Advertisement

Amphiphilic Molecules in Drug Delivery Systems

  • Salomé dos Santos
  • Bruno Medronho
  • Tiago dos Santos
  • Filipe E. Antunes
Chapter
Part of the Advances in Predictive, Preventive and Personalised Medicine book series (APPPM, volume 4)

Abstract

Numerous drug delivery colloidal systems are formulated using polymers or surfactants or a mixture of both, typically due to their self-assembly properties. Molecular self-assembly creates the possibility to dissolve and protect drugs from adverse external environments. Therefore, it is important to understand the interactions behind the self-assembly phenomena of surfactant and polymer molecules, polymer-polymer and polymer-surfactant mixtures. A number of colloidal structures used in drug delivery formulations such as micelles, vesicles, liquid crystalline phases, microemulsions, polymer gels, aerosols, polymer-polymer and polymer-surfactant complexes will be illustrated in this chapter and their main physicochemical properties will be highlighted, keeping in mind their relevance to the drug delivery research field.

Keywords

Self-assembly Amphiphilic Nanoaggregates Phase diagrams Drug delivery systems Personalized medicine 

References

  1. 1.
    Schramm LL (2000) Surfactants: fundamentals and applications in the petroleum industry. University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Goodwin J (2004) Colloids and interfaces with surfactants and polymers—an introduction. Wiley, ChichesterCrossRefGoogle Scholar
  3. 3.
    Farn RJ (2006) Chemistry and technology of surfactants. Blackwell Publishing Ltd, OxfordCrossRefGoogle Scholar
  4. 4.
    Malmsten M (2002) Surfactants and polymers in drug delivery. Marcel Dekker, Inc, New YorkCrossRefGoogle Scholar
  5. 5.
    Holmberg H, Jonsson B, Kronbreg B, Lindman B (2003) Surfactants and polymers in aqueous solution, 2nd edn. Wiley, HobokenGoogle Scholar
  6. 6.
    Tadros TF (2005) Applied surfactants—principles and applications. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRefGoogle Scholar
  7. 7.
    Pfeiffer W, Henkel T, Sackmann E, Knoll W, Richter D (1989) Local dynamics of lipid bilayers studied by incoherent quasi-elastic neutron-scattering. Europhys Lett 8:201–206CrossRefGoogle Scholar
  8. 8.
    Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes. Wiley, New YorkGoogle Scholar
  9. 9.
    Hartley G (1936) Aqueous solutions of paraffin-chain salts. Herman & Cie, ParisGoogle Scholar
  10. 10.
    Israelachvili JN (2002) Intermolecular and surface forces. Academic, LondonGoogle Scholar
  11. 11.
    Evans DF, Wennerstrom H (1994) The colloidal domain: where physics, chemistry, biology and technology meet. VCH Publishers Inc, New YorkGoogle Scholar
  12. 12.
    Karlström G (1985) A new model for upper and lower critical solution temperatures in poly (ethylene oxide) solutions. J Chem Phys 89:4962–4964CrossRefGoogle Scholar
  13. 13.
    Olsson U, Wennerstrom H (1994) Globular and bicontinuous phases of nonionic surfactant films. Adv Colloid Interface Sci 49:113–146CrossRefGoogle Scholar
  14. 14.
    Wennerström H, Lindman B (1979) Micelles – physical-chemistry of surfactant association. Phys Rep Rev Sec Phys Lett 52:1–86Google Scholar
  15. 15.
    Strey R (1994) Microemulsion microstructure and interfacial curvature. Colloid Polym Sci 272:1005–1019CrossRefGoogle Scholar
  16. 16.
    Lindman B, Karlstrom G (2009) Nonionic polymers and surfactants: temperature anomalies revisited. Comptes Rendus Chimie 12:121–128CrossRefGoogle Scholar
  17. 17.
    Mitchell DJ, Tiddy GJT, Waring L, Bostock T, Mcdonald MP (1983) Phase-behavior of polyoxyethylene surfactants with water—mesophase structures and partial miscibility (cloud points). J Chem Soc Faraday Trans 79:975–1000CrossRefGoogle Scholar
  18. 18.
    Chernik GG (2000) Phase studies of surfactant – water systems. Curr Opin Colloid Interface Sci 4:381–390CrossRefGoogle Scholar
  19. 19.
