as tumor progression. In the present review, we summarize the current knowledge concerning alterations of tight junction protein expression in colorectal tumors, before discussing some of the likely consequences of these disruptions for tumorigenesis and the potential clinical use of tight junction proteins as prognostic markers or as targets for therapy in this type of tumors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1:a002584

    Article  PubMed  Google Scholar 

  • Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR (2009) VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci USA 106:1977–1982

    Article  PubMed  CAS  Google Scholar 

  • Aung PP, Mitani Y, Sanada Y, Nakayama H, Matsusaki K, Yasui W (2006) Differential expression of claudin-2 in normal human tissues and gastrointestinal carcinomas. Virchows Arch 448:428–434

    Article  PubMed  CAS  Google Scholar 

  • Balda MS, Matter K (2000) The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. EMBO J 19:2024–2033

    Article  PubMed  CAS  Google Scholar 

  • Balda MS, Garrett MD, Matter K (2003) The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J Cell Biol 160:423–432

    Article  PubMed  CAS  Google Scholar 

  • Beyer I, van Rensburg R, Strauss R, Li Z, Wang H, Persson J, Yumul R, Feng Q, Song H, Bartek J, Fender P, Lieber A (2011) Epithelial junction opener JO-1 improves monoclonal antibody therapy of cancer. Cancer Res 71(22):7080–7090

    Article  PubMed  CAS  Google Scholar 

  • Bishop WP, Wen JT (1994) Regulation of Caco-2 cell proliferation by basolateral membrane epidermal growth factor receptors. Am J Physiol 267:G892–G900

    PubMed  CAS  Google Scholar 

  • Brabletz T, Jung A, Hermann K, Gunther K, Hohenberger W, Kirchner T (1998) Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol Res Pract 194:701–704

    Article  PubMed  CAS  Google Scholar 

  • Buchert M, Papin M, Bonnans C, Darido C, Raye WS, Garambois V, Pelegrin A, Bourgaux JF, Pannequin J, Joubert D, Hollande F (2010) Symplekin promotes tumorigenicity by up-regulating claudin-2 expression. Proc Natl Acad Sci U S A 107:2628–2633

    Article  PubMed  CAS  Google Scholar 

  • Capaldo CT, Koch S, Kwon M, Laur O, Parkos CA, Nusrat A (2011) Tight function zonula occludens-3 regulates cyclin D1-dependent cell proliferation. Mol Biol Cell 22:1677–1685

    Article  PubMed  CAS  Google Scholar 

  • Citi S, Amorosi A, Franconi F, Giotti A, Zampi G (1991) Cingulin, a specific protein component of tight junctions, is expressed in normal and neoplastic human epithelial tissues. Am J Pathol 138:781–789

    PubMed  CAS  Google Scholar 

  • Crosnier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7:349–359

    Article  PubMed  CAS  Google Scholar 

  • Darido C, Buchert M, Pannequin J, Bastide P, Zalzali H, Mantamadiotis T, Bourgaux JF, Garambois V, Jay P, Blache P, Joubert D, Hollande F (2008) Defective claudin-7 regulation by Tcf-4 and Sox-9 disrupts the polarity and increases the tumorigenicity of colorectal cancer cells. Cancer Res 68:4258–4268

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira SS, de Oliveira IM, De Souza W, Morgado-Diaz JA (2005) Claudins upregulation in human colorectal cancer. FEBS Lett 579:6179–6185

    Article  PubMed  Google Scholar 

  • Dhawan P, Singh AB, Deane NG, No Y, Shiou SR, Schmidt C, Neff J, Washington MK, Beauchamp RD (2005) Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest 115:1765–1776

    Article  PubMed  CAS  Google Scholar 

  • Dhawan P, Ahmad R, Chaturvedi R, Smith JJ, Midha R, Mittal MK, Krishnan M, Chen X, Eschrich S, Yeatman TJ, Harris RC, Washington MK, Wilson KT, Beauchamp RD, Singh AB (2011) Claudin-2 expression increases tumorigenicity of colon cancer cells: role of epidermal growth factor receptor activation. Oncogene 30:3234–3247

    Article  PubMed  CAS  Google Scholar 

  • Ersoz S, Mungan S, Cobanoglu U, Turgutalp H, Ozoran Y (2011) Prognostic importance of claudin-1 and claudin-4 expression in colon carcinomas. Pathol Res Pract 207:285–289

