Skip to main content

Abstract

Hydrogels are three dimensional (3D) hydrophilic networks with the ability to absorb and retain large amounts of water without dissolution, as a result of the establishment of physical or chemical bonds between the polymeric chains. Hydrogels obtained from either natural or synthetic polymers are attractive materials for tissue engineering applications due to their excellent biocompatibility, biodegradability, elasticity and compositional similarities to the extracellular matrix. Several techniques have been explored to produce hydrogel meshes, films or 3D constructs for cell attachment, differentiation and proliferation or to release drugs and growth factors according to specific release profiles. This chapter describes the current state-of-the-art of biomanufacturing additive processes to produce hydrogel constructs for tissue engineering. Biomanufacturing processes are described in detail and the major advantages and limitations outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bártolo PJ, Domingos M, Patrício T, Cometa S, Mironov V (2011) Biofabrication strategies for tissue engineering. In: Fernandes PR, Bártolo PJ (eds) Advances on modeling in tissue engineering. Springer, Dordrecht

    Google Scholar 

  2. Liao H-T, Chang K-H, Jiang Y, Chen J-P, Lee M-Y (2011) Fabrication of tissue engineered PCL scaffold by selective laser-sintered machine for osteogenesis of adipose-derived stem cells. Virtual Phys Prototyp 6:57–60

    Article  Google Scholar 

  3. Nichol JW, Khademhosseini A (2009) Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 5:1312

    Article  PubMed  CAS  Google Scholar 

  4. Du Y, Lo E, Ali S, Khademhosseini A (2008) Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc Natl Acad Sci U S A 105:9522–9527

    Article  PubMed  CAS  Google Scholar 

  5. Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci U S A 103:2480–2487

    Article  PubMed  CAS  Google Scholar 

  6. Rivron NC, Rouwkema J, Truckenmüller R, Karperien M, De Boer J, Van Blitterswijk CA (2009) Tissue assembly and organization: developmental mechanisms in microfabricated tissues. Biomaterials 30:4851–4858

    Article  PubMed  CAS  Google Scholar 

  7. Jakab K, Neagu A, Mironov V, Markwald RR, Forgacs G (2004) Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc Natl Acad Sci U S A 101:2864–2869

    Article  PubMed  CAS  Google Scholar 

  8. Bártolo PJ, Chua CK, Almeida HA, Chou SM, Lim ASC (2009) Biomanufacturing for tissue engineering: present and future trends. Virtual Phys Prototyp 4:203–216

    Article  Google Scholar 

  9. Bartolo P, Kruth J-P, Silva J, Levy G, Malshe A, Rajurkar K, Mitsuishi M, Ciurana J, Leu M (2012) Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann Manuf Technol 61:635–655

    Article  Google Scholar 

  10. Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37:1079–1104

    Article  CAS  Google Scholar 

  11. Meinel AJ, Germershaus O, Luhmann T, Merkle HP, Meinel L (2012) Electrospun matrices for localized drug delivery: current technologies and selected biomedical applications. Eur J Pharm Biopharm 81:1–13

    Article  PubMed  CAS  Google Scholar 

  12. Mitchell GR, Ahn K, Davis FJ (2011) The potential of electrospinning in rapid manufacturing processes. Virtual Phys Prototyp 6:63–77

    Article  Google Scholar 

  13. Tomatsu I, Peng K, Kros A (2011) Photoresponsive hydrogels for biomedical applications. Adv Drug Deliv Rev 63:1257–1266

    Article  PubMed  CAS  Google Scholar 

  14. Deligkaris K, Tadele TS, Olthuis W, van den Berg A (2010) Hydrogel-based devices for biomedical applications. Sensors Actuat B-Chem 147:765–774

    Article  Google Scholar 

  15. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  PubMed  CAS  Google Scholar 

  16. Fedorovich NE, Alblas J, Hennink WE, Oner FC, Dhert WJA (2011) Organ printing: the future of bone regeneration? Trends Biotechnol 29:601–606

    Article  PubMed  CAS  Google Scholar 

  17. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007

    Article  CAS  Google Scholar 

  18. Yang X, Liu Q, Chen X, Yu F, Zhu Z (2008) Investigation of PVA/ws-chitosan hydrogels prepared by combined γ-irradiation and freeze-thawing. Carbohydr Polym 73:401–408