    Porte G, Appell J, Bassereau P, Marignan J (1989) L-alpha to l3 – a topology driven transition in phases of infinite fluid membranes. J Phys France 50:1335–1347CrossRefGoogle Scholar
  20. 20.
    Andersson D, Wennerström H, Olsson U (1989) Isotropic bicontinuous solutions in surfactant solvent systems – the l3 phase. J Phys Chem B 93:4243–4253CrossRefGoogle Scholar
  21. 21.
    Golubovic L (1994) Passages and droplets in lamellar fluid membrane phases. Phys Rev E 50:R2419–R2422CrossRefGoogle Scholar
  22. 22.
    Nallet F (1991) Membrane fluctuations in dilute lamellar phases. Langmuir 7:1861–1863CrossRefGoogle Scholar
  23. 23.
    Skouri M, Marignan J, Appell J, Porte G (1991) Fluid membranes in the semirigid regime – scale-invariance. J Phys II France 1:1121–1132CrossRefGoogle Scholar
  24. 24.
    Helfrich W (1973) Elastic properties of lipid bilayers – theory and possible experiments. Z Naturforsch C 28:693–703PubMedGoogle Scholar
  25. 25.
    Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–172PubMedCrossRefGoogle Scholar
  26. 26.
    Drummond CJ, Fong C (2000) Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci 4:449–456CrossRefGoogle Scholar
  27. 27.
    Shah JC, Sadhale Y, Chilukuri DM (2001) Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev 47:229–250PubMedCrossRefGoogle Scholar
  28. 28.
    Medronho B (2009) Shear induced transitions in complex fluids: planar lamellae and multilamellar vesicles. Dissertation, University of CoimbraGoogle Scholar
  29. 29.
    Olea D, Faure C (2003) Quantitative study of the encapsulation of glucose oxidase into multilamellar vesicles and its effect on enzyme activity. J Chem Phys 119:6111–6118CrossRefGoogle Scholar
  30. 30.
    Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45:89–121PubMedCrossRefGoogle Scholar
  31. 31.
    Dang JM, Leong KW (2006) Natural polymers for gene delivery and tissue engineering. Adv Drug Deliv Rev 58:487–499PubMedCrossRefGoogle Scholar
  32. 32.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, New YorkGoogle Scholar
  33. 33.
    Cosgrove T, Ryan K (1990) NMR and neutron-scattering studies on poly(ethylene oxide) terminally attached at the polystyrene/water interface. Langmuir 6:136–142CrossRefGoogle Scholar
  34. 34.
    Frank DB (1990) Magnetic resonance of polymers at surfaces. Colloids Surf 45:361–376CrossRefGoogle Scholar
  35. 35.
    Hoogendam CW, de Keizer A, Cohen Stuart MA, Bijsterbosch BH, Smit JAM, van Dijk JAPP, van der Horst PM, Batelaan JG (1998) Persistence length of carboxymethyl cellulose as evaluated from size exclusion chromatography and potentiometric titrations. Macromolecules 31:6297–6309CrossRefGoogle Scholar
  36. 36.
    Huggins ML (1942) Theory of solutions of high polymers. J Am Chem Soc 64:1712–1719CrossRefGoogle Scholar
  37. 37.
    Huggins ML (1942) Some properties of solutions of long-chain compounds. J Phys Chem 46:151–158CrossRefGoogle Scholar
  38. 38.
    Torchilin VP (2004) Targeted polymeric micelles for delivery of poorly soluble drugs. Cellular and molecular life sciences. Cell Mol Life Sci 61:2549–2559PubMedCrossRefGoogle Scholar
  39. 39.
    Zhulina EB, Adam M, LaRue I, Sheiko SS, Rubinstein M (2005) Diblock copolymer micelles in a dilute solution. Macromolecules 38:5330–5351CrossRefGoogle Scholar
  40. 40.
    Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297:967–973PubMedCrossRefGoogle Scholar
  41. 41.
    Howse JR, Jones RA, Battaglia G, Ducker RE, Leggett GJ, Ryan AJ (2009) Templated formation of giant polymer vesicles with controlled size distributions. Nat Mater 8:507–511PubMedCrossRefGoogle Scholar
  42. 42.
    Lindman B, Karlstrom G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81CrossRefGoogle Scholar
  43. 43.
