Skip to main content

Paleoclimate of Peninsular India

  • Chapter
  • 1662 Accesses

Abstract

The limited spatial and temporal coverage of instrumental weather records precludes the knowledge of long-term climatic changes. To infer such changes, recourse is taken to natural archives that serve as climate proxies. The prominent proxies that offer annual to seasonal temporal resolution include annual rings of trees (Ramesh et al., 1985; Ramesh et al., 1986a; Ramesh et al., 1986b; Ramesh et al., 1988; Ramesh et al., 1989; Managave et al., 2010a; Managave et al., 2010b; Sano M. et al., 2010; Managave et al., 2010c; Managave et al., 2010d; Managave et al, 2010e), corals (Chakraborty et al., 1992; Chakraborty et al., 1993a; Chakraborty et al., 1993b; Chakraborty et al., 1993c; Chakraborty et al., 1994; Chakraborty et al., 1997), ice cores (Nijampurkar et al., 1986), speleothems (Yadava et al., 2004) in some cases and varved sediments (Von Rad et al., 1999). Among these, tree-rings have specific advantages: they have a wide geographic distribution, are annually resolved, show a continuous record, and are easily dated by ring-counting. Seasonality in the growth rate of trees driven by seasonality in the climatic factors can result in well-defined annual growth rings in trees. Individual tree-rings faithfully record contemporary climatic signatures and hence provide an opportunity to decipher the variation in climatic parameters for a duration equivalent to the life-span of the tree.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berlage, H.P. (1931). On the relationship between thickness of tree rings of Djati trees and Rainfall on Java. Tctona, 24: 939-953.

    Google Scholar 

  • Bhattacharyya, A., Eckstein, D., Shah, S.K. and Chaudhary, V. (2007). Analysis of climatic changes around Perambikulum, South India, based on early wood mean vessel area of teak. Current Science, 93(8): 1159-1164.

    Google Scholar 

  • Borgaonkar, H.P., Sikder, A.B., Somaru Ram, Rupa Kumar, K. and Pant, G.B. (2007). Dendroclimatological investigations of high altitude Himalayan conifers and tropical teak in India. The Korean Journal of Quaternary Research, 21(1): 15-25.

    Google Scholar 

  • Brendel, O., Iannetta, P.P.M. and Stewart, D. (2000). A rapid and simple method to isolate pure alpha-cellulose. Phytochemical Analysis, 11: 7-10.

    Article  Google Scholar 

  • Buckley, B.M., Palakit, K., Duangsathaporn, K., Sanguantham, P. and Prasomsin, P. (2007). Decadal scale droughts over northwestern Thailand over the past 448 years: Links to the tropical Pacific and Indian Ocean sectors. Climate Dynamics, 29: 63-71.

    Google Scholar 

  • Burk, R.L. and Stuiver, M. (1981). Oxygen isotope ratios in trees reflect mean annual temperature and humidity. Science, 211: 1417-1419.

    Article  Google Scholar 

  • Chakraborty, S. and Ramesh, R. (1992). Climatic significance of 18O and 13C variations in a banded coral (Porites) from Kavaratti Lakshadweep islands. In: Proc. Int Symp. on the Oceanography of the Indian Ocean. B.N. Desai (ed.), Oxford IBH.

    Google Scholar 

  • Chakraborty, S. and Ramesh, R. (1993). Monsoon record in Indian corals. In: Proc. Int. Symp. Global Change. IGBP, Tokyo, Japan.

    Google Scholar 

  • Chakraborty, S. and Ramesh, R. (1993a). Stable isotope variations in a coral from the Gulf of Kutch: Environmental implications. Global Change Studies: Scientific results from ISRO GBP-SR 42, 94: 245-255.

    Google Scholar 

  • Chakraborty, S. and Ramesh, R. (1993b). Monsoon induced sea surface temperature changes recorded in Indian corals. Terra Nova, 5: 545-551.

    Article  Google Scholar 

  • Chakraborty, S. and Ramesh, R. (1997). Environmental significance of carbon and oxygen isotope ratios of banded corals from Lakshadweep, India. Quaternary International, 37(1): 55-65.