    Article  CAS  Google Scholar 

  19. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  PubMed  CAS  Google Scholar 

  20. Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408

    Article  PubMed  Google Scholar 

  21. Van Tomme SR, Storm G, Hennink WE (2008) In situ gelling hydrogels for pharmaceutical and biomedical applications. Int J Pharm 355:1–18

    Article  PubMed  Google Scholar 

  22. Pescosolido L, Vermonden T, Malda J, Censi R, Dhert WJA, Alhaique F, Hennink WE, Matricardi P (2011) In situ forming IPN hydrogels of calcium alginate and dextran-HEMA for biomedical applications. Acta Biomater 7:1627–1633

    Article  PubMed  CAS  Google Scholar 

  23. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    Article  PubMed  CAS  Google Scholar 

  24. Guvendiren M, Heiney PA, Yang S (2009) Precipitated calcium carbonate hybrid hydrogels: structural and mechanical properties. Macromolecules 42:6606–6613

    Article  CAS  Google Scholar 

  25. Biondi M, Ungaro F, Quaglia F, Netti PA (2008) Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 60:229–242

    Article  PubMed  CAS  Google Scholar 

  26. Van Vlierberghe S, Vanderleyden E, Dubruel P, De Vos F, Schacht E (2009) Affinity study of novel gelatin cell carriers for fibronectin. Macromol Biosci 9:1105–1115

    Article  PubMed  Google Scholar 

  27. Pereira R, Tojeira A, Vaz DC, Mendes A, Bártolo P (2011) Preparation and characterization of films based on alginate and aloe Vera. Int J Polym Anal Ch 16:449–464

    Article  CAS  Google Scholar 

  28. Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337

    Article  PubMed  CAS  Google Scholar 

  29. Sato K, Yoshida K, Takahashi S, Anzai J (2011) pH-and sugar-sensitive layer-by-layer films and microcapsules for drug delivery. Adv Drug Deliv Rev 63:809–821

    Article  PubMed  CAS  Google Scholar 

  30. Caldorera-Moore M, Peppas NA (2009) Micro-and nanotechnologies for intelligent and responsive biomaterial-based medical systems. Adv Drug Deliv Rev 61:1391–1401

    Article  PubMed  CAS  Google Scholar 

  31. Bártolo P, Chua CK (2008) Editorial: celebrating the 70th anniversary of professor Yongnian Yan: a life dedicated to science and technology. Virtual Phys Prototyp 3:189–191

    Article  Google Scholar 

  32. Danjou S, Köhler P (2010) Improving part quality and process efficiency in layered manufacturing by adaptive slicing. Virtual Phys Prototyp 5:183–188

    Article  Google Scholar 

  33. Matias JM, Bartolo PJ, Pontes AV (2009) Modeling and simulation of photofabrication processes using unsaturated polyester resins. J Appl Polym Sci 114:3673–3685

    Article  CAS  Google Scholar 

  34. Bartolo PJ, Gaspar J (2008) Metal filled resin for stereolithography metal part. CIRP Ann Manuf Technol 57:235–238

    Article  Google Scholar 

  35. da Silva BP (2007) Photo-curing modelling: direct irradiation. Int J Adv Manuf Technol 32:480–491

    Article  Google Scholar 

  36. Bartolo PJ, Mitchell G (2003) Stereo-thermal-lithography: a new principle for rapid prototyping. Rapid Prototyping J 9:150–156

    Article  Google Scholar 

  37. Bartolo PJ (2011) Stereolithographic processes. In: Bártolo PJ (ed) Stereolithography: materials, processes and applications. Springer, New York

    Google Scholar 

  38. Peltola SM, Melchels FPW, Grijpma DW, Kellomäki M (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40:268–280

    Article  PubMed  CAS  Google Scholar 

  39. Bertsch A, Zissi S, Jézéquel JY, Corbel S, André JC (1997) Microstereophotolithography using a liquid crystal display as dynamic mask-generator. Microsyst Technol 3:42–47

    Article  Google Scholar 

  40. Fedorovich NE, Oudshoorn MH, van Geemen D, Hennink WE, Alblas J, Dhert WJA (2009) The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 30:344–353