    Antunes FE, Gentile L, Tavano L, Rossi O (2009) Rheological characterization of the thermal gelation of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide)co-Acrylic Acid. Appl Rheol 19:42064–42072Google Scholar
  44. 44.
    Kjøniksen AL, Zhu K, Pamies R, Nyström B (2008) Temperature-induced formation and contraction of micelle-like aggregates in aqueous solutions of thermoresponsive short-chain copolymers. J Phys Chem B 112:3294–3299PubMedCrossRefGoogle Scholar
  45. 45.
    Alexandridis P, Zhou D, Khan A (1996) Lyotropic liquid crystallinity in amphiphilic block copolymers: temperature effects on Phase behavior and structure for poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymers of different composition. Langmuir 12:2690–2700CrossRefGoogle Scholar
  46. 46.
    Green MS, Tobolsky AV (1946) A new approach to the theory of relaxing polymeric media. J Chem Phys 14:80–92CrossRefGoogle Scholar
  47. 47.
    Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New YorkGoogle Scholar
  48. 48.
    Piculell L, Lindman B (1992) Association and segregation in aqueous polymer/polymer, polymer/surfactant, and surfactant/surfactant mixtures: similarities and differences. Adv Colloid Interface Sci 41:149–178CrossRefGoogle Scholar
  49. 49.
    Tanaka R, Meadows J, Williams PA, Phillips GO (1992) Interaction of hydrophobically modified hydroxyethyl cellulose with various added surfactants. Macromolecules 25:1304–1310CrossRefGoogle Scholar
  50. 50.
    Semenov AN, Joanny JF, Khokhlov AR (1995) Associating polymers: equilibrium and linear viscoelasticity. Macromolecules 28:1066–1075CrossRefGoogle Scholar
  51. 51.
    Witten TA (1988) Associating polymers and shear thickening. J Phys France 49:1055–1063CrossRefGoogle Scholar
  52. 52.
    Cui H, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Biopolymers 94:1–18PubMedCrossRefGoogle Scholar
  53. 53.
    Hubbard A (2002) Encyclopedia of surface and colloid science. Marcel Dekker, New YorkGoogle Scholar
  54. 54.
    Senff H, Richtering W (1999) Temperature sensitive microgel suspensions: colloidal phase behavior and rheology of soft spheres. J Chem Phys 111:1705–1711CrossRefGoogle Scholar
  55. 55.
    Jeong B, Gutowska A (2002) Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol 20:305–311PubMedCrossRefGoogle Scholar
  56. 56.
    Murray MJ, Snowden MJ (1995) The preparation, characterisation and applications of colloidal microgels. Adv Colloid Interface Sci 54:73–91CrossRefGoogle Scholar
  57. 57.
    Lopez VC, Snowden MJ (2003) The role of colloidal microgels in drug delivery. Drug Delivery Sys Sci 3:19–23Google Scholar
  58. 58.
    Varma MVS, Kaushal AM, Garg S (2005) Influence of micro-environmental pH on the gel layer behavior and release of a basic drug from various hydrophilic matrices. J Control Release 103:499–510PubMedCrossRefGoogle Scholar
  59. 59.
    Lopez VC, Hadgraft J, Snowden MJ (2005) The use of colloidal microgels as a (trans)dermal drug delivery system. Int J Pharm 292:137–147PubMedCrossRefGoogle Scholar
  60. 60.
    Morris GE, Vincent B, Snowden MJ (1997) The interaction of thermosensitive anionic microgel with metal ion solution. Prog Colloid Polymer Sci 105:16–22CrossRefGoogle Scholar
  61. 61.
    Byrne R, Benito-Lopez F, Diamond D (2010) Materials science and the sensor revolution. Mater Today 13:16–23CrossRefGoogle Scholar
  62. 62.
    Saunders BR, Vincent B (1999) Microgel particles as model colloids: theory, properties and applications. Adv Colloid Interface Sci 80:1–25CrossRefGoogle Scholar
  63. 63.
    Barreiro-Iglesias R, Alvarez-Lorenzo C, Concheiro A (2003) Poly(acrylic acid) microgels (carbopol® 934)/surfactant interactions in aqueous media: Part II: ionic surfactants. Int J Pharm 258:179–191PubMedCrossRefGoogle Scholar
  64. 64.