    Article  Google Scholar 

  • Chakraborty, S., Ramesh, S. and Krishnaswami, S. (1994). Air sea exchange of CO2 in the Gulf of Kutch, northern Arabian Sea based on bomb carbon in corals and tree rings. Proc. Ind. Acad. Sci. (Earth & Planet. Sci.), 103: 329-340.

    Google Scholar 

  • Christie, D.A., Lara, A., Barichivich, J., Villalba, R., Morales, M. and Cuq, E. (2008). El Niño-Southern Oscillation signal in the world’s highest-elevation tree- ring chronologies from the Altiplano, Central Andes. Palaeogeogr. Palaeoclimatol. Palaeoecol. In press.

    Google Scholar 

  • Cole, J.E., Dunbar, R.B., McClanahan, T.R. and Muthiga, N. (2000). Tropical Pacific forcing of decadal variability in the western Indian Ocean over the past two centuries. Science, 287: 617-619.

    Article  Google Scholar 

  • Cole, J.E., Fairbanks, R.G. and Shen, G.T. (1993). The spectrum of recent variability in the Southern Oscillation: Results from a Tarawa Atoll coral. Science, 262: 1790-1793.

    Article  Google Scholar 

  • D’Arrigo, R.D., Cook, E.R., Wilson, R.J., Allan, R. and Mann, M.E. (2005). On the variability of ENSO over the past six centuries. Geophys. Res. Lett., 32. doi:10.1029/2004GL022055.

  • Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16: 436-468.

    Article  Google Scholar 

  • Diaz, F.H. and Markgraf, V. (2000). El Nino and the Southern Oscillation: Multiscale Variability and Global and regional Impacts. Cambridge Uni Press.

    Book  Google Scholar 

  • Edwards, T.W.D., Aravena, R.O., Fritz, P. and Morgan, A.V. (1985). Interpreting paleoclimate from 18O and 2H in plant cellulose: Comparison with evidence from fossil insects and relict permafrost in southwestern Ontario. Can. J. Earth Sci., 22: 1720-1726.

    Article  Google Scholar 

  • Epstein, S. and Yapp, C.J. (1977). Isotope tree thermometers. Nature, 266: 477-478.

    Article  Google Scholar 

  • Evans, M.N. and Schrag, D.P. (2004). A stable isotope-based approach to tropical dendroclimatology. Geochimica et Cosmochimica Acta, 68(16): 3295-3305.

    Article  Google Scholar 

  • Feng, X. and Epstein, S. (1994). Climatic implications of an 8000-year hydrogen isotope time series from bristlecone pine trees. Science, 265: 1079-1081.

    Article  Google Scholar 

  • Francey, R.J. and Farquhar, G.D. (1982). An explanation of 13C/12C variations in trees. Nature, 297: 28-31.

    Article  Google Scholar 

  • Fritts, H.C. (1976). Tree Rings and Climate. Academic Press.

    Google Scholar 

  • Gaudinski, J.B., Dawson, T.E., Quideau, S., Schuur, E.A.G., Roden, J.S., Trumbore, S.E., Sandquist, D.R., Oh, S. and Wasylishen, R.E. (2005). Comparative Analysis of Cellulose Preparation Techniques for Use with 13C, 14C, and 18O Isotopic Measurements. Anal. Chem., 77: 7212-7224.

    Article  Google Scholar 

  • Gray, J. and Thompson, P. (1976). Climatic information from 18O/16O ratios of cellulose in tree rings. Nature, 262: 481-482.

    Article  Google Scholar 

  • Guhatakurta, P. and Rajeevan, M. (2008). Trends in the rainfall pattern over India. Int. J. Climatol., 28: 1453-1469.

    Article  Google Scholar 

  • Holmes, R.L. (1983). Computer assisted quality control in tree ring dating and measuring. Tree-Ring Bull., 43: 69-78.

    Google Scholar 

  • Krishna Kumar, K., Soman, M.K. and Rupa Kumar, K. (1995). Seasonal forecasting of Indian summer monsoon rainfall. Weather, 50: 449-467.