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Cen J, Huang Y, Shen H, Yao L, Wang Y, Chen Z (2011a) Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS One 6:e20599

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Huang Y, Chen Z (2011b) Does VEGF secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight-junction proteins in central nervous system leukemia? Med Hypotheses 76:618–621

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  PubMed  CAS  Google Scholar 

  • Georges R, Bergmann F, Hamdi H, Zepp M, Eyol E, Hielscher T, Berger MR, Adwan H (2011) Sequential biphasic changes in claudin1 and claudin4 expression are correlated to colorectal cancer progression and liver metastasis. J Cell Mol Med 16(2):260–272

    Article  Google Scholar 

  • Gonzalez-Mariscal L, Tapia R, Huerta M, Lopez-Bayghen E (2009) The tight junction protein ZO-2 blocks cell cycle progression and inhibits cyclin D1 expression. Ann N Y Acad Sci 1165:121–125

    Article  PubMed  CAS  Google Scholar 

  • Gottardi CJ, Arpin M, Fanning AS, Louvard D (1996) The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts. Proc Natl Acad Sci 93:10779–10784

    Article  PubMed  CAS  Google Scholar 

  • Grone J, Weber B, Staub E, Heinze M, Klaman I, Pilarsky C, Hermann K, Castanos-Velez E, Ropcke S, Mann B, Rosenthal A, Buhr HJ (2007) Differential expression of genes encoding tight junction proteins in colorectal cancer: frequent dysregulation of claudin-1, -8 and -12. Int J Colorectal Dis 22:651–659

    Article  PubMed  CAS  Google Scholar 

  • Grotegut S, von Schweinitz D, Christofori G, Lehembre F (2006) Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J 25:3534–3545

    Article  PubMed  CAS  Google Scholar 

  • Hahn-Stromberg V, Edvardsson H, Bodin L, Franzen L (2009) Tumor volume of colon carcinoma is related to the invasive pattern but not to the expression of cell adhesion proteins. APMIS 117:205–211

    Article  PubMed  Google Scholar 

  • Halder SK, Rachakonda G, Deane NG, Datta PK (2008) Smad7 induces hepatic metastasis in colorectal cancer. Br J Cancer 99:957–965

    Article  PubMed  CAS  Google Scholar 

  • Harhaj NS, Antonetti DA (2004) Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol 36:1206–1237

    Article  PubMed  CAS  Google Scholar 

  • Hewitt KJ, Agarwal R, Morin PJ (2006) The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer 6:186

    Article  PubMed  Google Scholar 

  • Hirakawa H, Shibata K, Nakayama T (2009) Localization of cortactin is associated with colorectal cancer development. Int J Oncol 35:1271–1276

    Article  PubMed  CAS  Google Scholar 

  • Hlubek F, Spaderna S, Jung A, Kirchner T, Brabletz T (2004) Beta-catenin activates a coordinated expression of the proinvasive factors laminin-5 gamma2 chain and MT1-MMP in colorectal carcinomas. Int J Cancer 108:321–326

    Article  PubMed  CAS  Google Scholar 

  • Holmes JL, Van Itallie CM, Rasmussen JE, Anderson JM (2006) Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns 6:581–588

    Article  PubMed  CAS  Google Scholar 

  • Huerta M, Munoz R, Tapia R, Soto-Reyes E, Ramirez L, Recillas-Targa F, Gonzalez-Mariscal L, Lopez-Bayghen E (2007) Cyclin D1 is transcriptionally down-regulated by ZO-2 via an E box and the transcription factor c-Myc. Mol Biol Cell 18:4826–4836

    Article  PubMed  CAS  Google Scholar 

  • Huo Q, Kinugasa T, Wang L, Huang J, Zhao J, Shibaguchi H, Kuroki M, Tanaka T, Yamashita Y, Nabeshima K, Iwasaki H (2009) Claudin-1 protein is a major factor involved in the tumorigenesis of colorectal cancer. Anticancer Res 29:851–857

    PubMed  CAS  Google Scholar 

  • Ikari A, Sato T, Takiguchi A, Atomi K, Yamazaki Y, Sugatani J (2011) Claudin-2 knockdown decreases matrix metalloproteinase-9 activity and cell migration via suppression of nuclear Sp1 in A549 cells. Life Sci 88:628–633

    Article  PubMed  CAS  Google Scholar 

  • Ikenouchi J, Matsuda M, Furuse M, Tsukita S (2003) Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 116:1959–1967