    Meid J, Friedrich T, Tieke B, Lindner P, Richtering W (2011) Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels. Phys Chem Chem Phys 13:3039–3047PubMedCrossRefGoogle Scholar
  65. 65.
    Berndt I, Popescu C, Wortmann F-J, Richtering W (2006) Mechanics versus thermodynamics: swelling in multiple-temperature-sensitive core-shell microgels. Angew Chemie Int Ed Engl 45:1081–1085CrossRefGoogle Scholar
  66. 66.
    Kaneda I, Vincent B (2004) Swelling behavior of PMMA-g-PEO microgel particles by organic solvents. J Colloid Interface Sci 274:49–54PubMedCrossRefGoogle Scholar
  67. 67.
    Pillai O, Panchagnula R (2001) Polymers in drug delivery. Curr Opin Chem Biol 5:447–451PubMedCrossRefGoogle Scholar
  68. 68.
    Keerl M, Richtering W (2007) Synergistic depression of volume phase transition temperature in copolymer microgels. Colloid Polym Sci 285:471–474CrossRefGoogle Scholar
  69. 69.
    Goddard ED, Hannan RB, Matteson GH (1977) Dye solubilization by a cationic polymer/anionic surfactant system. J Colloid Interface Sci 60:214–215CrossRefGoogle Scholar
  70. 70.
    Leung PS, Goddard ED, Han C, Glinka CJ (1985) A study of polycation-anionic-surfactant systems. Colloids Surf 13:47–62CrossRefGoogle Scholar
  71. 71.
    Leung PS, Goddard ED (1991) Gels from dilute polymer/surfactant solutions. Langmuir 7:608–609CrossRefGoogle Scholar
  72. 72.
    Lee BH, Christian SD, Tucker EE, Scamehorn JF (1991) Effects of an anionic polyelectrolyte on the solubilization of mono- and dichlorophenols by aqueous solutions of N-hexadecylpyridinium chloride. Langmuir 7:1332–1335CrossRefGoogle Scholar
  73. 73.
    Magny B, Iliopoulos I, Zana R, Audebert R (1994) Mixed micelles formed by cationic surfactants and anionic hydrophobically modified polyelectrolytes. Langmuir 10:3180–3187CrossRefGoogle Scholar
  74. 74.
    Ilias I (1998) Association between hydrophobic polyelectrolytes and surfactants. Curr Opin Colloid Interface Sci 3:493–498CrossRefGoogle Scholar
  75. 75.
    Goddard ED, Pethica BA (1951) On detergent-protein interactions. J Chem Soc 2659–2663Google Scholar
  76. 76.
    Laurent TC, Scott JE (1964) Molecular weight fractionation of polyanions by cetylpyridinium chloride in salt solutions. Nature 16:661–662CrossRefGoogle Scholar
  77. 77.
    Kwak JCT (1998) Polymer-surfactant systems. Marcel Dekker, New YorkGoogle Scholar
  78. 78.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552PubMedCrossRefGoogle Scholar
  79. 79.
    Thomas A, Goettmann F, Antonietti M (2008) Hard templates for soft materials: creating nanostructured organic materials. Chem Mater 20:738–755CrossRefGoogle Scholar
  80. 80.
    Nizri G, Makarsky A, Magdassi S, Talmon Y (2009) Nanostructures formed by self-assembly of negatively charged polymer and cationic surfactants. Langmuir 25:1980–1985PubMedCrossRefGoogle Scholar
  81. 81.
    Nizri G, Magdassi S, Schmidt J, Cohen Y, Talmon Y (2004) Microstructural characterization of micro- and nanoparticles formed by polymer-surfactant interactions. Langmuir 20:4380–4385PubMedCrossRefGoogle Scholar
  82. 82.
    Goddard ED, Ananthapadmanabhan KP (1993) Interactions of surfactants with polymers and proteins. Taylor & Francis, Boca RatonGoogle Scholar
  83. 83.
    Dualeh AJ, Steiner CA (1990) Hydrophobic microphase formation in surfactant solutions containing an amphiphilic graft copolymer. Macromolecules 23:251–255CrossRefGoogle Scholar
  84. 84.
    Guillemet F, Piculell L (1995) Interactions in aqueous mixtures of hydrophobically modified polyelectrolyte and oppositely charged surfactant. mixed micelle formation and associative phase separation. J Phys Chem 99:9201–9209CrossRefGoogle Scholar
  85. 85.