    Article  PubMed  CAS  Google Scholar 

  41. Arcaute K, Mann B, Wicker R (2010) Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater 6:1047–1054

    Article  PubMed  CAS  Google Scholar 

  42. Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130

    Article  PubMed  CAS  Google Scholar 

  43. Schuster M, Turecek C, Weigel G, Saf R, Stampfl J, Varga F, Liska R (2009) Gelatin-based photopolymers for bone replacement materials. J Polym Sci A Polym Chem 47:7078–7089

    Article  CAS  Google Scholar 

  44. Lee K-W, Wang S, Fox BC, Ritman EL, Yaszemski MJ, Lu L (2007) Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules 8:1077–1084

    Article  PubMed  CAS  Google Scholar 

  45. Mironi-Harpaz I, Wang DY, Venkatraman S, Seliktar D (2012) Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater 8:1838–1848

    Article  PubMed  CAS  Google Scholar 

  46. Bryant SJ, Anseth KS (2001) The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials 22:619–626

    Article  PubMed  CAS  Google Scholar 

  47. Lan PX, Lee JW, Seol Y-J, Cho D-W (2009) Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci Mater Med 20:271–279

    Article  PubMed  CAS  Google Scholar 

  48. Lee JW, Kang KS, Lee SH, Kim J-Y, Lee B-K, Cho D-W (2011) Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials 32:744–752

    Article  PubMed  CAS  Google Scholar 

  49. Seck TM, Melchels FPW, Feijen J, Grijpma DW (2010) Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D, L-lactide)-based resins. J Control Release 148:34–41

    Article  PubMed  CAS  Google Scholar 

  50. Chan V, Zorlutuna P, Jeong JH, Kong H, Bashir R (2010) Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip 10:2062–2070

    Article  PubMed  CAS  Google Scholar 

  51. Zorlutuna P, Jeong JH, Kong H, Bashir R (2011) Stereolithography-based hydrogel microenvironments to examine cellular interactions. Adv Funct Mater 21:3642–3651

    Article  CAS  Google Scholar 

  52. Arcaute K, Mann BK, Wicker RB (2006) Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng 34:1429–1441

    Article  PubMed  Google Scholar 

  53. Arcaute K, Mann BK, Wicker RB (2011) Practical use of hydrogels in stereolithography for tissue engineering applications. In: Bártolo PJ (ed) Stereolithography: materials, processes and applications. Springer, New York

    Google Scholar 

  54. Doraiswamy A, Jin C, Narayan RJ, Mageswaran P, Mente P, Modi R, Auyeung R, Chrisey DB, Ovsianikov A, Chichkov B (2006) Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices. Acta Biomater 2:267–275

    Article  PubMed  CAS  Google Scholar 

  55. Narayan RJ, Jin C, Doraiswamy A, Mihailescu IN, Jelinek M, Ovsianikov A, Chichkov B, Chrisey DB (2005) Laser processing of advanced bioceramics. Adv Eng Mater 7:1083–1098

    Article  CAS  Google Scholar 

  56. Ovsianikov A, Deiwick A, Van Vlierberghe S, Dubruel P, Möller L, Dräger G, Chichkov B (2011) Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules 12:851–858

    Article  PubMed  CAS  Google Scholar 

  57. Liu VA, Bhatia SN (2002) Three-dimensional photopatterning of hydrogels containing living cells. Biomed Microdevices 4:257–266

    Article  CAS  Google Scholar 

  58. Domingos MA, Amalvy JI, Oliveira LM, Pinto EM, Almeida HA, Bártolo PJ (2011) Biofabrication of poly(HEMA) scaffolds through Stereolithography. In: 2nd International Conference on Tissue Engineering An ECCOMAS Thematic Conference (ICTE2011), Lisboa, Portugal

    Google Scholar 

  59. Lu Y, Mapili G, Suhali G, Chen S, Roy K (2006) A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A 77:396–405

    PubMed  Google Scholar 

  60. Saunders RD (2004) Ink-jet printing of human cells. In: Materials Research Society Symposium Proceedings. https://www.escholar.manchester.ac.uk/uk-ac-man-scw:2a158. Accessed 9 Oct 2012

  61. Pardo L, Wilson WC, Boland T (2003) Characterization of patterned self-assembled monolayers and protein arrays generated by the Ink-Jet method. Langmuir 19:1462–1466