    Article  Google Scholar 

  • Leuschner, H.H., Saas-Klassen, U., Jansma, E., Baillie, M.G.L., Spurk, M. (2002). Subfossil European bog oaks: Population dynamics and long-term growth depressions as indicators of changes in the Holocene hydro-regime and climate. The Holocene, 12: 695-706.

    Article  Google Scholar 

  • Lipp, J., Trimborn, P., Fritz, P., Moser, H., Becker, B. and Franzel, B. (1991). Stable isotopes in tree ring cellulose and climatic change. Tellus, 43B: 322-330.

    Google Scholar 

  • Managave, S.R. and Ramesh, R. (2012). Isotope dendroclimatology: A review with a special emphasis on tropics. In: Hanbook of Environmental Isotope Geochemistry. M. Baskaran (ed.), Springer, 1: 811-834.

    Google Scholar 

  • Managave, S.R., Sheshshayee, M.S., Bhattacharyya, A. and Ramesh, R. (2010c). Intra-annual variations of cellulose 18O of teak from Kerala, India: Implications to reconstruction of past summer and winter monsoon rains. Climate Dynamics, in the press (doi:. DOI: 10.1007/s00382-010-0917-9). Editorial manuscript number: CLIDY-D-09-00384.2.

    Google Scholar 

  • Managave, S.R., Sheshshayee, M.S., Borgaonkar, H.P. and Ramesh, R. (2010a). Past break-monsoon conditions detectable by high resolution intra-annual 18O analysis of teak rings. Geophysical Research Letters, 37: L05702, doi: 10.1029/ 2009GL041172.

    Article  Google Scholar 

  • Managave, S.R., Sheshshayee, M.S., Borgaonkar, H.P. and Ramesh, R. (2010b). Intra-annual oxygen isotope variations in central Indian teak cellulose: Possibility of improved resolution for past monsoon reconstruction. Current Science, 98: 930-937.

    Google Scholar 

  • Managave, S.R., Sheshshayee, M.S., Ramesh, R., Borgaonkar, H.P., Shah, S.K. and Bhattacharyya, A. (2011). Response of cellulose 18O of teak trees in differing monsoon environments to monsoon rainfall. Dendrochronologia, 29(2): 89-97 Manuscript number: DENDRO-D-09-00030R1.

    Google Scholar 

  • Nijampurkar, V.N., Bhandari, N., Bhattacharya, S.K. and Ramesh, R. (1986). Climatic significance of D/H ratios in a temperate glacier in Sikkim. Curr. Sci., 55(18): 910-912.

    Google Scholar 

  • Pant, G.B. and Borgaonkar, H.P. (1983). Growth rings of teak trees and regional climatology: An ecology study of Thane region. In: Environmental management. L.R. Singh, R.C. Tiwari and R.P. Srivastava (eds). Allahabad Geophysical Society, University of Allahabad.

    Google Scholar 

  • Pant, G.B. and Parthasarathy, B. (1981). Some aspects of an association between the southern oscillation and Indian summer monsoon. Arc Met Geophy Biok, lB, 29: 245-252.

    Article  Google Scholar 

  • Pant, G.B. and Rupa Kumar, K. (1997). Climate of South Asia. Wiley, New York.

    Google Scholar 

  • Pumijumnong. N., Eckstein, D. and Sass, U. (1995). Tree-ring research on Tectona grandis in Northern Thailand. IAWA Journal, 16(4): 385-392.

    Google Scholar 

  • Ramesh, R., Bhattacharya, S.K. and Gopalan, K. (1985). Dendroclimatological 558 implications of isotope coherence in trees from Kashmir Valley, India. Nature, 317: 802-804.

    Article  Google Scholar 

  • Ramesh, R., Bhattacharya, S.K. and Gopalan, K. (1986a). Climatic correlations of the stable isotope records of silver fir (Abies pindrow) trees from Kashmir, India. Earth. Planet. Sci. Lett., 79: 66-74.

    Article  Google Scholar 

  • Ramesh, R., Bhattacharya, S.K. and Gopalan, K. (1986b). Stable isotope systematics in tree cellulose as paleoenvironmental indicators - A review. J. Geol. Soc. Ind., 27: 154-167.

    Google Scholar 

  • Ramesh, R., Bhattacharya, S.K. and Gopalan, K. (1988). Climatic significance of variations in width and stable isotope ratios of tree rings. British Archeological Records, 196: 591-609.

    Google Scholar 

  • Ramesh, R., Bhattacharya, S.K. and Pant, G.B. (1989). Climatic significance of D variations in a tropical tree species from India. Nature, 337: 149-150.

    Article  Google Scholar 

  • Roden, J.S., Lin, G. and Ehleringer, J.R. (2000). A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochimica et Cosmochimica Acta, 64(1): 21-35.

    Article  Google Scholar 

  • Rozanski, K., Araguas-Araguas, L. and Giofiantini, R. (1993). Isotopic patterns in modern global precipitation. Geophysical Monograph, 78: 1-36.

    Article  Google Scholar 

  • Sano, M., Sheshshayee, M.S., Managave, S.R., Ramesh, R., Sukumar, R. and Sweda, T. (2010). Climatic potential of 18O of Abies spectabilis from the Nepal Himalaya. Dendrochronologia, 28(2): 93-98.

    Article  Google Scholar 

  • Schiegl, W.E. (1974). Climatic significance of deuterium abundance in growth rings of Picea. Nature, 251: 582-584.

    Article  Google Scholar 

  • Sikka, D.R. and Gadgil, S. (1980). On the maximum cloud zone and the ITCZ over India longitude during the Southwest monsoon. Mon. Weather Rev., 108: 1840-1853.

    Article  Google Scholar 

  • Spurk, M., Leuschner, H.H., Baillie, M.G.L., Briffa, K.R. and Friedrich, M. (2002). Depositional frequency of German subfossil oaks: Climatically and non-climatically induced fluctuations in the Holocene. The Holocene, 12: 707-715.

    Article  Google Scholar 

  • Stahle D.W., D’Arrigo, R.D., Krusic, P.J., Cleveland, M.K., Cook, E.R., Allan, R.J., Cole, J.E., Dunbar, R.B., Therrel, M.D., Gay, D.A., Moore, M.D., Stokes, M.A., Burns, B.T., Villanueva-Diaz, J. and Thompson, L.G. (1998). Experimental dendroclimatic reconstruction of the Southern Oscillation. Bull. Am. Meteorol. Soc, 79: 2137-2152.

    Article  Google Scholar 

  • Tudhope, A.W. et al. (2001). Variability in the El Nino-Southern Oscillation through a Glacial-Interglacial Cycle. Science, 291: 1511-1517.

    Article  Google Scholar 

  • von Rad, U., Schaaf, M., Michels, K.H., Schulz, H., Berger, W.H. and Sirocko, F. (1999). A 5000-yr record of climate change in varved sediments from the oxygen minimum zone off Pakistan, Northeastern Arabian Sea. Quat. Res., 51: 39-53.

    Article  Google Scholar 

  • Yadava, M.G. and Ramesh, R.R. (2005). Monsoon reconstruction from radiocarbon dated tropical speleothems. The Holocene, 15: 48-59.

    Article  Google Scholar 

  • Yadava, M.G., Ramesh, R. and Pandarinath, K. (2007). A positive amount effect in the Sahayadri (Western Ghats) rainfall. Current Science, 93(2): 560-564.

    Google Scholar 

  • Yadava, M.G., Ramesh, R. and Pant, G.B. (2004). Past monsoon rainfall variations in peninsular India recored in a 331-year-old speleothems. The Holocene, 14(4): 517-524.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Capital Publishing Company

About this chapter

Cite this chapter

Ramesh, R., Managave, S.R., Yadava, M.G. (2013). Paleoclimate of Peninsular India. In: Sundaresan, J., Sreekesh, S., Ramanathan, A., Sonnenschein, L., Boojh, R. (eds) Climate Change and Island and Coastal Vulnerability. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6016-5_5

Download citation

Publish with us

Policies and ethics