    Article  PubMed  CAS  Google Scholar 

  • Islas S, Vega J, Ponce L, González-Mariscal L (2002) Nuclear localization of the tight junction protein ZO-2 in epithelial cells. Exp Cell Res 274:138–148

    Article  PubMed  CAS  Google Scholar 

  • Kaihara T, Kawamata H, Imura J, Fujii S, Kitajima K, Omotehara F, Maeda N, Nakamura T, Fujimori T (2003) Redifferentiation and ZO-1 reexpression in liver-metastasized colorectal cancer: possible association with epidermal growth factor receptor-induced tyrosine phosphorylation of ZO-1. Cancer Sci 94:166–172

    Article  PubMed  CAS  Google Scholar 

  • Kato-Nakano M, Suzuki M, Kawamoto S, Furuya A, Ohta S, Nakamura K, Ando H (2010) Characterization and evaluation of the antitumour activity of a dual-targeting monoclonal antibody against claudin-3 and claudin-4. Anticancer Res 30:4555–4562

    PubMed  CAS  Google Scholar 

  • Kimura Y, Shiozaki H, Hirao M, Maeno Y, Doki Y, Inoue M, Monden T, Ando-Akatsuka Y, Furuse M, Tsukita S, Monden M (1997) Expression of occludin, tight-junction-associated protein, in human digestive tract. Am J Pathol 151:45–54

    PubMed  CAS  Google Scholar 

  • Kinugasa T, Huo Q, Higashi D, Shibaguchi H, Kuroki M, Tanaka T, Futami K, Yamashita Y, Hachimine K, Maekawa S, Nabeshima K, Iwasaki H (2007) Selective up-regulation of claudin-1 and claudin-2 in colorectal cancer. Anticancer Res 27:3729–3734

    PubMed  CAS  Google Scholar 

  • Kondoh M, Takahashi A, Fujii M, Yagi K, Watanabe Y (2006) A novel strategy for a drug delivery system using a claudin modulator. Biol Pharm Bull 29:1783–1789

    Article  PubMed  CAS  Google Scholar 

  • Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B, Clevers H (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275:1784–1787

    Article  PubMed  CAS  Google Scholar 

  • Kuhn S, Koch M, Nubel T, Ladwein M, Antolovic D, Klingbeil P, Hildebrand D, Moldenhauer G, Langbein L, Franke WW, Weitz J, Zoller M (2007) A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Mol Cancer Res 5:553–567

    Article  PubMed  CAS  Google Scholar 

  • Lee HS, Nishanian TG, Mood K, Bong YS, Daar IO (2008) EphrinB1 controls cell-cell junctions through the Par polarity complex. Nat Cell Biol 10:979–986

    Article  PubMed  CAS  Google Scholar 

  • Li J, Sherman-Baust CA, Tsai-Turton M, Bristow RE, Roden RB, Morin PJ (2009) Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer. BMC Cancer 9:244

    Article  PubMed  Google Scholar 

  • Maloy KJ, Powrie F (2011) Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474:298–306

    Article  PubMed  CAS  Google Scholar 

  • Martin TA, Mason MD, Jiang WG (2011) Tight junctions in cancer metastasis. Front Biosci 16:898–936

    Article  PubMed  CAS  Google Scholar 

  • Masuda R, Semba S, Mizuuchi E, Yanagihara K, Yokozaki H (2010) Negative regulation of the tight junction protein tricellulin by snail-induced epithelial-mesenchymal transition in gastric carcinoma cells. Pathobiology 77:106–113

    Article  PubMed  CAS  Google Scholar 

  • Mees ST, Mennigen R, Spieker T, Rijcken E, Senninger N, Haier J, Bruewer M (2009) Expression of tight and adherens junction proteins in ulcerative colitis associated colorectal carcinoma: upregulation of claudin-1, claudin-3, claudin-4, and beta-catenin. Int J Colorectal Dis 24:361–368

    Article  PubMed  CAS  Google Scholar 

  • Mima S, Takehara M, Takada H, Nishimura T, Hoshino T, Mizushima T (2008) NSAIDs suppress the expression of claudin-2 to promote invasion activity of cancer cells. Carcinogenesis 29:1994–2000

    Article  PubMed  CAS  Google Scholar 

  • Miwa N, Furuse M, Tsukita S, Niikawa N, Nakamura Y, Furukawa Y (2001) Involvement of claudin-1 in the beta-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol Res 12:469–476

