Skip to main content

VEGF-Mediated Effects on Brain Microvascular Endothelial Tight Junctions and Transmigration of Breast Cancer Cells Across the Blood-Brain Barrier

  • Chapter
  • First Online:
Tight Junctions in Cancer Metastasis

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 19))

Abstract

Breast cancer spreads to the bones, lungs, brain and liver. While the mechanisms of breast metastasis to bones and lungs have been studied and characterized, there is little information about the molecular basis for metastasis to the brain. The disruption of the blood brain barrier (BBB) by brain metastases of triple-negative and basal-type breast cancers, but not of Her2/neu positive breast cancer, was reported recently. To metastasize to the brain, breast cancer cells must attach to brain microvascular endothelial cells (BMECs) and invade the BBB. Structurally, the BBB is a barrier comprised mainly of BMECs. BBB function is maintained by the tight junctions protein complexes (TJs) between adjacent BMECs which is comprised mainly of zonula occudens-1 and -2 (ZO-1 and -2), occludin, claudins, junctional adhesion molecules, actin and cingulin. Very little is known about extravasation of breast cancer cells across the BBB and their effects on TJs expression and function as well as their interactions with BMECs.

Here, we focused on VEGF as a mediator for breast cancer cell extravasation across the BBB and the function of VEGF on TJs expression and activation of BMECs. Our results showed that breast cells with high homing capacity to the brain secrete high levels of VEGF but no Angiopoietin-2. VEGF induced significant changes in the localization and distribution of ZO-1 and claudin-5 in BMECs as well as alterations in BMEC permeability and integrity, resulting in transmigration of tumor cells across the BBB. Further, VEGF acts as an important biological determinant in remodeling and cytoskeletal reorganization in BMECs, leading to formation of brain microvasculature niche for colonization of breast cancer in brain. Thus, therapies targeted to TJs in the BBB in conjunction with anti-antiangiogenic therapies may hold significant promise for the treatment and prevention of breast cancer metastasis to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBB:

Blood-brain barrier

BMEC:

Brain microvascular endothelial cells

CNS:

Central nervous system

EC:

Endothelial cells

FAs:

Focal adhesion sites

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HBMECs:

Human brain microvascular endothelial cells

HUVECs:

Human umbilical vein endothelial cells

IHC:

Immunohistochemistry

IF:

Immunostaining

TEER:

Trans-endothelial electrical resistance

TJs:

Tight junctions

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

WB:

Western blotting

References

  • Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53

    Article  PubMed  CAS  Google Scholar 

  • Aragon-Ching JB, Zujewski JA (2007) CNS metastasis: an old problem in a new guise. Clin Cancer Res 13:1644–1647

    Article  PubMed  CAS  Google Scholar 

  • Avraham HK, Lee TH, Koh Y, Kim TA, Jiang S, Sussman M, Samarel AM, Avraham S (2003) Vascular endothelial growth factor regulates focal adhesion assembly in human brain microvascular endothelial cells through activation of the focal adhesion kinase and related adhesion focal tyrosine kinase. J Biol Chem 278(38):36661–36668

    Article  PubMed  CAS  Google Scholar 

  • Avraham HK*, Lu TS*, Seng S, Tachado SD, Koziel H, Makriyannis A, Avraham S (2008) Cannabinoids inhibit HIV-1 Gp120-mediated insults in brain microvascular endothelial cells. J Immunol 181(9):6406–6416 (The first two authors contributed equally to this study)

    Google Scholar 

  • Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA, Massagué J (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459(7249):1005–1009

    Article  PubMed  CAS  Google Scholar 

  • Bradbury MW (1993) The blood-brain barrier. Exp Physiol 78:453–472

    PubMed  CAS  Google Scholar 

  • Bradbury MW, Deane R (1993) Permeability of the blood-brain barrier to lead. Neurotoxicology 14:131–136

    PubMed  CAS  Google Scholar 

  • Carbonell WS, Ansorge O, Sibson N, Muschel R (2009) The vascular basement membrane as “soil” in brain metastasis. PLoS One 4(6):e5857

    Article  PubMed  Google Scholar 

  • Chappa AK, Audus KL, Lunte SM (2006) Characteristics of substance P transport across the blood-brain barrier. Pharm Res 23:1201–1208

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Hung MC (2007) Breast cancer brain metastases. Cancer Metastasis Rev 26:635–643

    Article  PubMed  Google Scholar 

  • Damert A, Machein M, Breier G, Fujita MQ, Hanahan D, Risau W, Plate KH (1997) Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res 57:3860–3864