    Article  CAS  Google Scholar 

  62. Lam CXF, Mo XM, Teoh SH, Hutmacher DW (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C 20:49–56

    Article  Google Scholar 

  63. Sachlos E, Reis N, Ainsley C, Derby B, Czernuszka JT (2003) Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 24:1487–1497

    Article  PubMed  CAS  Google Scholar 

  64. Limpanuphap S, Derby B (2002) Manufacture of biomaterials by a novel printing process. J Mater Sci Mater Med 13:1163–1166

    Article  PubMed  CAS  Google Scholar 

  65. Park A, Wu B, Griffith LG (1998) Integration of surface modification and 3D fabrication techniques to prepare patterned poly (L-lactide) substrates allowing regionally selective cell adhesion. J Biomater Sci Polym Ed 9:89–110

    Article  PubMed  CAS  Google Scholar 

  66. Boland T, Tao X, Damon BJ, Manley B, Kesari P, Jalota S, Bhaduri S (2007) Drop-on-demand printing of cells and materials for designer tissue constructs. Mater Sci Eng C 27:372–376

    Article  CAS  Google Scholar 

  67. Cohen DL, Malone E, Lipson H, Bonassar LJ (2006) Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng 12:1325–1335

    Article  PubMed  CAS  Google Scholar 

  68. Rezende RA, Bártolo PJ, Mendes A, Filho RM (2009) Rheological behavior of alginate solutions for biomanufacturing. J Appl Polym Sci 113:3866–3871

    Article  CAS  Google Scholar 

  69. Bártolo PJS (2006) State of the art of solid freeform fabrication for soft and hard tissue engineering. WIT Press, Southampton

    Google Scholar 

  70. Bartolo P, Mendes A, Jardini A (2004) Bio-prototyping. In: Collins M, Brebbia J (eds) Design and nature II. WIT Press, Southampton

    Google Scholar 

  71. Lee G-S, Park J-H, Shin US, Kim H-W (2011) Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Acta Biomater 7:3178–3186

    Article  PubMed  CAS  Google Scholar 

  72. Mironov V, Kasyanov V, Drake C, Markwald RR (2008) Organ printing: promises and challenges. Regen Med 3:93–103

    Article  PubMed  CAS  Google Scholar 

  73. Varghese D, Deshpande M, Xu T, Kesari P, Ohri S, Boland T (2005) Advances in tissue engineering: cell printing. J Thorac Cardiovasc Surg 129:470–472

    Article  PubMed  Google Scholar 

  74. Marga F, Neagu A, Kosztin I, Forgacs G (2007) Developmental biology and tissue engineering. Birth Defects Res C Embryo Today 81:320–328

    Article  PubMed  CAS  Google Scholar 

  75. Cui X, Boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227

    Article  PubMed  CAS  Google Scholar 

  76. Tirella A, Vozzi F, De Maria C, Vozzi G, Sandri T, Sassano D, Cognolato L, Ahluwalia A (2011) Substrate stiffness influences high resolution printing of living cells with an ink-jet system. J Biosci Bioeng 112:79–85

    Article  PubMed  CAS  Google Scholar 

  77. Zheng Q, Lu J, Chen H, Huang L, Cai J, Xu Z (2011) Application of inkjet printing technique for biological material delivery and antimicrobial assays. Anal Biochem 410:171–176

    Article  PubMed  CAS  Google Scholar 

  78. Cui X, Dean D, Ruggeri ZM, Boland T (2010) Cell damage evaluation of thermal inkjet Printed Chinese hamster ovary cells. Biotechnol Bioeng 106:963–969

    Article  PubMed  CAS  Google Scholar 

  79. Wilson WC Jr, Boland T (2003) Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol 272:491–496

    Article  PubMed  Google Scholar 

  80. Derby B (2010) Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Ann Rev Mater Res 40:395–414

    Article  CAS  Google Scholar 

  81. Poncelet D, de Vos P, Suter N, Jayasinghe SN (2012) Bio-electrospraying and cell electrospinning: progress and opportunities for basic biology and clinical sciences. Adv Healthc Mater 1:27–34

    Article  PubMed  CAS  Google Scholar 

  82. Scoutaris N, Alexander MR, Gellert PR, Roberts CJ (2011) Inkjet printing as a novel medicine formulation technique. J Control Release 156:179–185