    Thuresson K, Nilsson S, Lindman B (1996) Effect of hydrophobic modification on phase-behavior and rheology in mixtures of oppositely charged polyelectrolytes. Langmuir 12:530–537CrossRefGoogle Scholar
  86. 86.
    Thuresson K, Lindman B, Nyström B (1997) Effect of hydrophobic modification of a nonionic cellulose derivative on the interaction with surfactants. Rheology. J Phys Chem B 101:6450–6459CrossRefGoogle Scholar
  87. 87.
    Karlberg M, Thuresson K, Piculell L, Lindman B (2004) Mixed solutions of hydrophobically modified graft and block copolymers. Colloids Surf A 236:159–164CrossRefGoogle Scholar
  88. 88.
    Piculell L, Egermayer M, Sjöström J (2003) Rheology of mixed solutions of an associating polymer with a surfactant. Why are different surfactants different? Langmuir 19:3643–3649CrossRefGoogle Scholar
  89. 89.
    Antunes FE, Marques EF, Miguel MG, Lindman B (2009) Polymer-vesicle association. Adv Colloid Interface Sci 147–148:18–35PubMedCrossRefGoogle Scholar
  90. 90.
    Antunes FE, Lindman B, Miguel MG (2005) Mixed systems of hydrophobically modified polyelectrolytes: controlling rheology by charge and hydrophobe stoichiometry and interaction strength. Langmuir 21:10188–10196PubMedCrossRefGoogle Scholar
  91. 91.
    Bergfeldt K, Piculell L, Linse P (1996) Segregation and association in mixed polymer solutions from flory-huggins model calculations. J Phys Chem 100:3680–3687CrossRefGoogle Scholar
  92. 92.
    Hefford RJ (1984) Polymer mixing in aqueous solution. Polymer 25:979–984CrossRefGoogle Scholar
  93. 93.
    Chun M-K, Cho C-S, Choi H-K (2001) A novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of poloxamer. J Appl Polymer Sci 79:1525–1530CrossRefGoogle Scholar
  94. 94.
    Dubin P, Bock J, Davis R, Schulz ND, Thies C (1994) Macromolecular complexes in chemistry and biology. Springer, BerlinCrossRefGoogle Scholar
  95. 95.
    Shenkov S, Baranovsky VY (1994) Complex formation between poly(methacrylic acid) and poly(propylene glycol) in aqueous solutions. J Polymer Sci A 32:1385–1387CrossRefGoogle Scholar
  96. 96.
    Cole ML, Whateley TL (1996) Interaction of nonionic block copolymeric (Poloxamer) surfactants with poly (Acrylic Acid), studied by photon correlation spectroscopy. J Colloid Interface Sci 180:421–427CrossRefGoogle Scholar
  97. 97.
    Wang Y, Goethals EJ, Du Prez FE (2004) Association behavior between end-functionalized block copolymers PEO-PPO-PEO and poly(acrylic acid). Macromol Chem Phys 205:1774–1781CrossRefGoogle Scholar
  98. 98.
    Barreiro-Iglesias R, Alvarez-Lorenzo C, Concheiro A (2003) Poly(acrylic acid) microgels (carbopol® 934)/surfactant interactions in aqueous media: Part I: nonionic surfactants. Int J Pharm 258:165–177PubMedCrossRefGoogle Scholar
  99. 99.
    Costa T, Schillen K, Miguel MG, Lindman B, Seixas de Melo J (2009) Association of a hydrophobically modified polyelectrolyte and a block copolymer followed by fluorescence techniques. J Phys Chem B 113:6194–6204PubMedCrossRefGoogle Scholar
  100. 100.
    dos Santos S, Luigjes B, Piculell L (2010) Associative phase behaviour and disintegration of copolymer aggregates on adding poly(acrylic acid) to aqueous solutions of a PEO-PPO-PEO triblock copolymer. Soft Matter 6:4756–4767CrossRefGoogle Scholar
  101. 101.
    Kabanov AV, Zezin AB (1984) A new class of complex water-soluble polyelectrolytes. Makroma Chem Suppl 6:259–276CrossRefGoogle Scholar
  102. 102.
    Chu DY, Thomas JK (1986) Effect of cationic surfactants on the conformation transition of poly(methacrylic acid). J Am Chem Soc 108:6270–6276CrossRefGoogle Scholar
  103. 103.
    Goddard ED (1986) Polymer-surfactant interaction part II. Polymer and surfactant of opposite charge. Colloids Surf 19:301–329CrossRefGoogle Scholar
  104. 104.
    Thalberg K, Lindman B (1989) Interaction between hyaluronan and cationic surfactants. J Phys Chem 93:1478–1483CrossRefGoogle Scholar
  105. 105.
    Thalberg K, Lindman B, Bergfeldt K (1991) Phase behavior of systems of polyacrylate and cationic surfactants. Langmuir 7:2893–2898CrossRefGoogle Scholar
  106. 106.
    Dias R, Mel'nikov S, Lindman B, Miguel MG (2000) DNA phase behavior in the presence of oppositely charged surfactants. Langmuir 16:9577–9583CrossRefGoogle Scholar
  107. 107.
    Lynch I, Sjöström J, Piculell L (2005) Reswelling of polyelectrolyte hydrogels by oppositely charged surfactants. J Phys Chem B 109:4258–4262PubMedCrossRefGoogle Scholar
  108. 108.
    Thalberg K, Lindman B, Karlström G (1991) Phase behavior of a system of cationic surfactant and anionic polyelectrolyte: the effect of salt. J Phys Chem 95:6004–6011CrossRefGoogle Scholar
  109. 109.
    Ilekti P, Martin T, Cabane B, Piculell L (1999) Effects of polyelectrolytes on the structures and interactions of surfactant aggregates. J Phys Chem B 103:9831–9840CrossRefGoogle Scholar
  110. 110.
    Svensson A, Norrman J, Piculell L (2006) Phase behavior of polyion-surfactant ion complex salts: effects of surfactant chain length and polyion length. J Phys Chem B 110:10332–10340PubMedCrossRefGoogle Scholar
  111. 111.
    Svensson A, Piculell L, Cabane B, Ilekti P (2002) A new approach to the phase behavior of oppositely charged polymers and surfactants. J Phys Chem B 106:1013–1018CrossRefGoogle Scholar
  112. 112.
    Svensson A, Piculell L, Karlsson L, Cabane B, Jonsson B (2003) Phase behavior of an ionic surfactant with mixed monovalent/polymeric counterions. J Phys Chem B 107:8119–8130CrossRefGoogle Scholar
  113. 113.
    dos Santos S, Lundberg D, Piculell L (2011) Responsive and evolving mixtures of a hydrolyzing cationic surfactant and oppositely charged polyelectrolytes. Soft Matter 7:5540–5544CrossRefGoogle Scholar
  114. 114.
    Fanun M (2010) Colloids in drug delivery. CRC Press/Taylor & Francis, Boca RatonCrossRefGoogle Scholar
  115. 115.
    Dias RS, Lindman B (2008) DNA interactions with polymers and surfactants. Wiley, HobokenCrossRefGoogle Scholar
  116. 116.
    Costa D, Hansson P, Schneider S, Miguel MG, Lindman B (2006) Interaction between covalent DNA gels and a cationic surfactant. Biomacromolecules 7:1090–1095PubMedCrossRefGoogle Scholar
  117. 117.
    Hansson P, Schneider S, Lindman B (2002) Phase separation in polyelectrolyte gels interacting with surfactants of opposite charge. J Phys Chem B 106:9777–9793CrossRefGoogle Scholar
  118. 118.
    Nilsson P, Hansson P (2005) Ion-exchange controls the kinetics of deswelling of polyelectrolyte microgels in solutions of oppositely charged surfactant. J Phys Chem B 109:23843–23856PubMedCrossRefGoogle Scholar
  119. 119.
    Nilsson P, Hansson P (2007) Deswelling kinetics of polyacrylate gels in solutions of cetyltrimethylammonium bromide. J Phys Chem B 111:9770–9778PubMedCrossRefGoogle Scholar
  120. 120.
    Nilsson P, Unga J, Hansson P (2007) Effect of salt and surfactant concentration on the structure of polyacrylate gel/surfactant complexes. J Phys Chem B 111:10959–10964PubMedCrossRefGoogle Scholar
  121. 121.