    PubMed  CAS  Google Scholar 

  • De Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255:989–991

    Article  PubMed  Google Scholar 

  • Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5(4):261–270

    Article  PubMed  CAS  Google Scholar 

  • Eichler AF, Loeffler JS (2007) Multidisciplinary management of brain metastases. Oncologist 12:884–898

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald DP, Palmieri D, Hua E, Hargrave E, Herring JM, Qian Y, Vega-Valle E, Weil RJ, Stark AM, Vortmeyer AO, Steeg PS (2008) Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clin Exp Metastasis 25(7):799–810

    Article  PubMed  Google Scholar 

  • Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor-1. Mol Cell Biol 16:4604–4613

    PubMed  CAS  Google Scholar 

  • Gevertz JL, Torquato S (2006) Modeling the effects of vasculature evolution on early brain tumor growth. J Theor Biol 243(4):517–531

    Article  PubMed  CAS  Google Scholar 

  • Grimmond S, Lagercrantz J, Drinkwater C, Sums G, Townson S, Pollock P, Gotley D, Carson E, Rakar S, Nordenskjold M, Ward I, Hayward N, Weber G (1996) Cloning and characterization of a novel human gene related to vascular endothelial growth factor. Genome Res 6:124–131

    Article  PubMed  CAS  Google Scholar 

  • Harhaj NS, Antonetti DA (2004) Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol 36:1206–1237

    Article  PubMed  CAS  Google Scholar 

  • Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    Article  PubMed  CAS  Google Scholar 

  • Huber JD, Egleton RD, Davis TP (2001) Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci 24(12):719–725

    Article  PubMed  CAS  Google Scholar 

  • Ikeda E, Achen MG, Breier G (1995) RisauW: hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor inC6glioma cells. J Biol Chem 270:19761–19766

    Article  PubMed  CAS  Google Scholar 

  • Jaukov V, Pasujola K, Kaipanen A, Chilvo D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the flt-4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15:290–298

    Google Scholar 

  • Kaal EC, Vecht CJ (2007) CNS complications of breast cancer: current and emerging treatment options. CNS Drugs 21:559–579

    Article  PubMed  CAS  Google Scholar 

  • Lee TH, Avraham H, Lee SH, Avraham S (2002) Vascular endothelial growth factor modulates neutrophil transendothelial migration via up-regulation of interleukin-8 in human brain microvascular endothelial cells. J Biol Chem 277(12):10445–10451

    Article  PubMed  CAS  Google Scholar 

  • Lee TH, Avraham HK, Jiang S, Avraham S (2003) Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 278(7):5277–5284

    Article  PubMed  CAS  Google Scholar 

  • Lee BC, Lee TH, Avraham S, Avraham HK (2004) Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2(6):327–338

    PubMed  CAS  Google Scholar 

  • Lee BC, Lee TH, Zagozdzon R, Avraham S, Usheva A, Avraham HK (2005) Carboxyl-terminal Src kinase homologous kinase negatively regulates the chemokine receptor CXCR4 through YY1 and impairs CXCR4/CXCL12 (SDF-1alpha)-mediated breast cancer cell migration. Cancer Res 65(7):2840–2845

    Article  PubMed  CAS  Google Scholar 

  • Lee TH, Seng S, Li H, Kennel SJ, Avraham HK, Avraham S (2006) Integrin regulation by vascular endothelial growth factor in human brain microvascular endothelial cells: role of alpha6beta1 integrin in angiogenesis. J Biol Chem 281(52):40450–40460

    Article  PubMed  CAS  Google Scholar 

  • Lee TH, Seng S, Sekine M, Hinton C, Fu Y, Avraham HK, Avraham S (2007) Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Med 4(6):e186

    Article  PubMed  Google Scholar 

  • Lohela M, Bry M, Tammela T, Alitalo K (2009) VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 21(2):154–165

    Article  PubMed  CAS  Google Scholar 

  • Lorger M, Felding-Habermann B (2010) Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol 176(6):2958–2971

    Article  PubMed  Google Scholar 

  • Machein MR, Plate KH (2000) VEGF in brain tumors. J Neurooncol 50:109–120

    Article  PubMed  CAS  Google Scholar 

  • Maglione D, Guerriero V, Viglietto G, Delli-Bovi P, Persico MG (1991) Isolation of human placental cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci USA 88:9267–9271

    Article  PubMed  CAS  Google Scholar 

  • Mayhan WG (1999) VEGF increases permeability of the blood-brain barrier via a nitric oxide synthase/cGMP-dependent pathway. Am J Physiol 276(5 Pt 1):C1148–C1153

    PubMed  CAS  Google Scholar 

  • Meyer M, Clauss M, Lepple-Wienhues A, Waltenberger J, Augustin HG, Ziche M, Lanz C, Buttner M, Rziha HJ, Dehio C (1999) A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J 15:363–374