    PubMed  CAS  Google Scholar 

  • Morin PJ (2005) Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res 65:9603–9606

    Article  PubMed  CAS  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790

    Article  PubMed  CAS  Google Scholar 

  • Mullin JM (1997) Potential interplay between luminal growth factors and increased tight junction permeability in epithelial carcinogenesis. J Exp Zool 279:484–489

    Article  PubMed  CAS  Google Scholar 

  • Mullin JM (2004) Epithelial barriers, compartmentation, and cancer. Sci STKE 2004:pe2

    Article  PubMed  CAS  Google Scholar 

  • Mullin JM, Laughlin KV, Ginanni N, Marano CW, Clarke HM, Peralta Soler A (2000) Increased tight junction permeability can result from protein kinase C activation/translocation and act as a tumor promotional event in epithelial cancers. Ann N Y Acad Sci 915:231–236

    Article  PubMed  CAS  Google Scholar 

  • Murphy MS (1998) Growth factors and the gastrointestinal tract. Nutrition 14:771–774

    Article  PubMed  CAS  Google Scholar 

  • Nakayama F, Semba S, Usami Y, Chiba H, Sawada N, Yokozaki H (2008) Hypermethylation-modulated downregulation of claudin-7 expression promotes the progression of colorectal carcinoma. Pathobiology 75:177–185

    Article  PubMed  CAS  Google Scholar 

  • Nubel T, Preobraschenski J, Tuncay H, Weiss T, Kuhn S, Ladwein M, Langbein L, Zoller M (2009) Claudin-7 regulates EpCAM-mediated functions in tumor progression. Mol Cancer Res 7:285–299

    Article  PubMed  Google Scholar 

  • Orban E, Szabo E, Lotz G, Kupcsulik P, Paska C, Schaff Z, Kiss A (2008) Different expression of occludin and ZO-1 in primary and metastatic liver tumors. Pathol Oncol Res 14:299–306

    Article  PubMed  CAS  Google Scholar 

  • Oshima T, Kunisaki C, Yoshihara K, Yamada R, Yamamoto N, Sato T, Makino H, Yamagishi S, Nagano Y, Fujii S, Shiozawa M, Akaike M, Wada N, Rino Y, Masuda M, Tanaka K, Imada T (2008) Reduced expression of the claudin-7 gene correlates with venous invasion and liver metastasis in colorectal cancer. Oncol Rep 19:953–959

    PubMed  CAS  Google Scholar 

  • Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL (2005) Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307:1603–1609

    Article  PubMed  CAS  Google Scholar 

  • Pannequin J, Delaunay N, Darido C, Maurice T, Crespy P, Frohman MA, Balda MS, Matter K, Joubert D, Bourgaux JF, Bali JP, Hollande F (2007) Phosphatidylethanol accumulation promotes intestinal hyperplasia by inducing ZONAB-mediated cell density increase in response to chronic ethanol exposure. Mol Cancer Res 5:1147–1157

    Article  PubMed  CAS  Google Scholar 

  • Playford RJ, Wright NA (1996) Why is epidermal growth factor present in the gut lumen? Gut 38:303–305

    Article  PubMed  CAS  Google Scholar 

  • Playford RJ, Hanby AM, Gschmeissner S, Peiffer LP, Wright NA, McGarrity T (1996) The epidermal growth factor receptor (EGF-R) is present on the basolateral, but not the apical, surface of enterocytes in the human gastrointestinal tract. Gut 39:262–266

    Article  PubMed  CAS  Google Scholar 

  • Polette M, Mestdagt M, Bindels S, Nawrocki-Raby B, Hunziker W, Foidart JM, Birembaut P, Gilles C (2007) Beta-catenin and ZO-1: shuttle molecules involved in tumor invasion-associated epithelial-mesenchymal transition processes. Cells Tissues Organs 185:61–65

    Article  PubMed  CAS  Google Scholar 

  • Radtke F, Clevers H, Riccio O (2006) From gut homeostasis to cancer. Curr Mol Med 6:275–289

    Article  PubMed  CAS  Google Scholar 

  • Rahner C, Mitic LL, Anderson JM (2001) Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology 120:411–422