    Morimoto N, Endo T, Ohtomi M, Iwasaki Y, Akiyoshi K (2005) Hybrid nanogels with physical and chemical cross-linking structures as nanocarriers. Macromol Biosci 5:710–716PubMedCrossRefGoogle Scholar
  122. 122.
    Zhang Y, Zhu W, Wang B, Ding J (2005) A novel microgel and associated post-fabrication encapsulation technique of proteins. J Control Release 105:260–268PubMedCrossRefGoogle Scholar
  123. 123.
    Murthy N, Thng YX, Schuck S, Xu MC, Frechet JM (2002) A novel strategy for encapsulation and release of proteins: hydrogels and microgels with acid-labile acetal cross-linkers. J Am Chem Soc 124:12398–12399PubMedCrossRefGoogle Scholar
  124. 124.
    Bysell H, Mansson R, Hansson P, Malmsten M (2011) Microgels and microcapsules in peptide and protein drug delivery. Adv Drug Deliv Rev 63:1172–1185PubMedCrossRefGoogle Scholar
  125. 125.
    Huang C-I, Olvera de la Cruz M (2002) Polyelectrolytes in multivalent salt solutions: monomolecular versus multimolecular aggregation. Macromol 35:976–986CrossRefGoogle Scholar
  126. 126.
    Dias RS, Svingen R, Gustavsson B, Lindman B, Miguel MG (2005) Electrophoretic properties of complexes between DNA and the cationic surfactant cetyltrimethylammonium bromide. Electrophoresis 26:2908–2917PubMedCrossRefGoogle Scholar
  127. 127.
    Dias RS, Innerlohinger J, Glatter O, Miguel MG, Lindman B (2005) Coil-globule transition of DNA molecules induced by cationic surfactants: a dynamic light scattering study. J Phys Chem B 109:10458–10463PubMedCrossRefGoogle Scholar
  128. 128.
    Gonzalez-Perez A, Carlstedt J, Dias RS, Lindman B (2010) Cyclodextrins in DNA decompaction. Colloids Surf B Biointerfaces 76:20–27PubMedCrossRefGoogle Scholar
  129. 129.
    Costa D, Miguel MG, Lindman B (2007) Effect of additives on swelling of covalent DNA gels. J Phys Chem B 111:8444–8452PubMedCrossRefGoogle Scholar
  130. 130.
    Izumrudov VA, Wahlund PO, Gustavsson PE, Larsson PO, Galaev IY (2003) Factors controlling phase separation in water-salt solutions of DNA and polycations. Langmuir 19:4733–4739CrossRefGoogle Scholar
  131. 131.
    Willmitzer L, Bode J, Wagner KG (1977) Phosphorylated protamines. II. Circular dichroism of complexes with DNA, dependency on ionic strength. Nucleic Acids Res 4:163–176PubMedCrossRefGoogle Scholar
  132. 132.
    Raspaud E, Pelta J, de Frutos M, Livolant F (2006) Solubility and charge inversion of complexes of DNA and basic proteins. Phys Rev Lett 97:068103PubMedCrossRefGoogle Scholar
  133. 133.
    Costa D, dos Santos S, Antunes F, Miguel MG, Lindman B (2006) Some novel aspects of DNA physical and chemical gels. ARKIVOC iv:161–172Google Scholar
  134. 134.
    Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A (2005) A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther 11:990–995PubMedCrossRefGoogle Scholar
  135. 135.
    Putnam D, Gentry CA, Pack DW, Langer R (2001) Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc Natl Acad Sci USA 98:1200–1205PubMedCrossRefGoogle Scholar
  136. 136.
    Chen DJ, Majors BS, Zelikin A, Putnam D (2005) Structure-function relationships of gene delivery vectors in a limited polycation library. J Control Release 103:273–283PubMedCrossRefGoogle Scholar
  137. 137.
    Youan BB (2008) Impact of nanoscience and nanotechnology on controlled drug delivery. Nanomedicine (Lond) 3:401–406CrossRefGoogle Scholar
  138. 138.
    Silva GA (2009) Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Ann N Y Acad Sci 1199:221–230CrossRefGoogle Scholar
  139. 139.
    Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171PubMedCrossRefGoogle Scholar
  140. 140.