    Article  Google Scholar 

  • Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W, Ullrich A (1993) High affinity VEGF binding and development expression suggest flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846

    Article  PubMed  CAS  Google Scholar 

  • Morita K, Sasaki H, Furuse M, Tsukita S (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194

    Article  PubMed  CAS  Google Scholar 

  • Musch MW, Walsh-Reitz MM, Chang EB (2006) Roles of ZO-1, occludin, and actin in oxidant-induced barrier disruption. Am J Physiol Gastrointest Liver Physiol 290:G222–G231

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DX, Bos PD, Massagué J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284

    Article  PubMed  CAS  Google Scholar 

  • Olofsson B, Pajusola K, Kaipanen A, von Euler G, Joukov V, Saksela O, Orpana A, Pettersson RF, Alitalo K, Eriksson U (1996) Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci U S A 93:2576–2581

    Article  PubMed  CAS  Google Scholar 

  • Palmieri D, Smith QR, Lockman PR, Bronder J, Gril B, Chambers AF, Weil RJ, Steeg PS (2006) Brain metastases of breast cancer. Breast Dis 26:139–147

    PubMed  CAS  Google Scholar 

  • Pardridge WM (1983) Brain metabolism: a perspective from the blood-brain barrier. Physiol Rev 63:1481–1535

    PubMed  CAS  Google Scholar 

  • Price DJ, Miralem T, Jiang S, Steinberg R, Avraham H (2001) Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. Cell Growth Differ 12(3):129–135

    PubMed  CAS  Google Scholar 

  • Price DJ, Avraham S, Jiang S, Fu Y, Avraham HK (2004) Role of the aging vasculature and Erb B-2 signaling in epidermal growth factor-dependent intravasion of breast carcinoma cells. Cancer 101(1):198–205

    Article  PubMed  CAS  Google Scholar 

  • Radisavljevic Z, Avraham H, Avraham S (2000) Vascular endothelial growth factor up-regulates ICAM-1 expression via the phosphatidylinositol 3 OH-kinase/AKT/nitric oxide pathway and modulates migration of brain microvascular endothelial cells. J Biol Chem 275(27):20770–20774

    Article  PubMed  CAS  Google Scholar 

  • Rameshwar P (2007) Implication of possible therapies targeted for the tachykinergic system with the biology of neurokinin receptors and emerging related proteins. Recent Patents CNS Drug Discov 2:79–84

    Article  CAS  Google Scholar 

  • Saharinen P, Tammela T, Karkkainen MJ, Alitalo K (2004) Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol 25(7):387–395

    Article  PubMed  CAS  Google Scholar 

  • Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286:C1213–C1228

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Abraham J (2007) CNS metastasis in primary breast cancer. Expert Rev Anticancer Ther 7:1561–1566

    Article  PubMed  Google Scholar 

  • Shibuya M, Yamaguchi S, Yamane A, Ikeda T, Tojo A, Matsushime H, Sato M (1990) Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to fms family. Oncogene 5:519–524

    PubMed  CAS  Google Scholar 

  • Terman BC, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodarowicz D, Boehlen P (1992) Identification of the KDR tyrosine kinase receptor as a receptor for vascular endothelial growth factor. Biochem Biophys Res Commun 187:1579–1586

    Article  PubMed  CAS  Google Scholar 

  • Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M (2006) ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126:741–754

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Dentler WL, Borchardt RT (2001) VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. Am J Physiol Heart Circ Physiol 280(1):H434–H440

    PubMed  CAS  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol 38:323–337

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Nezu J, Shimane M, Hirata Y (1997) Molecular cloning of a novel vascular endothelial growth factor, VEGF-D. Genomics 15:483–488

    Article  Google Scholar 

  • Yonemori K, Tsuta K, Ono M, Shimizu C, Hirakawa A, Hasegawa T, Hatanaka Y, Narita Y, Shibui S, Fujiwara Y (2010) Disruption of the blood brain barrier by brain metastases of triple-negative and basal-type breast cancer but not HER2/neu-positive breast cancer. Cancer 116(2):302–308

    Article  PubMed  Google Scholar 

  • Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen N, Chopp M (2000) VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 106(7):829–838

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hava Karsenty Avraham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Avraham, S., Jiang, S., Wang, L., Fu, Y., Avraham, H.K. (2013). VEGF-Mediated Effects on Brain Microvascular Endothelial Tight Junctions and Transmigration of Breast Cancer Cells Across the Blood-Brain Barrier. In: Martin, T., Jiang, W. (eds) Tight Junctions in Cancer Metastasis. Cancer Metastasis - Biology and Treatment, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6028-8_10

Download citation

Publish with us

Policies and ethics