    Article  PubMed  CAS  Google Scholar 

  • Reichert M, Muller T, Hunziker W (2000) The PDZ domains of zonula occludens-1 induce an epithelial to mesenchymal transition of Madin-Darby canine kidney I cells. Evidence for a role of beta-catenin/Tcf/Lef signaling. J Biol Chem 275:9492–9500

    Article  PubMed  CAS  Google Scholar 

  • Resnick MB, Konkin T, Routhier J, Sabo E, Pricolo VE (2005) Claudin-1 is a strong prognostic indicator in stage II colonic cancer: a tissue microarray study. Mod Pathol 18:511–518

    Article  PubMed  CAS  Google Scholar 

  • Sahin U, Koslowski M, Dhaene K, Usener D, Brandenburg G, Seitz G, Huber C, Tureci O (2008) Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clin Cancer Res 14:7624–7634

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Masuda N, Miyazaki T, Kanoh K, Suzuki H, Shimura T, Asao T, Kuwano H (2004) Expression of EphA2 and E-cadherin in colorectal cancer: correlation with cancer metastasis. Oncol Rep 11:605–611

    PubMed  CAS  Google Scholar 

  • Sakaguchi T, Suzuki S, Higashi H, Inaba K, Nakamura S, Baba S, Kato T, Konno H (2008) Expression of tight junction protein claudin-5 in tumor vessels and sinusoidal endothelium in patients with hepatocellular carcinoma. J Surg Res 147:123–131

    Article  PubMed  CAS  Google Scholar 

  • Scholer-Dahirel A, Schlabach MR, Loo A, Bagdasarian L, Meyer R, Guo R, Woolfenden S, Yu KK, Markovits J, Killary K, Sonkin D, Yao YM, Warmuth M, Sellers WR, Schlegel R, Stegmeier F, Mosher RE, McLaughlin ME (2011) Maintenance of adenomatous polyposis coli (APC)-mutant colorectal cancer is dependent on Wnt/β-catenin signaling. Proc Natl Acad Sci U S A 108(41):17135–17140

    Article  PubMed  CAS  Google Scholar 

  • Segditsas S, Tomlinson I (2006) Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25:7531–7537

    Article  PubMed  CAS  Google Scholar 

  • Shin DY, Kim GY, Kim JI, Yoon MK, Kwon TK, Lee SJ, Choi YW, Kang HS, Yoo YH, Choi YH (2010) Anti-invasive activity of diallyl disulfide through tightening of tight junctions and inhibition of matrix metalloproteinase activities in LNCaP prostate cancer cells. Toxicol In Vitro 24:1569–1576

    Article  PubMed  CAS  Google Scholar 

  • Shiou SR, Singh AB, Moorthy K, Datta PK, Washington MK, Beauchamp RD, Dhawan P (2007) Smad4 regulates claudin-1 expression in a transforming growth factor-beta-independent manner in colon cancer cells. Cancer Res 67:1571–1579

    Article  PubMed  CAS  Google Scholar 

  • Singh AB, Sharma A, Smith JJ, Krishnan M, Chen X, Eschrich S, Washington MK, Yeatman TJ, Beauchamp RD, Dhawan P (2011) Claudin-1 Upregulates the Repressor ZEB-1 to Inhibit E-Cadherin Expression in Colon Cancer Cells. Gastroenterology 141(6):2140–2153

    Article  PubMed  CAS  Google Scholar 

  • Singh AB, Sharma A, Dhawan P (2012) Carcinogenesis 33(12):2538–2547

    Article  PubMed  CAS  Google Scholar 

  • Soler AP, Miller RD, Laughlin KV, Carp NZ, Klurfeld DM, Mullin JM (1999) Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis 20:1425–1431

    Article  PubMed  CAS  Google Scholar 

  • Steed E, Balda MS, Matter K (2010) Dynamics and functions of tight junctions. Trends Cell Biol 20:142–149

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Kato-Nakano M, Kawamoto S, Furuya A, Abe Y, Misaka H, Kimoto N, Nakamura K, Ohta S, Ando H (2009) Therapeutic antitumor efficacy of monoclonal antibody against Claudin-4 for pancreatic and ovarian cancers. Cancer Sci 100:1623–1630

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Kondoh M, Kodaka M, Yagi K (2011) Peptides as tight junction modulators. Curr Pharm Des 17(25):2699–2703

    Article  PubMed  CAS  Google Scholar 

  • Takehara M, Nishimura T, Mima S, Hoshino T, Mizushima T (2009) Effect of claudin expression on paracellular permeability, migration and invasion of colonic cancer cells. Biol Pharm Bull 32:825–831

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Kamata R, Sakai R (2005) EphA2 phosphorylates the cytoplasmic tail of claudin-4 and mediates paracellular permeability. J Biol Chem 280:42375–42382

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Dou T, Zhong M, Wu Z (2011) Dysregulation of claudin family genes in colorectal cancer in a Chinese population. Biofactors 37:65–73

    Article  PubMed  CAS  Google Scholar 

  • Tapia R, Huerta M, Islas S, Avila-Flores A, Lopez-Bayghen E, Weiske J, Huber O, Gonzalez-Mariscal L (2009) Zona occludens-2 inhibits cyclin D1 expression and cell proliferation and exhibits changes in localization along the cell cycle. Mol Biol Cell 20:1102–1117

    Article  PubMed  CAS  Google Scholar 

  • Tobioka H, Isomura H, Kokai Y, Sawada N (2002) Polarized distribution of carcinoembryonic antigen is associated with a tight junction molecule in human colorectal adenocarcinoma. J Pathol 198:207–212

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Yamazaki Y, Katsuno T, Tamura A (2008) Tight junction-based epithelial microenvironment and cell proliferation. Oncogene 27:6930–6938

    Article  PubMed  CAS  Google Scholar 

  • Tuomi S, Mai A, Nevo J, Laine JO, Vilkki V, Ohman TJ, Gahmberg CG, Parker PJ, Ivaska J (2009) PKCepsilon regulation of an alpha5 integrin-ZO-1 complex controls lamellae formation in migrating cancer cells. Sci Signal 2:ra32

    Article  PubMed  Google Scholar 

  • Ueda J, Semba S, Chiba H, Sawada N, Seo Y, Kasuga M, Yokozaki H (2007) Heterogeneous expression of claudin-4 in human colorectal cancer: decreased claudin-4 expression at the invasive front correlates cancer invasion and metastasis. Pathobiology 74:32–41

    Article  PubMed  CAS  Google Scholar 

  • Utoguchi N, Mizuguchi H, Saeki K, Ikeda K, Tsutsumi Y, Nakagawa S, Mayumi T (1995) Tumor-conditioned medium increases macromolecular permeability of endothelial cell monolayer. Cancer Lett 89:7–14

    PubMed  CAS  Google Scholar 

  • Vietor I, Bader T, Paiha K, Huber LA (2001) Perturbation of the tight junction permeability barrier by occludin loop peptides activates beta-catenin/TCF/LEF-mediated transcription. EMBO Rep 2:306–312

    Article  PubMed  CAS  Google Scholar 

  • Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J, Pietras K, Virtanen I, Philipson L, Leopold PL, Crystal RG, de Herreros AG, Moustakas A, Pettersson RF, Fuxe J (2009) A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol 11:943–950

    Article  PubMed  CAS  Google Scholar 

  • Walther W, Petkov S, Kuvardina ON, Aumann J, Kobelt D, Fichtner I, Lemm M, Piontek J, Blasig IE, Stein U, Schlag PM (2012) Novel Clostridium perfringens enterotoxin suicide gene therapy for selective treatment of claudin-3- and -4-overexpressing tumors. Gene Ther 19(5):494–503

    Article  PubMed  Google Scholar 

  • Wang Z, Wade P, Mandell KJ, Akyildiz A, Parkos CA, Mrsny RJ, Nusrat A (2007) Raf 1 represses expression of the tight junction protein occludin via activation of the zinc-finger transcription factor slug. Oncogene 26:1222–1230

    Article  PubMed  CAS  Google Scholar 

  • Weber CR, Nalle SC, Tretiakova M, Rubin DT, Turner JR (2008) Claudin-1 and claudin-2 expression is elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab Invest 88:1110–1120

    Article  PubMed  CAS  Google Scholar 

  • Yu QH, Yang Q (2009) Diversity of tight junctions (TJs) between gastrointestinal epithelial cells and their function in maintaining the mucosal barrier. Cell Biol Int 33:78–82

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Hollande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hollande, F., Papin, M. (2013). Tight Junctions in Colorectal Cancer. In: Martin, T., Jiang, W. (eds) Tight Junctions in Cancer Metastasis. Cancer Metastasis - Biology and Treatment, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6028-8_7

Download citation

Publish with us

Policies and ethics