    Lynch I, Salvati A, Dawson KA (2009) Protein-nanoparticle interactions: what does the cell see? Nat Nanotechnol 4:546–547PubMedCrossRefGoogle Scholar
  141. 141.
    Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270PubMedCrossRefGoogle Scholar
  142. 142.
    Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132:5761–5768PubMedCrossRefGoogle Scholar
  143. 143.
    Goppert TM, Muller RH (2005) Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int J Pharm 302:172–186PubMedCrossRefGoogle Scholar
  144. 144.
    Pandey R, Khuller GK (2005) Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb) 85:227–234CrossRefGoogle Scholar
  145. 145.
    De Campos AM, Sanchez A, Gref R, Calvo P, Alonso MJ (2003) The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci 20:73–81PubMedCrossRefGoogle Scholar
  146. 146.
    Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021PubMedCrossRefGoogle Scholar
  147. 147.
    Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055PubMedCrossRefGoogle Scholar
  148. 148.
    Liu GY, Li LY, Yang XL, Dai Z (2008) Preparation of silica/polymer hybrid microspheres and the corresponding hollow polymer microspheres with functional groups. Polymers Adv Technol 19:1922–1930CrossRefGoogle Scholar
  149. 149.
    Li W, Chen CY, Ye C, Wei TT, Zhao YL, Lao F, Chen Z, Meng H, Gao YX, Yuan H, Xing GM, Zhao F, Chai ZF, Zhang XJ, Yang FY, Han D, Tang XH, Zhang YG (2008) The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology 19:145102–145114PubMedCrossRefGoogle Scholar
  150. 150.
    dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA (2011) Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS One 6:e24438PubMedCrossRefGoogle Scholar
  151. 151.
    Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Ann Rev Biochem 78:857–902PubMedCrossRefGoogle Scholar
  152. 152.
    Parton RG, Richards AA (2003) Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4:724–738PubMedCrossRefGoogle Scholar
  153. 153.
    Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y (2004) A quantum dot conjugated sugar ball and its cellular uptake on the size effects of endocytosis in the subviral region. J Am Chem Soc 126:6520–6521PubMedCrossRefGoogle Scholar
  154. 154.
    Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5:1408–1413PubMedCrossRefGoogle Scholar
  155. 155.
    Bexiga MG, Varela JA, Wang F, Fenaroli F, Salvati A, Lynch I, Simpson JC, Dawson KA (2011) Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology 5:557–567PubMedCrossRefGoogle Scholar
  156. 156.
    Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557PubMedCrossRefGoogle Scholar
  157. 157.
    Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K, Nienhaus GU, Musyanovych A, Mailander V, Landfester K, Simmet T (2011) Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 5:1657–1669PubMedCrossRefGoogle Scholar
  158. 158.
    Fubini B, Ghiazza M, Fenoglio I (2010) Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4:347–363PubMedCrossRefGoogle Scholar
  159. 159.
    Tsai YY, Huang YH, Chao YL, Hu KY, Chin LT, Chou SH, Hour AL, Yao YD, Tu CS, Liang YJ, Tsai CY, Wu HY, Tan SW, Chen HM (2011) Identification of the nanogold particle-induced endoplasmic reticulum stress by omic techniques and systems biology analysis. ACS Nano 5:9354–9369PubMedCrossRefGoogle Scholar
  160. 160.
    Lesniak A, Campbell A, Monopoli MP, Lynch I, Salvati A, Dawson KA (2010) Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials 31:9511–9518PubMedCrossRefGoogle Scholar
  161. 161.
    Vacha R, Martinez-Veracoechea FJ, Frenkel D (2011) Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett 11:5391–5395PubMedCrossRefGoogle Scholar
  162. 162.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668PubMedCrossRefGoogle Scholar
  163. 163.
    dos Santos T, Varela J, Lynch I, Salvati A, Dawson KA (2011) Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small 7:3341–3349PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Salomé dos Santos
    • 1
  • Bruno Medronho
    • 2
  • Tiago dos Santos
    • 3
  • Filipe E. Antunes
    • 1
  1. 1.Department of ChemistryUniversity of CoimbraCoimbraPortugal
  2. 2.Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology (IBB/CGB), Faculty of Sciences and TechnologyUniversity of AlgarveFaroPortugal
  3. 3.Centre for BioNano Interactions, School of Chemistry and Chemical BiologyUniversity College DublinDublin 4Ireland

Personalised recommendations