    Article  PubMed  CAS  Google Scholar 

  83. Ringeisen BR, Othon CM, Barron JA, Wu PK, Spargo BJ (2009) The evolution of cell printing. In: Meyer U, Meyer T, Handschel J, Wiesmann HP (eds) Fundamentals of tissue engineering and regenerative medicine fundamentals of tissue engineering and regenerative medicine. Springer, Berlin

    Google Scholar 

  84. Ringeisen BR, Othon CM, Barron JA, Young D, Spargo BJ (2006) Jet-based methods to print living cells. Biotechnol J 1:930–948

    Article  PubMed  CAS  Google Scholar 

  85. Saunders RE, Gough JE, Derby B (2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29:193–203

    Article  PubMed  CAS  Google Scholar 

  86. Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11:1658–1666

    Article  PubMed  CAS  Google Scholar 

  87. Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJA, Malda J (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3:021001

    Article  PubMed  CAS  Google Scholar 

  88. Moon S, Hasan SK, Song YS, Xu F, Keles HO, Manzur F, Mikkilineni S, Hong JW, Nagatomi J, Haeggstrom E, Khademhosseini A, Demirci U (2010) Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C Methods 16:157–166

    Article  PubMed  CAS  Google Scholar 

  89. Khalil S, Sun W (2007) Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Mater Sci Eng C 27:469–478

    Article  CAS  Google Scholar 

  90. Yan Y, Wang X, Pan Y, Liu H, Cheng J, Xiong Z, Lin F, Wu R, Zhang R, Lu Q (2005) Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 26:5864–5871

    Article  PubMed  CAS  Google Scholar 

  91. Lee W, Debasitis JC, Lee VK, Lee J-H, Fischer K, Edminster K, Park J-K, Yoo S-S (2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30:1587–1595

    Article  PubMed  CAS  Google Scholar 

  92. Odde DJ, Renn MJ (2000) Laser-guided direct writing of living cells. Biotechnol Bioeng 67:312–318

    Article  PubMed  CAS  Google Scholar 

  93. Nahmias Y, Schwartz RE, Verfaillie CM, Odde DJ (2005) Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol Bioeng 92:129–136

    Article  PubMed  CAS  Google Scholar 

  94. Raof NA, Schiele NR, Xie Y, Chrisey DB, Corr DT (2011) The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells. Biomaterials 32:1802–1808

    Article  PubMed  CAS  Google Scholar 

  95. Catros S, Guillotin B, Bačáková M, Fricain J-C, Guillemot F (2011) Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by laser-assisted bioprinting. Appl Surf Sci 257:5142–5147

    Article  CAS  Google Scholar 

  96. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, Bareille R, Rémy M, Bordenave L, Amédée J, Guillemot F (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256

    Article  PubMed  CAS  Google Scholar 

  97. Barron JA, Wu P, Ladouceur HD, Ringeisen BR (2004) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 6:139–147

    Article  PubMed  CAS  Google Scholar 

  98. Lin Y, Huang G, Huang Y, Tzeng T-RJ, Chrisey D (2010) Effect of laser fluence in laser-assisted direct writing of human colon cancer cell. Rapid Prototyp J 16:202–208

    Article  Google Scholar 

  99. Catros S, Fricain J-C, Guillotin B, Pippenger B, Bareille R, Remy M, Lebraud E, Desbat B, Amédée J, Guillemot F (2011) Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 3:025001

    Article  PubMed  Google Scholar 

  100. Barron JA, Krizman DB, Ringeisen BR (2005) Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Eng 33:121–130

    Article  PubMed  Google Scholar 

  101. Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M, Pippenger B, Bareille R, Rémy M, Bellance S, Chabassier P, Fricain JC, Amédée J (2010) High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 6:2494–2500

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Portuguese Foundation for Science and Technology through the projects PTDC/EME-PME/098037/2008 and Pest-OE/EME/UI4044/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo J. Bártolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pereira, R.F., Almeida, H.A., Bártolo, P.J. (2013). Biofabrication of Hydrogel Constructs. In: Coelho, J. (eds) Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment. Advances in Predictive, Preventive and Personalised Medicine, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6010-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6010-3_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6009-7

  • Online ISBN: 978-94-007-6010-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics