Skip to main content

Synthesis of Nanoferroics

  • Chapter
  • First Online:
Nanoferroics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 177))

Abstract

The Chapter covers the technological aspects of many chemical and physico-chemical nanofabrication methods relevant to making nanoferroic materials and composites. First, the classification of relevant synthesis methods of nanoferroics has been presented. Synthesis of particular nanoferroics with different chemical bonding like metallic, oxide and non-oxide compounds is considered in details. Among the methods, the mechanochemical, sonochemical, hydrothermal, co-precipitation, emulsion, thermal decomposition of unstable precursors have been analyzed. The competition between new phase nucleation and nuclei growth has been revealed to be controlled using feedback between reaction rate and temperature. Agglomeration of nanoparticles has been studied as a phenomenon typical for nanoparticles. Surfactants are used for the synthesis of nanoparticles to reduce the interparticle interaction due to increased repulsive forces to control the particle size and their distribution in most chemical methods. We present a comparative analysis of strengths and weaknesses of all available methods for nanoferroics fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tretiakov, Y.D., Lukashin, А.V., Yeliseev, А.А.: Synthesis of the functional composites based on solid nanoreactors. Uspekhi Khimii (Rus. Chem. Rev.) 73, 974–998 (2004)

    Google Scholar 

  2. Andrievski, R.А., Ragulya, А.V.: Nanosterukturnye Materialy (Nanostructured Materials). Academy, Moscow (2005)

    Google Scholar 

  3. Siegel, R.W.: Nanostructure science and technology. In: Siegel, R.W., Hu, E., Roco, M.C. (eds.) R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices. WTEC Panel Report, p. 5. Kluwer Academic, Boston (1999)

    Google Scholar 

  4. Andres, R.P., Averback, R.S., Brown, W.L., Brus, L.E., Goddard, I.W.A., Kaldor, A., Louie, S.G., Moscovits, M., Peercy, P.S., Riley, S.J., Siegel, R.W., Wang, Y.: Research opportunities on clusters and cluster-assembled materials. In: A Department of Energy, Council on Materials Science Panel Report. J. Mater. Res. 4, 704–736 (1989)

    CAS  Google Scholar 

  5. Chow, G.M., Gonsalves, K.E.: Particle synthesis by chemical routes. In: Edelstein, A.S. (ed.) Nanomaterials: Synthesis, Properties and Applications, p. 55. Institute of Physics, Bristol/Philadelphia, (1996)

    Google Scholar 

  6. Leite, E.R., Lee, E.J.H., Pontes, F.M., Giraldi, T.R., Longo, E.: Nanoparticle growth induced by coalescence in colloidal system. In: Proceedings of the International Conference on Sintering, Penn State University, pp. 335–340 (2003)

    Google Scholar 

  7. Gleiter, H.: Materials with ultrafine microstructures: retrospectives and perspectives. Nanostruct. Mater. 1, 1–19 (1992)

    CAS  Google Scholar 

  8. Klabunde, K.J., Mohs, C.: Nanoparticles and nanostructural materials. In: Interrante, L.V., Hampden-Smith, M.J. (eds.) Chemistry of Advanced Materials: An Overview. Wiley-VCH, New York, pp. 271–298 (1998)

    Google Scholar 

  9. Rohrer, H.: The nanoworld: chances and challenges. Microelectron. Eng. 32, 5–15 (1996)

    CAS  Google Scholar 

  10. Roco, M.C.: Perspective on nanoparticle manufacturing research. In: Chow, G.M., Noskova, N.J. (eds.) Nanostructured Materials, 3rd edn, pp. 71–92. Kluwer Academic, Boston (1998)

    Google Scholar 

  11. Skorokhod, V.V., Ragulya, A.V.: Konsolidirovannye Nanostrukturnye Materialy (Consolidated Nanostructured Materials). Naukova dumka, Kiev (2007)

    Google Scholar 

  12. Tretiakov, Y.D.: Development of inorganic chemistry as a fundament for new generation of functional materials. Uspekhi Khimii (Rus. Chem. Rev.) 73(9), 899–916 (2004)

    Google Scholar 

  13. Hu, E.L., Shaw, D.T.: Synthesis and assembly. In: Siegel, R.W., Hu, E., Roco, M.C. (eds.) Nanostructure Science and Technology. Kluwer Academic, Boston, pp. 16–47 (1996)

    Google Scholar 

  14. Jiang, Y., Bhide, S.V., Virkar, A.V.: Synthesis of nanosize yttria-stabilized zirconia by a molecular decomposition process. J. Solid State Chem. 157, 149–155 (2001)

    CAS  Google Scholar 

  15. Mann, S.: Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365, 499–503 (1993)

    CAS  Google Scholar 

  16. Vasylkiv, O., Sakka, Y.: Nanoexplosion synthesis of multimetal oxide ceramic nanopowders. Nano Lett. 5(12), 2598–2604 (2005)

    Google Scholar 

  17. Williams, R.J.P.: An introduction to biominerals and the role of organic molecules in their formation. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 304, 411–417 (1984)

    CAS  Google Scholar 

  18. Fendler, J.H.: Atomic and molecular clusters in membrane mimetic chemistry. Chem. Rev. 87(5), 877–899 (1987)

    CAS  Google Scholar 

  19. Fendler, J.H.: Self-assembled nanostructured materials. Chem. Mater. 8(8), 1616–1624 (1996)

    CAS  Google Scholar 

  20. Hutchinson, J.L., Mann, S., Skarnulis, A.J., Skaenulis, A.J., Williams, R.J.P.: Preparation of Ag2O crystallites within phospholipid vesicles and their use in nucleation studies. J. Chem Soc: Chem. Commun., issue 13, 634–635 (1980)

    Google Scholar 

  21. Boutonnet, M., Kizling, J., Stenius, P., Maire, G.: The preparation of monodisperse colloidal metal particles from microemulsions. Coll. Surf. 5(3), 209–255 (1982)

    CAS  Google Scholar 

  22. Boutonnet, M., Kizling, J., Touroude, R., Maire, G., Stenius, P.: Monodispersed colloidal metal particles from non-aqueous solutions: catalytic behaviour for the hydrogenation of but-1-ene of platinum particles in solution. Appl. Catal. 20(15), 163–177 (1986)

    CAS  Google Scholar 

  23. Pierre, T.G.S., Sipos, P., Chan, P., Chua-Anusorn, W., Bauchspiess, K.R., Webb, J.: Synthesis of nanoscale iron oxide structures using protein cages and polysaccharide networks. Nanophase Mater. Synth. Prop. Appl. 260, 49–55 (1994)

    Google Scholar 

  24. Boldyrev, V.V.: Eksperimentalnye Metody v Mechanokhimii Tverdykh Neorganicheskikh Veshestv (Experimental Methods in Mechanochemistry of Solid Inorganic Substances). Nauka, Novosibirsk (1983)

    Google Scholar 

  25. Boldyrev, V.V.: Mechanokhimiya i Mechanoactivatsiya Tverdykh Tel (Mechanochemistry and mechanoactivation of solids). Uspekhi Khimii (Rus. Chem. Rev.) 75(3), 203–216 (2006)

    Google Scholar 

  26. Vlasova, М.V., Kakazei, N.G.: Elektronnyy Paramagnitnyy Rezonans v Mechanicheski Razrushenykh Tverdykh Tel. (Electron Paramagnetic Resonance in Mechanically Failed Solids). Naukova dumka, Kiev (1979)

    Google Scholar 

  27. McCormick, P.G.: Application of mechanical alloying to chemical refining. Mater. Trans. JIM 36(2), 161–196 (1995)

    CAS  Google Scholar 

  28. McCormick, P.G.: Mechanically alloying and mechanically induced chemical reactions. In: Gschneidner Jr., K.A., Eying. L. (eds) Handbook on the Physics and Chemistry of Rare Earths, vol. 24, pp. 47–82. Elsevier Science BV, Amsterdam (1997)

    Google Scholar 

  29. Butyagin, P.Y.: Razuporyadochennye structury I mechanochimicheskie reakcii v tverdyh telah (Disordered structures and mechanochemical reactions in solids). In: Avvacumov, Е.G. (ed.) Mechanokhimicheskiy Sintez v Neorganicheskoy Khimii (Mechanochemical Synthesis in Inorganic Chemistry). Nauka, Novosibirsk (1991)

    Google Scholar 

  30. Butyagin, P.Y.: Problemy I perspektivy razvitiya mechanokhimii (Challenges and perspectives of mechanochemistry development). Uspekhi khimii (Rus. Chem. Rev.) 63(12), 1031–1043 (1994)

    CAS  Google Scholar 

  31. Pavlyukhin, Y.Т., Manzanov, Y.E., Avvakumov, Е.G., Boldyrev, V.V.: Obrazovanie tverdykh rastvorov v sisteme Fe-Cr pod vliyaniem mechanicheskoy aktivatsii (Solid solution formation in the Fe-Cr system under mechanochemical activation). Izv SD AN USSR Ser. Chem. 14, 84–88 (1981)

    Google Scholar 

  32. Kong, L.B., Zhang, T.S., Ma, J., Boey, F.: Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique. Prog. Mater. Sci. 53, 207–322 (2008)

    CAS  Google Scholar 

  33. Khodakov, G.S.: Fizika Izmelcheniya (Physics of Milling). Nauka, Мoscow (1972)

    Google Scholar 

  34. Rotenberg, B.А.: Dielektriki dlya Keramicheskikh Kondensatorov (Dielectrics for Ceramic Capacitors). NIIGirikond, St.-Petersburg (2000)

    Google Scholar 

  35. RF Patent №38652 Planetary Mill – Activator // Lapshin VI, Makarov SB, Korobov GB, Rospatent (1993)

    Google Scholar 

  36. Jiang, J.Z., Poulsen, F.W., Morup, S.: Structure and thermal stability of nanostructured iron-doped zirconia prepared by high-energy ball milling. J. Mater. Res. 14, 1343–1352 (1999)

    CAS  Google Scholar 

  37. Kong, L.B., Ma, J., Zhu, W., Tan, O.K.: Phase formation and thermal stability of (Zr1-xTix)O2 solid solution via a high-energy ball milling process. J. Alloys Compd. 335(1–2), 290–296 (2002)

    CAS  Google Scholar 

  38. Janot, R., Guerard, D.: One-step synthesis of maghemite nanometric powders by ball-milling. J. Alloys Compd. 333, 302–307 (2002)

    CAS  Google Scholar 

  39. Zdujic, M., Jovalekic, C., Karanovic, L., Mitric, M., Polet, D., Skala, D.: Mechanochemical treatment of α-Fe2O3 powder in air atmosphere. Mater. Sci. Eng., A 245, 109–117 (1998)

    Google Scholar 

  40. Jin, Z.Q., Tang, W., Zhang, J.R., Lin, H., Du, Y.W.: Magnetic properties of isotropic SrFe12O9 fine particles prepared by mechanical alloying. J. Magn. Magn. Mater. 182, 231–237 (1998)

    CAS  Google Scholar 

  41. Wang, S., Ding, J., Shi, Y., Chen, Y.J.: High coercivity in mechanically alloyed BaFe10Al2O19. J. Magn. Magn. Mater. 219, 206–212 (2000)

    CAS  Google Scholar 

  42. Fatemi, D.J., Harris, V.G., Browning, V.M., Kirkland, J.P.: Processing and cation redistribution of MnZn ferrites via high-energy ball milling. J. Appl. Phys. 83, 6767–6769 (1998)

    Google Scholar 

  43. Xue, J.M., Wan, D.M., Lee, S.E., Wang, J.: Mechanochemical synthesis of lead zirconate titanate form mixed oxides. J. Am. Ceram. Soc. 82(7), 1687–1692 (1999)

    CAS  Google Scholar 

  44. Kong, L.B., Zhu, W., Tan, O.K.: Preparation and characterization of Pb(Zr0.52Ti0.48)O3 ceramics from highenergy ball milling powders. Mater. Lett. 42, 232–239 (2000)

    CAS  Google Scholar 

  45. Kong, L.B., Ma, J., Zhu, W., Tan, O.K.: Preparation and characterization of PLZT ceramics using high-energy ball milling. J. Alloys Compd. 322, 290–297 (2001)

    CAS  Google Scholar 

  46. Wang, J., Xue, J.M., Wan, D.M., Gan, B.K.: Mechanically activating nucleation and growth of complex perovskites. J. Solid State Chem. 154, 321–328 (2000)

    CAS  Google Scholar 

  47. Gao, X.S., Xue, J.M., Wang, J., Yu, T., Shen, Z.X.: Sequential combination of constituent oxides in the synthesis of Pb(Fe1/2Nb1/2)O3 by mechanical activation. J. Am. Ceram. Soc. 85(3), 565–572 (2002)

    CAS  Google Scholar 

  48. Ang, S.K., Xue, J.M., Wang, J.: Pb(Fe2/3W1/3)O3 by mechanical activation of coprecipitated Pb3Fe2O6 and WO3. J. Alloys Compd. 343, 156–163 (2002)

    Google Scholar 

  49. Kong, L.B., Ma, J., Huang, H., Zhang, R.F., Que, W.X.: Barium titanate derived from mechanochemically activated powders. J. Alloys Compd. 337, 226–230 (2002)

    CAS  Google Scholar 

  50. Kong, L.B., Ma, J., Zhu, W., Tan, O.K.: Preparation of Bi4Ti3O12 ceramics via a high-energy ball milling process. Mater. Lett. 51, 108–114 (2001)

    CAS  Google Scholar 

  51. Shantha, K., Varma, K.B.R.: Characterization of fine-grained bismuth vanadate ceramics obtained using nanosized powders. J. Am. Ceram. Soc. 83(5), 1122–1128 (2000)

    CAS  Google Scholar 

  52. Castro, A., Millan, P., Ricote, J., Pardo, L.: Room temperature stabilization of c-Bi2VO5.5 and synthesis of the new fluorite phase f-Bi2VO5 by a mechanochemical activation. J. Mater. Chem. 10, 767–771 (2000)

    CAS  Google Scholar 

  53. Lu, C.H., Wu, C.H.: Preparation, sintering, and ferroelectric properties of layer-structured strontium bismuth titanatium oxide ceramics. J. Eur. Ceram. Soc. 22, 707–714 (2002)

    Google Scholar 

  54. Aning, A.O., Hong, C., Desu, S.B.: Novel synthesis of lead titanate by mechanical alloying. Mater. Sci. Forum 179–181, 207–214 (1995)

    Google Scholar 

  55. Xue, J.M., Wan, D.M., Wang, J.: Mechanochemical synthesis of nanosized lead titanate powders form mixed oxides. Mater. Lett. 39, 364–369 (1999)

    CAS  Google Scholar 

  56. Yu, T., Shen, Z.X., Xue, J.M., Wang, J.: Nanocrystalline PbTiO3 powders form an amorphous Pb–Ti–O precursor by mechanical activation. Mater. Chem. Phys. 75, 216–219 (2002)

    CAS  Google Scholar 

  57. Kong, L.B., Zhu, W., Tan, O.K.: Direct formation of nano-sized PbTiO3 powders by high-energy ball milling. Ferroelectrics 230, 281–286 (1999)

    Google Scholar 

  58. Kong, L.B., Zhu, W., Tan, O.K.: PbTiO3 ceramics derived from high-energy ball milled nano-sized powders. J. Mater. Sci. Lett. 19, 1963–1966 (2000)

    CAS  Google Scholar 

  59. Brankovic, Z., Brankovic, G., Jovalekic, C., Maniette, Y., Cilense, M., Varela, J.A.: Mechanochemical synthesis of PZT powders. Mater. Sci. Eng., A 345, 243–248 (2003)

    Google Scholar 

  60. Parashar, S.K.S., Choudhary, R.N.P., Murty, B.S.: Ferroelectric phase transition in Pb0.92-Gd0.08(Zr0.53Ti0.47)0.98O3 nanoceramic synthesized by high-energy ball milling. J. Appl. Phys. 94(9), 6091–6096 (2003)

    CAS  Google Scholar 

  61. Kong, L.B., Ma, J., Zhu, W., Tan, O.K.: Translucent PMN and PMN–PT ceramics from high-energy ball milling derived powders. Mater. Res. Bull. 37, 23–32 (2002)

    CAS  Google Scholar 

  62. de Figueiredo, R.S., Messai, A., Hernandes, A.C., Sombra, A.S.B.: Piezoelectric lithium niobate by mechanical alloying. J. Mater. Sci. Lett. 17, 449–451 (1998)

    Google Scholar 

  63. Pardo, L., Castro, A., Millan, P., Alemany, C., Jimenez, R., Jimenez, B.: (Bi3TiNbO9)x(SrBi2Nb2O9)1-x Aurivillius type structure piezoelectric ceramics obtained from mechanochemically activated oxides. Acta. Mater. 48, 2421–2428 (2000)

    CAS  Google Scholar 

  64. Wang, J., Wan, D.M., Xue, J.M., Ng, W.B.: Synthesizing nanocrystalline Pb(Zn1/3Nb2/3)O3 powders from mixed oxides. J. Am. Ceram. Soc. 82(2), 477–479 (1999)

    CAS  Google Scholar 

  65. Ding, J., Tsuzuki, T., McCormick, P.G.: Street ultrafine Co and Ni particles prepared by mechanochemical processing. J. Phys. D: Appl. Phys. 29, 2365–2369 (1996)

    CAS  Google Scholar 

  66. McCormick, P.G., Tsuzuki, T.: Recent developments in mechanochemical nanoparticles synthesis. Mater. Sci. Forum 386–388, 377–386 (2002)

    Google Scholar 

  67. Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001)

    CAS  Google Scholar 

  68. Ito, T., Zhang, Q., Saito, F.: Synthesis of perovskite-type lanthanum cobalt oxide nanoparticles by means of mechanochemical treatment. Powder Technol. 143–144, 170–173 (2004)

    Google Scholar 

  69. Rahaman, M.N.: Ceramic Processing and Sintering, 2nd edn. Marcel Dekker Inc., New York (2004)

    Google Scholar 

  70. Rahaman, M.N., Zhou, Y.C.: Effect of solid solution additives on the sintering of ultrafine CeO2 powders. J. Eur. Ceram. Soc. 15(10), 939–945 (1995)

    CAS  Google Scholar 

  71. Peterson, J.H.: Process for Producing Insoluble Titanates. US Patent No 2216655, Oct 22 2 (1940)

    Google Scholar 

  72. Adschiri, T., Hakuta, Y., Sue, K., Arai, K.: Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions. J. Nanopart. Res. 3, 227–235 (2001)

    CAS  Google Scholar 

  73. Hayashi, H., Hakuta, Y.: Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Review. Materials 3(7), 3794–3817 (2010)

    CAS  Google Scholar 

  74. Urek, S., Drofenik, M.: The hydrothermal synthesis of BaTiO3 fine particles from hydroxide-alkoxide precursors. J. Eur. Ceram. Soc. 18, 279–286 (1998)

    CAS  Google Scholar 

  75. Kumazawa, H., Annen, S., Sada, E.: Hydrothermal synthesis of barium titanate fine particles from amorphous and crystalline titania. J. Mater. Sci. 30, 4740–4744 (1995)

    CAS  Google Scholar 

  76. Schäf, O., Ghobarkar, H., Knauth, P.: Hydrothermal synthesis of nanomaterials. Nanostruct. Mater: Electron. Mater: Sci. Technol. 8: 23–41 (2004)

    Google Scholar 

  77. Livage, J.: Molecular design of transition metal alkoxide precursors. In: Lee, B.I., Pope, E.J.A. (eds.) Chemical Processing of Ceramics, pp. 3–22. Marcel Dekker, New York (1994)

    Google Scholar 

  78. Leaustic, A., Babonneau, F., Livage, J.: Structural investigation of the hydrolysis-condensation process of titanium alkoxides Ti(OR)4 (OR5 OPri, OEt) modified by acetylacetone. 1. Study of the alkoxide modification. Chem. Mater. 1, 240–247 (1989)

    CAS  Google Scholar 

  79. Leaustic, A., Babonneau, F., Livage, J.: Structural investigation of the hydrolysis-condensation process of titanium alkoxides Ti(OR)4 (OR5 OPri, OEt) modified by acetylacetone. 2. From the modified precursor to the colloids. Chem. Mater. 1, 248–252 (1989)

    CAS  Google Scholar 

  80. Eckert, J.O., Hung-Houston, C.C., Gersten, B.L., Lencka, M.M., Riman, R.E.: Kinetics and mechanism of hydrothermal synthesis of barium titanate. J. Am. Ceram. Soc. 79(11), 2929–2939 (1996)

    CAS  Google Scholar 

  81. Hennings, D., Rosenstein, G., Schreinemacher, H.J.: Hydrothermal preparation of barium titanate from barium-titanium acetate gel precursors. J. Eur. Ceram. Soc. 8, 107–115 (1991)

    CAS  Google Scholar 

  82. Shi, E.-W., Xia, C.-T., Zhong, W.-Z., Wang, B.-G., Feng, C.-D.: Crystallographic properties of hydrothermal barium titanate crystallites. J. Am. Ceram. Soc. 80, 1567–1572 (1997)

    CAS  Google Scholar 

  83. Wada, S., Chikamori, H., Noma, T., Suzuki, T.: Hydrothermal synthesis of barium titanate crystallites using new stable titanium chelated complex in aqueous solution. J. Mater. Sci. Lett. 19, 245–247 (2000)

    CAS  Google Scholar 

  84. Moon, J., Suvaci, E., Li, T., Sostantino, S.A., Adair, J.H.: Phase development of barium titanate from chemically modified amorphous titanium (hydrous) oxide precursor. J. Eur. Ceram. Soc. 22, 809–815 (2002)

    CAS  Google Scholar 

  85. Lencka, M.M., Riman, R.E.: Thermodynamic modeling of hydrothermal synthesis of ceramic powders. Chem. Mater. 5, 61–70 (1993)

    CAS  Google Scholar 

  86. Lencka, M.M., Riman, R.E.: Hydrothermal synthesis of perovskite materials: thermo-dynamic modelling and experimental verification. Ferroelectrics 151, 159–164 (1994)

    CAS  Google Scholar 

  87. Lencka, M.M., Riman, R.E.: Thermodynamics of the hydrothermal synthesis of calcium titanate with reference to other alkaline-earth titanates. Chem. Mater. 7, 18–25 (1995)

    CAS  Google Scholar 

  88. Vivekanandan, R., Kutty, T.R.N.: Characterization of barium titanate fine powders formed from hydrothermal crystallization. Powder Technol. 57, 181–192 (1989)

    CAS  Google Scholar 

  89. Vivekanandan, R., Philip, S., Kutty, T.R.N.: Hydrothermal preparation of Ba(Ti, Zr)O3 fine powders. Mater. Res. Bull. 22, 99–108 (1986)

    Google Scholar 

  90. Hertl, W.: Kinetic of barium titanate synthesis. J. Am. Ceram. Soc. 71, 879–883 (1988)

    CAS  Google Scholar 

  91. Padmini, P., Kutty, T.R.N.: Wet chemical syntheses of ultrafine multicomponent ceramic powders through gel to crystallite conversion. J. Mater. Chem. 4, 1875–1881 (1994)

    CAS  Google Scholar 

  92. Chien, A.T., Speck, J.S., Lange, F.F., Daykin, A.C., Levi, C.G.: Low temperature/low pressure hydrothermal synthesis of barium titanate: powder and heteroepitaxial thin films. J. Mater. Res. 10, 1784–1789 (1995)

    CAS  Google Scholar 

  93. MacLaren, I., Ponton, C.B.: A TEM and HREM study of particle formation during barium titanate synthesis in aqueous solution. J. Eur. Ceram. Soc. 20, 1267–1275 (2000)

    CAS  Google Scholar 

  94. Ovramenko, B.A., Shvets, L.I., Ovcharenko, F.D., Kornilovich, B.Y.: Kinetics of hydrothermal synthesis of barium metatitanate. Izv Akad Nauk SSSR, Neorg. Mater. 15, 1982–1984 (1979)

    Google Scholar 

  95. Pinceloup, P., Courtois, C., Vicens, J., Leriche, A., Thierry, B.: Evidence of a dissolution-precipitation mechanism in hydrothermal synthesis of barium titanium powders. J. Eur. Ceram. Soc. 19, 973–977 (1999)

    CAS  Google Scholar 

  96. Woo, K., Choi, G.J., Sim, S.J., Cho, Y.S., Kim, Y.D.: Synthesis and characterization of near-stoichiometric barium titanate powder by low temperature hydrothermal reaction using titanium tetra (Methoxyethoxide). J. Mater. Sci. 35, 4539–4548 (2000)

    CAS  Google Scholar 

  97. Choi, J.Y., Kim, C.H., Kim, D.K.: Hydrothermal synthesis of spherical perovskite oxide powders using spherical gel powders. J. Am. Ceram. Soc. 81, 1353–1356 (1998)

    CAS  Google Scholar 

  98. Kutty, T.R.N., Vivekanandan, R.: Preparation of CaTiO3 fine powders by the hydrothermal method. Mater. Lett. 5, 79–83 (1987)

    CAS  Google Scholar 

  99. Lu, S.W., Lee, B.I., Wang, Z.L., Samuels, W.D.: Hydrothermal synthesis and structural characterization of BaTiO3 nanocrystals. J. Cryst. Growth 219, 269–279 (2000)

    Google Scholar 

  100. Dutta, P.K., Gregg, J.R.: Hydrothermal synthesis of tetragonal barium titanate. Chem. Mater. 4, 843–846 (1992)

    CAS  Google Scholar 

  101. Asiaie, R., Zhu, W., Akbar, S.A., Dutta, P.K.: Characterization of submicron particles of tetragonal BaTiO3. Chem. Mater. 8, 226–234 (1996)

    CAS  Google Scholar 

  102. Ma, Y., Vileno, E., Suib, S.L., Dutta, P.K.: Synthesis of tetragonal BaTiO3 by microwave heating and conventional heating. Chem. Mater. 9, 3023–3031 (1997)

    CAS  Google Scholar 

  103. Wu, M., Long, J., Wang, G., Huang, A., Luo, Y.: Hydrothermal synthesis of tetragonal barium titanate from barium hydroxide and titanium dioxide under moderate conditions. J. Am. Ceram. Soc. 82, 3254–3256 (1999)

    CAS  Google Scholar 

  104. Xu, H., Gao, L., Guo, J.: Hydrothermal synthesis of tetragonal barium titanate from barium chloride and titanium tetrachloride under moderate conditions. J. Am. Ceram. Soc. 85, 727–729 (2002)

    CAS  Google Scholar 

  105. Xu, H., Gao, L., Guo, J.: Preparation and characterization of tetragonal barium titanate powders by hydrothermal methods. J. Eur. Ceram. Soc. 22, 1163–1170 (2002)

    CAS  Google Scholar 

  106. Hennings, D., Seriyati, B., Schreinemacher, B.S.: Characterization of hydrothermal barium titanate. J. Eur. Ceram. Soc. 9, 41–46 (1992)

    CAS  Google Scholar 

  107. Hennings, D., Metzmacher, C., Schreinemacher, B.S.: Defect chemistry and microstructure of hydrothermal barium titanate. J. Am. Ceram. Soc. 84, 179–182 (2001)

    CAS  Google Scholar 

  108. Makovec, D., Drofenik, M., Znidarsic, A.: Hydrothermal synthesis of manganese zinc ferrite powders from oxides. J. Am. Ceram. Soc. 82(5), 1113–1120 (1999)

    CAS  Google Scholar 

  109. Wang, M.-L., Shih, Z.-W., Lin, C.-H.: Reaction of α-Fe2O3 with Ba(OH)2 under hydrothermal conditions. J. Cryst. Growth 139, 47–53 (1994)

    CAS  Google Scholar 

  110. Inoue, M., Nishikawa, T., Inui, T.: Glycothermal synthesis of rare earth iron garnets. J. Mater. Res. 13, 856–860 (1998)

    CAS  Google Scholar 

  111. Bae, D.-S., Han, K.-S., Cho, S.-B., Choi, S.-H.: Synthesis of ultrafine Fe3O4 powder by glycothermal process. Mater. Lett. 37, 255–258 (1998)

    CAS  Google Scholar 

  112. Rozman, M., Drofenik, M.: Hydrothermal synthesis of manganese zinc ferrites. J. Am. Ceram. Soc. 78, 2449–2455 (1995)

    CAS  Google Scholar 

  113. Lee, J.H., Kim, H.S., Won, C.W.: Magnetic properties of strontium ferrite powder made by hydrothermal processing. J. Mater. Sci. Lett. 15, 295–297 (1996)

    CAS  Google Scholar 

  114. Ataie, A., Piramoon, M.R., Harris, I.R., Ponton, C.B.: Effect of hydrothermal synthesis environment on the particle morphology, chemistry and magnetic properties of barium hexaferrite. J. Mater. Sci. 30, 5600–5606 (1995)

    CAS  Google Scholar 

  115. Kumazawa, H., Maeda, Y., Sada, E.: Further consideration of hydrothermal synthesis of barium ferrite fine particles. J. Mater. Sci. Lett. 14, 68–71 (1995)

    CAS  Google Scholar 

  116. Wolski, W., Wolska, E., Kaczmarek, J., Piszora, P.: Formation of manganese ferrite by modified hydrothermal method. Phys. Status Solidi (a) 152, K19–K22 (1995)

    CAS  Google Scholar 

  117. Willard, M.A., Kurihara, L.K., Carpenter, E.E., Calvin, L., Harris, V.G.: Chemically prepared magnetic nanoparticles. Int. Mater. Rev. 49(3–4), 125–170 (2004)

    CAS  Google Scholar 

  118. Yi, X., Yitai, Q., Jing, L., Zuyao, C., Li, Y.: Hydrothermal preparation and characterization of ultrafine powders of ferrite spinels MFe2O4 (M = Fe, Zn and Ni). Mater. Sci. Eng. B 34, L1–L3 (1995)

    Google Scholar 

  119. Lin, W.-H., Hwang, C.-S.: Characteristics of powder and sintered bodies of hydrothermally synthesized Mn-Zn ferrites. J. Mater. Sci. 37, 1067–1075 (2002)

    CAS  Google Scholar 

  120. Rath, C., Sahu, K.K., Anand, S., Date, S.K., Mishra, N.C., Das, R.P.: Preparation and characterization of nanosize Mn-Zn ferrite. J. Magn. Magn. Mater. 202, 77–84 (1999)

    CAS  Google Scholar 

  121. Xiang, L., Yin, Y.P., Jin, Y.: Hydrothermal formation of Ni-Zn ferrite from heavy metal co-precipitates. J. Mater. Sci. 37, 349–352 (2002)

    CAS  Google Scholar 

  122. Li, X.Y., Lu, G.X., Li, S.B.: Synthesis and properties of strontium ferrite ultrafine powders. J. Mater. Sci. Lett. 15, 397–399 (1996)

    CAS  Google Scholar 

  123. Uchida, S., Kashiwagi, H., Sato, T., Okuwaki, A.: Preparation of barium iron oxides by the oxidation of iron in the Fe-Ba(OH)2-NaOH-H2O-O2 system. J. Mater. Sci. 31, 4625–4628 (1996)

    CAS  Google Scholar 

  124. Kumazawa, H., Cho, H.-M., Sada, E.: Hydrothermal synthesis of barium ferrite fine particles from goethite. J. Mater. Sci. 28, 5247–5252 (1993)

    CAS  Google Scholar 

  125. Nielsen, A.E.: Kinetics of Precipitation. Pergamon Press, New York (1964)

    Google Scholar 

  126. Walton, A.G.: The Formation and Properties of Precipitates. Robert Krieger Publishing Company, New York (1979)

    Google Scholar 

  127. Lagally, M.G.: Atomic-level view of kinetic and thermodynamic influences in the growth of thin films. Jpn. J. Appl. Phys. 32, 1493–1499 (1993)

    CAS  Google Scholar 

  128. Brinker, C.J., Sherrer, G.W.: Sol-gel Science. Academic, New York (1990)

    Google Scholar 

  129. Lee, J.G., Lee, H.M., Kim, C.S., Oh, Y.J: Magnetic properties of CoFe2O4 powders and thin films grown by a sol-gel method. J. Magn. Magn. Mater., 177–181: part2. 900–902 (1998)

    Google Scholar 

  130. Chen, D.H., He, X.R.: Synthesis of nickel ferrite nanoparticles by sol-gel method. Mater. Res. Bull. 36, 1369–1377 (2001)

    CAS  Google Scholar 

  131. Kim, C.S., Yi, Y.S., Park, K.T., Namgung, H., Lee, J.G.: Growth of ultrafine Co-Mn ferrite and magnetic properties by a sol-gel method. J. Appl. Phys. 85, 5223–5225 (1999)

    CAS  Google Scholar 

  132. Xiong, G., Mai, Z.H., Wang, C.Y., Ni, Y.M., Zhao, Z.X., Xu, M., Liu, C.X., Luo, G.M.: Characterization of CoCrFeO4 nanocrystals prepared by a sol-gel method. Chin. Phys. Lett. 18, 692–694 (2001)

    Google Scholar 

  133. Kim, W.C., Lee, C.W., Kim, C.S.: Magnetic properties of Co-Bi ferrite powders and thin films by a sol-gel method. Scr. Mater. 44, 1451–1455 (2001)

    Google Scholar 

  134. Kim, W.C., Kim, S.J., Sur, J.C., Kim, C.S.: Structural and magnetic properties of CoFe1.9RE0.1O4 (RE = Y, La) prepared by a sol-gel method. J. Magn. Magn. Mater. 242–245, 197–200 (2001)

    Google Scholar 

  135. Kim, W.C., Kim, S.J., Kim, C.S.: Magnetic and structural properties of ultrafine CoFe1.9RE0.1O4 (RE=Gd, Nd) powders grown by using a sol-gel method. J. Appl. Phys. 91, 7607–7609 (2002)

    CAS  Google Scholar 

  136. Lee, S.W., Ryu, Y.G., Yang, K.J., Jung, K.D., Yan, S., Kim, C.S.: Magnetic properties of Zn2+ substituted ultrafine Co-ferrite grown by a sol-gel method. J. Appl. Phys. 91, 7610–7612 (2002)

    CAS  Google Scholar 

  137. Kim, W.C., Kim, S.J., Sur, J.C., Kim, C.S.: Structural and magnetic properties of CoFe1.9RE0.1O4 (RE= Y, La) prepared by a sol-gel method. J. Magn. Magn. Mater. 242–245, 197–200 (2002)

    Google Scholar 

  138. Wang, X.H., Ren, T.L., Li, L.Y., Zhang, L.S.: Preparation and magnetic properties of BaZn2-xCoxFe16O27 nanocrystalline powders. J. Magn. Magn. Mater. 184, 95–100 (1998)

    CAS  Google Scholar 

  139. Xiong, G., Xu, M., Mai, Z.: Magnetic properties of Ba4Co2Fe36O60 nanocrystals prepared through a sol-gel method. Solid State Commun. 118, 53–58 (2001)

    CAS  Google Scholar 

  140. Sanchez, R.D., Rivas, J., Vaqueiro, P., Lopez-Quintela, M.A., Caerio, D.: Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol-gel method. J. Magn. Magn. Mater. 247, 92–98 (2002)

    CAS  Google Scholar 

  141. Mathur, S., Shen, H.: Structural and physical properties of La2/3Ca1/3MnO3 prepared via a modified sol-gel method. J Sol-gel Sci Technol 25, 147–158 (2002)

    CAS  Google Scholar 

  142. O’Brien, S., Brus, L.E., Murray, C.B.: Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 123, 12085–12086 (2001)

    Google Scholar 

  143. Liu, C., Zou, B., Rondinone, A.J., Zhang, Z.J.: Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J. Am. Chem. Soc. 122(26), 6263–6267 (2000)

    CAS  Google Scholar 

  144. Liang, J., Deng, Z., Jiang, X.W., Li, F., Li, Y.: Photoluminescence of tetragonal ZrO2 nanoparticles synthesized by microwave irradiation. Inorg. Chem. 41, 3602–3604 (2002)

    CAS  Google Scholar 

  145. Palchik, O., Zhu, J.J., Gedanken, A.: Microwave assisted preparation of binary oxide nanoparticles. J. Mater. Chem. 10, 1251–1254 (2000)

    CAS  Google Scholar 

  146. Wang, J.P., Luo, H.L.: Magnetic properties of iron clusters prepared by the sol-gel method. J. Appl. Phys. 75, 7425–7428 (1994)

    CAS  Google Scholar 

  147. Jitjanu, A., Crisan, M., Zaherescu, M., Rau, I., Meghea, A.: Structural and textural characterization of iron oxide nanoparticles in the Fe2O3-SiO2 system, obtained by sol-gel method. IEEE Trans. Magn. 267, 71–77 (2001)

    Google Scholar 

  148. Li, L., Li, G., Smith Jr., R.L., Inomata, H.: Microstructural evolution and magnetic properties of NiFe2O4 nanocrystals dispersed in amorphous silica. Chem. Mater. 12, 3705–3714 (2000)

    CAS  Google Scholar 

  149. Chen, J.P., Nikles, D.E.: Preparation of acicular α-Fe nanoparticles in a lamellar liquid crystalline phase. IEEE Trans. Magn. 32, 4478–4488 (1996)

    CAS  Google Scholar 

  150. Chen, M., Tang, B., Nikles, D.E.: Preparation of iron nanoparticles by reduction of acicular β-FeOOH particles. IEEE Trans. Magn. 34, 1141–1143 (1998)

    CAS  Google Scholar 

  151. Chen, L., Yang, W.J., Yang, C.Z.: Preparation of nanoscale iron and Fe3O4 powders in a polymer matrix. J. Mater. Sci. 32, 3571–3575 (1996)

    Google Scholar 

  152. Cabral-Prieto, A., Reyes-Felipe, A.A., Siles-Dotor, M.G.: Synthesis and characterization of nanophasic goethite. Nanostruct. Mater. 10, 311–328 (1998)

    CAS  Google Scholar 

  153. Krehula, S., Popovic, S., Music, S.: Synthesis of acicular α-FeOOH particles at a very high pH. Mater. Lett. 54, 108–113 (2002)

    CAS  Google Scholar 

  154. Ishikawa, T., Motoki, T., Katoh, R., Yasukawa, A., Kandori, K., Nakayama, T., Yuse, F.: Structures of β-FeOOH particles formed in the presence of Ti(IV), Cr(III), and Cu(II) ions. J. Coll. Interface Sci. 250, 74–81 (2002)

    CAS  Google Scholar 

  155. Ishikawa, T., Kumagai, M., Yasukawa, A., Kandori, K., Nakayama, T., Yuse, F.: Influences of metal ions on the formation of γ-FeOOH and magnetite rusts. J. Corros. Sci. 44, 1073–1086 (2002)

    CAS  Google Scholar 

  156. Gotic, M., Popovic, S., Music, S.: Formation and characterization of δ-FeOOH. Mater. Lett. 21, 289–295 (1994)

    CAS  Google Scholar 

  157. Chen, Q., Rondinone, A.J., Chakoumakos, B.C., Zhang, Z.J.: Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation. J. Magn. Magn. Mater. 194, 1–7 (1999)

    CAS  Google Scholar 

  158. Chen, Q., Zhang, Z.J.: Size-dependent superparamagnetic properties of MgFe2O4 spinel ferrite nanocrystallites. Appl. Phys. Lett. 73, 3156–3158 (1998)

    CAS  Google Scholar 

  159. Zhang, Z.J., Wang, Z.L., Chakoumakos, B.C., Yin, J.S.: Temperature dependence of cation distribution and oxidation. State in magnetic Mn-Fe ferrite nanocrystals. J. Am. Chem. Soc. 120, 1800–1804 (1998)

    CAS  Google Scholar 

  160. Chen, J.P., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C., Devlin, E., Kostikas, A.: Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys. Rev. B 54, 9288–9296 (1996)

    CAS  Google Scholar 

  161. Kim, D.K., Voit, W., Zapka, W., Bjelke, B., Muhammed, M., Rao, K.V.: Magnetic behavior of coated superparamagnetic iron oxide nanoparticles in ferrofluids. Mater. Res. Soc. Symp. Proc. 676, Y7.8.1–Y7.8.6 (2001)

    Google Scholar 

  162. Voit, W., Kim, D.K., Zapka, W., Muhammed, M., Rao, K.V.: Magnetic behavior of coated superparamagnetic iron oxide nanoparticles in ferrofluids. Mater. Res. Soc. Symp. Proc. 676, Y7.8 (2001)

    Google Scholar 

  163. Lefebure, S., Dubois, E., Cabuil, V., Neveu, S., Massart, R.: Monodisperse magnetic nanoparticles: preparation and dispersion in water and oils. J. Mater. Res. 13, 2975–2981 (1998)

    CAS  Google Scholar 

  164. Tourinho, F.A., Franck, R., Massart, R.: Aqueous ferrofluids based on manganese and cobalt ferrites. J. Mater. Sci. 25, 3249–3254 (1990)

    CAS  Google Scholar 

  165. de Vicente, J., Delgado, A.V., Duran, J.D.G., Gonzalez-Caballero, F.: Stability of cobalt ferrite colloidal particles. Effect of pH and applied magnetic fields. Langmuir 16, 7954–7961 (2000)

    Google Scholar 

  166. Song, H.J., Oh, J.H., Choi, S.C., Lee, J.C.: Preparation and characterization of Ni ferrite powders by urea decomposition. Phys. Status Solidi (a) 189, 849–852 (2002)

    CAS  Google Scholar 

  167. Hasmonay, E., Depeyrot, J., Sousa, M.H., Tourinho, F.A., Bacri, J.C., Perzynski, R.: Optical properties of nickel ferrite ferrofluids. J. Magn. Magn. Mater. 201, 195–199 (1999)

    CAS  Google Scholar 

  168. Ueda, M., Shimada, S., Inagaki, M.: Synthesis of crystalline zinc ferrite near room temperature. J. Mater. Chem. 3, 1199–1201 (1993)

    CAS  Google Scholar 

  169. Massart, R., Zins, D., Gendron, F., Rivoire, M., Mehta, R.V., Upadhyay, R.V., Goyal, P.S., Aswal, V.K.: Electron spin resonance investigation of Mn-Zn ionic ferrofluid. J. Magn. Magn. Mater. 201, 73–76 (1999)

    CAS  Google Scholar 

  170. Auzans, E., Zins, D., Blums, E., Massart, R.: Synthesis and properties of Mn-Zn ferrite ferrofluids. J. Mater. Sci. 34, 1253–1260 (1999)

    CAS  Google Scholar 

  171. Zins, D., Cabuil, V., Massart, R.: New aqueous magnetic fluids. J. Mol. Liq. 83, 217–232 (1999)

    CAS  Google Scholar 

  172. Xu, X.L., Guo, J.D., Wang, Y.Z.: A novel technique by the citrate pyrolysis for preparation of iron oxide nanoparticles. Mater. Sci. Eng. B 77, 207–209 (2000)

    Google Scholar 

  173. Gazeau, F., Bacri, J.C., Gendron, F., Perzynski, R., Raikher, Y.L., Stepanov, V.I., Dubois, E.: Magnetic resonance of ferrite nanoparticles: evidence of surface effects. J. Magn. Magn. Mater. 186, 175–187 (1998)

    CAS  Google Scholar 

  174. Xu, X., Friedman, G., Humfeld, K.D., Majetich, S.A., Asher, S.A.: Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals. Chem. Mater. 14, 1249–1256 (2002)

    CAS  Google Scholar 

  175. Ni, Y., Ge, X., Zhang, Z., Ye, Q.: Fabrication and characterization of the plate-shaped γ-Fe2O3 nanocrystals. Chem. Mater. 14, 1048–1052 (2002)

    CAS  Google Scholar 

  176. Chen, D.H., Chen, Y.Y.: Synthesis of strontium ferrite nanoparticles by coprecipitation in the presence of polyacrylic acid. Mater. Res. Bull. 37, 801–810 (2002)

    CAS  Google Scholar 

  177. Jacobo, S.E., Domingo-Pascual, C., Rodriguez-Clemente, R., Blesa, M.A.: Synthesis of ultrafine particles of barium ferrite by chemical coprecipitation. J. Mater. Sci. 32, 1025–1028 (1997)

    CAS  Google Scholar 

  178. Janasi, S.R., Rodrigues, D., Emura, M., Landgraf, F.J.G.: Barium ferrite powders obtained by co-precipitation. Phys. Status Solidi (a) 185, 479–485 (2001)

    CAS  Google Scholar 

  179. Ataie, A., Heshmati-Manesh, S., Kazempour, H.: Synthesis of barium hexaferrite by the co-precipitation method using acetate precursor. J. Mater. Sci. 37, 2125–2128 (2002)

    CAS  Google Scholar 

  180. Pileni, M.P., Duxin, N.: Micelle technology for magnetic nanosized alloys and composites. Chem. Innov. 30, 25–38 (2000)

    CAS  Google Scholar 

  181. Eicke, H.-F., Kubik, R., Hasse, R., Zschokke, I.: Water-in-oil microemulsion phenomenon. In: Mittal, K.L. (ed.) Microemulsions and Reactions in Microemulsions, pp. 1533–1549. Plenum Press, New York (1993)

    Google Scholar 

  182. Zulaufand, M., Eicke, H.-F.: Inverted micelles and microemulsions in the ternary system H2O/aerosol-OT/isooctane as studied by photon correlation spectroscopy. J. Phys. Chem. 83, 480–486 (1979)

    Google Scholar 

  183. Ayyub, P., Maitra, A., Shah, D.O.: Microstructure of the CTAB-butanol-octane-water microemulsion system: effect of dissolved salts. J. Chem. Soc. Faraday Trans. 89, 3585–3589 (1993)

    CAS  Google Scholar 

  184. Stecker, M.M., Benedek, G.B.: Theory of multicomponent micelles and microemulsions. J. Phys. Chem. 88, 6519–6544 (1984)

    CAS  Google Scholar 

  185. Dimitrova, G.T., Tadros, T.F., Luckham, P.F., Kipps, M.R.: Investigations into the phase behavior of nonionic ethoxylated surfactants using 2H NMR spectroscopy. Langmuir 12, 315–318 (1996)

    CAS  Google Scholar 

  186. Verweij, H.: Nanocrystalline and nanoporous ceramics. Adv. Mater. 10(17), 1483–1486 (1998)

    CAS  Google Scholar 

  187. Mazdiyasni, K.S., Dolloff, R.T., Smith II, J.S.: Preparation of high-purity submicron barium titanate powders. J. Am. Ceram. Soc. 52, 523–526 (1969)

    CAS  Google Scholar 

  188. Mazdiyasni, K.S.: Fine particle perovskite processing. Am. Ceram. Soc. Bull. 63, 591–594 (1984)

    CAS  Google Scholar 

  189. Kirby, K.W.: Alkoxide synthesis techniques for BaTiO3. Mater. Res. Bull. 23, 881–890 (1988)

    CAS  Google Scholar 

  190. Okamura, H., Bowen, H.K.: Preparation of alkoxides for the synthesis of ceramics. Ceram. Int. 12, 161–171 (1986)

    CAS  Google Scholar 

  191. Bourrel, M., Schechter, R.S.: Microemulsions and Related Systems: Formulation Solvency and Physical Properties. Marcel Dekker, New York (1988)

    Google Scholar 

  192. Kumar, P., Mittal, K.L.: Handbook of Microemulsion Science and Technology. Marcel Dekker, New York (1999)

    Google Scholar 

  193. Herrig, H., Hempelmann, R.: A colloidal approach to nanometre-sized mixed oxide ceramic powders. Mater. Lett. 27, 287–292 (1996)

    CAS  Google Scholar 

  194. Herrig, H., Hempelmann, R.: Microemulsion mediated synthesis of ternary and quaternary nanoscale mixed oxide ceramic powders. Nanostruct. Mater. 9, 241–244 (1997)

    CAS  Google Scholar 

  195. Beck, C., Härtl, W., Hempelmann, R.: Size-controlled synthesis of nanocrystalline BaTiO3 by a sol-gel type hydrolysis in microemulsion- provided nanoreactors. J. Mater. Res. 13, 3174–3180 (1998)

    CAS  Google Scholar 

  196. Pithan, C., Dornseiffer, J., Haegel, F.-H., Shiratori, Y., Waser, R.: Preparation characterization and processing of nano-crystalline BaTiO3 powders and ceramics derived from microemulsion mediated synthesis. J. Am. Ceram. Soc. 89(9), 2908–2916 (2006)

    CAS  Google Scholar 

  197. Inouye, K., Endo, R., Otsuka, Y., Miyashiro, K., Kaneko, K., Ishikawa, T.: Oxygenation of ferrous ions in reversed micelle and reversed microemulsion. J. Phys. Chem. 86, 1465–1469 (1982)

    CAS  Google Scholar 

  198. Duxin, N., Stephan, O., Petit, C., Bonville, P., Colliex, C., Pileni, M.P.: Pure α-Fe coated by an Fe1-xBx alloy. Chem. Mater. 9, 2096–2100 (1997)

    CAS  Google Scholar 

  199. Wilcoxon, J.P., Provencio, P.P.: Use of surfactant micelles to control the structural phase of nanosize iron clusters. J. Phys. Chem. B 103, 9809–9812 (1999)

    CAS  Google Scholar 

  200. Tanori, J., Duxin, N., Petit, C., Lisiecki, I., Veillet, P., Pileni, M.P.: Synthesis of nanosize metallic and alloyed particles in ordered phases. Coll. Polym. Sci. 273, 886–892 (1995)

    CAS  Google Scholar 

  201. Yener, D.O., Giesche, H.: Synthesis of pure and manganese-, nickel-, and zinc-doped ferrite particles in water-in-oil microemulsions. J. Am. Ceram. Soc. 84, 1987–1995 (2001)

    CAS  Google Scholar 

  202. Pillai, V., Kumar, P., Shah, D.O.: Magnetic properties of barium ferrite synthesized using a microemulsion mediated process. J. Magn. Magn. Mater. 116, L299–L304 (1992)

    CAS  Google Scholar 

  203. Liu, C., Rondinone, A.J., Zhang, Z.J.: Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties. Pure Appl. Chem. 72, 37–45 (2000)

    CAS  Google Scholar 

  204. Kikukawa, N., Takemori, M., Nagano, Y., Sugasawa, M., Kobayashi, S.: Synthesis and magnetic properties of nanostructured spinel ferrites using a glycine–nitrate process. J. Magn. Magn. Mater. 284, 206–214 (2004)

    CAS  Google Scholar 

  205. Fang, J.Y., Wang, J., Gan, L.-M., Ng, S.-C., Ding, J., Liu, X.Y.: Fine strontium ferrite powders from an ethanol-based microemulsion. J. Am. Ceram. Soc. 83, 1049–1055 (2000)

    CAS  Google Scholar 

  206. Rozman, M., Drofenik, M.: Sintering of nanosized MnZn ferrite powders. J. Am. Ceram. Soc. 81, 1757–1764 (1998)

    CAS  Google Scholar 

  207. Porter, D.A., Easterling, K.E.: Phase Transformations in Metals and Alloys, 2nd edn. Chapman and Hall, New York (1992)

    Google Scholar 

  208. Blanco, M.C., Meira, A., Baldomir, D., Rivas, J., Lopez-Quintela, M.A.: UV-VIS spectra of small iron particles. IEEE Trans. Magn. 30, 739–741 (1994)

    Google Scholar 

  209. Martino, M., Stoker, M., Hicks, M., Bartholomew, C.H., Sault, A.G., Kawola, J.S.: The synthesis and characterization of iron colloid catalysts in inverse micelle solutions. Appl. Catal. A 161, 235–248 (1997)

    CAS  Google Scholar 

  210. Chen, J.P., Lee, K.M., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C.: Magnetic properties of microemulsion synthesized cobalt fine particles. J. Appl. Phys. 75, 5876–5878 (1994)

    CAS  Google Scholar 

  211. Chen, J.P., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C.: Enhanced magnetization of nanoscale colloidal cobalt particles. Phys. Rev. B 51, 11527–11535 (1995)

    CAS  Google Scholar 

  212. Legrand, J., Petit, C., Pileni, M.P.: Domain shapes and superlattices made of 8 nm cobalt nanocrystals: fabrication and magnetic properties. J. Phys. Chem. B 105, 5643–5646 (2001)

    CAS  Google Scholar 

  213. Legrand, J., Ngo, A.-T., Petit, C., Pileni, M.P.: Domain shapes and superlattices made of cobalt nanocrystals. Adv. Mater. 13, 58–62 (2001)

    CAS  Google Scholar 

  214. Petit, C., Taleb, A., Pileni, M.P.: Self-organization of magnetic nanosized cobalt particles. Adv. Mater. 10, 259–261 (1998)

    CAS  Google Scholar 

  215. Petit, C., Cren, T., Roditchev, D., Sacks, W., Klein, J., Pileni, M.P.: Self-organization of nanosized particles. Adv. Mater. 11(14), 1198–1202 (1998)

    Google Scholar 

  216. Petit, C., Pileni, M.P.: Physical properties of self-assembled nanosized cobalt particles. Appl. Surf. Sci. 162–163, 519–528 (2000)

    Google Scholar 

  217. Salazar-Alvarez, G., Mikhailova, M., Toprak, M., Zhang, Y., Muhammed, M.: Mater. Res. Soc. Symp. Proc. 704, W7.1.1–W7.1.6 (2002)

    Google Scholar 

  218. Duxin, N., Brun, N., Colliex, C., Pileni, M.P.: Synthesis and magnetic properties of elongated Fe-Cu alloys. Langmuir 14, 1984–1989 (1998)

    CAS  Google Scholar 

  219. Carpenter, E.E., Sims, J.A., Wienmann, J.A., Zhou, W.L., O’Connor, C.J.: Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques. J. Appl. Phys. 87, 5615–5617 (2000)

    CAS  Google Scholar 

  220. Duxin, N., Brun, N., Bonville, P., Colliex, C., Pileni, M.P.: Nanosized Fe-Cu-B alloys and composites synthesized in diphasic systems. J. Phys. Chem. B 101, 8907–8913 (1997)

    CAS  Google Scholar 

  221. Duxin, N., Pileni, M.P., Wernsdorfer, W., Barbara, B., Benoit, A., Mailly, D.: Magnetic properties of an individual Fe-Cu-B nanoparticle. Langmuir 16, 11–14 (2000)

    CAS  Google Scholar 

  222. Petit, C., Pileni, M.P.: Nanosize cobalt boride particles: control of the size and properties. J. Magn. Magn. Mater. 166, 82–90 (1997)

    CAS  Google Scholar 

  223. Shen, L., Laibinis, P.E., Hatton, T.A.: Aqueous magnetic fluids stabilized by surfactant bilayers. J. Magn. Magn. Mater. 194, 37–44 (1999)

    CAS  Google Scholar 

  224. Seip, C.T., Carpenter, E.E., O’Connor, C.J., John, V.T., Li, S.C.: Magnetic properties of a series of ferrite nanoparticles. IEEE Trans. Magn. 34, 1111–1113 (1998)

    CAS  Google Scholar 

  225. Feltin, N., Pileni, M.P.: New technique for synthesizing iron ferrite magnetic nanosized particles. Langmuir 13, 3927–3933 (1997)

    CAS  Google Scholar 

  226. Zhou, Z.H., Wang, J., Liu, X., Chan, H.S.O.: Synthesis of Fe3O4 nanoparticles from emulsions. J. Mater. Chem. 11, 1704–1709 (2001)

    CAS  Google Scholar 

  227. Moumen, N., Veillet, P., Pileni, M.P.: Controlled preparation of nanosize cobalt ferrite magnetic particles. J. Magn. Magn. Mater. 149, 67–71 (1995)

    CAS  Google Scholar 

  228. Moumen, N., Pileni, M.P.: Control of the size of cobalt ferrite magnetic fluids. J. Phys. Chem. 100, 1867–1873 (1996)

    CAS  Google Scholar 

  229. Moumen, N., Bonville, P., Pileni, M.P.: Control of the size of cobalt ferrite magnetic fluids: Mössbauer spectroscopy. J. Phys. Chem. 100, 14410–14416 (1996)

    CAS  Google Scholar 

  230. Moumen, N., Pileni, M.P.: New syntheses of cobalt ferrite particles in the range 2–5 nm: comparison of the magnetic properties of the nanosized particles in dispersed fluid or in powder form. Chem. Mater. 8, 1128–1134 (1996)

    CAS  Google Scholar 

  231. Pillai, V., Shah, D.O.: Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163, 243–248 (1996)

    CAS  Google Scholar 

  232. Kahn, M.L., Zhang, Z.J.: Synthesis and magnetic properties of CoFe2O4 spinel ferrite nanoparticles doped with lanthanide ions. Appl. Phys. Lett. 78, 3651–3653 (2001)

    CAS  Google Scholar 

  233. Hochepied, J., Bonville, P., Pileni, M.: Nonstoichiometric zinc ferrite nanocrystals: syntheses and unusual magnetic properties. J. Phys. Chem. B 104(5), 905–912 (2000)

    CAS  Google Scholar 

  234. Grasset, F., Labhsetwar, N., Li, D., Park, D.C., Saito, N., Haneda, H., Cador, O., Roisnel, T., Mornet, S., Duguet, E., Portier, J., Etourneau, J.: Synthesis and magnetic characterization of zinc ferrite nanoparticles with different environments: powder, colloidal solution, and zinc ferrite-silica core-shell nanoparticles. Langmuir 18, 8209–8212 (2002)

    CAS  Google Scholar 

  235. Wang, J., Chong, P.F., Ng, S.C., Gan, L.M.: Microemulsion processing of manganese zinc ferrites. Mater. Lett. 30, 217–220 (1997)

    CAS  Google Scholar 

  236. Hochepied, J.F., Pileni, M.P.: Magnetic properties of mixed cobalt-zinc ferrite nanoparticles. J. Appl. Phys. 87, 2472–2478 (2000)

    CAS  Google Scholar 

  237. Hochepied, J.F., Pileni, M.P.: Ferromagnetic resonance of nonstoichiometric zinc ferrite and cobalt-doped zinc ferrite nanoparticles. J. Magn. Magn. Mater. 231, 45–52 (2001)

    CAS  Google Scholar 

  238. Lopez-Perez, J.A., Lopez-Quintela, M.A., Mira, J., Rivas, J.: Preparation of magnetic fluids with particles obtained in microemulsions. IEEE Trans. Magn. 33, 4359–4362 (1997)

    CAS  Google Scholar 

  239. Chen, D.H., Chen, Y.Y.: Synthesis of strontium ferrite ultrafine particles using microemulsion processing. J. Coll. Interface Sci. 236, 41–46 (2001)

    CAS  Google Scholar 

  240. Pillai, V., Kumar, P., Multani, M.S., Shah, D.O.: Structure and magnetic properties of nanoparticles of barium ferrite synthesized using microemulsion processing. Coll. Surf. A 80, 69–75 (1993)

    CAS  Google Scholar 

  241. Vaucher, S., Fielden, J., Li, M., Dujardin, E., Mann, S.: Molecule-based magnetic nanoparticles: synthesis of cobalt hexacyanoferrate, cobalt pentacyanonitrosylferrate, and chromium hexacyanochromate coordination polymers in water-in-oil microemulsions. Nano Lett. 2, 225–229 (2002)

    CAS  Google Scholar 

  242. Gogate, P.: Cavitational reactors for process intensification of chemical processing applications: a critical review. Chem. Eng. Proc. 47, 515–527 (2008)

    CAS  Google Scholar 

  243. Mason, T.J.: Practical Sonochemistry: Users Guide in Chemistry and Chemical Engineering. Ellis Horwood Series in Organic Chemistry. E. Horwood, Chichester (1991)

    Google Scholar 

  244. Leighton, T.G.: The Acoustic Bubble. Academic, London (1994)

    Google Scholar 

  245. Yasui, K., Tuziuti, T., Iida, Y., Mitome, H.: Theoretical study of the ambient-pressure dependence of sonochemical reactions. J. Chem. Phys. 119(1), 346–356 (2003)

    CAS  Google Scholar 

  246. Lindley, J., Mason, T.J.: Use of ultrasound in chemical synthesis. Chem. Soc. Rev. 16, 275–311 (1987)

    CAS  Google Scholar 

  247. Adewuyi, Y.G.: Sonochemistry in environmental remediation. 1. Combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water. Environ. Sci. Technol. 39, 3409–3420 (2005)

    CAS  Google Scholar 

  248. Suslick, K.S., Hammerton, D.A., Cline, R.E.: The sonochemical hot spot. J. Am. Chem. Soc. 108, 5641–5644 (1986)

    CAS  Google Scholar 

  249. Chen, D., Sharma, S.K., Mudhoo, A. (eds.): Handbook on Applications of Ultrasound: Sonochemistry for Sustainability. CRC Press, Boca Raton (2012)

    Google Scholar 

  250. Bang, J.H., Suslick, K.S.: Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 22, 1039–1059 (2010)

    CAS  Google Scholar 

  251. Xu, M., Lu, Y.-N., Liu, Y.-F., Shi, S.-Z., Qian, T.-S., Lu, D.-Y.: Sonochemical synthesis of monosized spherical BaTiO3 particles. Powder Technol. 161(3), 185–189 (2006)

    CAS  Google Scholar 

  252. Taufiq-Yap, Y.H., Wong, Y.C., Zainal, Z., Hussein, M.Z.: Synthesis of self-assembled nanorod vanadium oxide bundles by sonochemical treatment. J. Nat. Gas. Chem. 18(3), 312–338 (2009)

    CAS  Google Scholar 

  253. Suslick, K.S., Choe, S.B., Cichowlas, A.A., Grinstaff, M.W.: Sonochemical synthesis of amorphous iron. Nature 353, 414–416 (1991)

    CAS  Google Scholar 

  254. Suslick, K.S., Hyeon, T., Fang, M.: Nanostructured materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies. Chem. Mater. 8, 2172–2179 (1996)

    CAS  Google Scholar 

  255. Reed, J.A., Cook, A., Halaas, D.J., Parazzoli, P., Robinson, A., Matula, T.J., Grieser, F.: The effects of microgravity on nanoparticle size distributions generated by the ultrasonic reduction of an aqueous gold-chloride solution. Ultrasonics Sonochem. 10, 285–289 (2003)

    CAS  Google Scholar 

  256. Suslick, K.S., Hyeon, T., Fang, M., Cichowlas, A.A.: Sonochemical synthesis of nanostructured catalysts. Mater. Sci. Eng. A 204, 186–192 (1995)

    Google Scholar 

  257. Bellissent, R., Galli, G., Hyeon, T., Migliardo, P., Parette, G., Suslick, K.S.: Magnetic and structural properties of amorphous transition metals and alloys. J. Non-Cryst. Solids 205–207, 656–659 (1996)

    Google Scholar 

  258. Suslick, K.S., Fang, M., Hyeon, T.: Sonochemical synthesis of iron colloids. J. Am. Chem. Soc. 118, 11960–11961 (1996)

    CAS  Google Scholar 

  259. Shafi, K.V.P.M., Gedanken, A., Goldfarb, R.B., Felner, I.: Sonochemical preparation of nanosizes amorphous NiFe2O4 alloys. J. Appl. Phys. 81, 6901–6905 (1997)

    CAS  Google Scholar 

  260. Katabi, G., Koltypin, Y., Cao, X., Gedanken, A.: Self-assembled monolayer coatings of iron nanoparticles with thiol derivatives. J. Cryst. Growth 166, 760–762 (1996)

    CAS  Google Scholar 

  261. Kataby, G., Prozorov, T., Koltypin, Y., Cohen, H., Sukenik, C.N., Ulman, A., Gedanken, A.: Self-assembled monolayer coatings on amorphous iron and iron oxide nanoparticles: thermal stability and chemical reactivity studies. Langmuir 13, 6151–6158 (1997)

    CAS  Google Scholar 

  262. Ramesh, S., Cohen, Y., Aurbach, D., Gedanken, A.: Atomic force microscopy investigation of the surface topography and adhesion of nickel nanoparticles to submicrospherical silica. Chem. Phys. Lett. 287, 461–467 (1998)

    CAS  Google Scholar 

  263. Gibson, C.P., Putzer, K.J.: Synthesis and characterization of anisometric cobalt nanoclusters. Science 267, 1338–1340 (1995)

    CAS  Google Scholar 

  264. Koltypin, Y., Katabi, G., Cao, X., Prozorov, R., Gedanken, A.: Sonochemical preparation of amorphous nickel. J. Non-Cryst. Solids 201, 159–162 (1996)

    CAS  Google Scholar 

  265. Shafi, K.V.P.M., Gedanken, A., Prozorov, R.: Sonochemical preparation and characterization of nanosized amorphous Co-Ni alloy powders. J. Mater. Chem. 8, 769–774 (1998)

    CAS  Google Scholar 

  266. Kataby, G., Koltypin, Y., Rothe, J., Hormes, J., Felner, I., Cao, X., Gedanken, A.: The adsorption of monolayer coatings on iron nanoparticles: Mössbauer spectroscopy and XANES results. Thin Solid Films 333, 41–49 (1998)

    CAS  Google Scholar 

  267. Shafi, K.V.P.M., Koltypin, Y., Gedanken, A., Prozorov, R., Balogh, J., Lendvai, J., Felner, I.: Sonochemical preparation of nanosized amorphous NiFe2O4 particles. J. Phys. Chem. B 101, 6409–6414 (1997)

    CAS  Google Scholar 

  268. Shafi, K.V.P.M., Ulman, A., Yan, X., Yang, N.L., Estournes, C., White, H., Rafailovich, M.: Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir 17, 5093–5097 (2001)

    CAS  Google Scholar 

  269. Kumar, R.V., Koltypin, Y., Cohen, Y.S., Cohen, Y., Aurbach, D., Palchik, O., Felner, I., Gedanken, A.: Preparation of amorphous magnetic nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. J. Mater. Chem. 10, 1125–1130 (2000)

    CAS  Google Scholar 

  270. Kumar, R.V., Diamant, Y., Gedanken, A.: Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater. 12, 2301–2305 (2000)

    CAS  Google Scholar 

  271. Vijayakumar, R., Koltypin, Y., Felner, I., Gedanken, A.: Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater. Sci. Eng. A286, 101–105 (2000)

    CAS  Google Scholar 

  272. Xu, M., Lu, Y.-N., Liu, Y.-F., Shi, S.-Z., Qian, T.-S., Lu, D.-Y.: Sonochemical synthesis of monosized spherical BaTiO3 particles. Powder Technol. 161, 185–189 (2006)

    CAS  Google Scholar 

  273. Viviani, M., Buscaglia, M.T., Testino, A., Buscaglia, V., Bowen, P., Nanni, P.: The influence of concentration on the formation of BaTiO3 by direct reaction of TiCl4 with Ba(OH)2 in aqueous solution. J. Eur. Ceram. Soc. 23, 1383–1390 (2003)

    CAS  Google Scholar 

  274. Lconi, M., Viviani, M., Nanni, P., Buscaglia, V.: Low-temperature aqueous synthesis (LTAS) of ceramic powders with perovskite structure. J. Mater. Sci. Lett. 15, 1302–1304 (1996)

    Google Scholar 

  275. Testino, A., Buscaglia, M.T., Viviani, M., Buscaglia, V., Nanni, P.: Synthesis of BaTiO3 particles with tailored size by precipitation from aqueous solutions. J. Am. Ceram. Soc. 87(1), 79–83 (2004)

    CAS  Google Scholar 

  276. Yu, Y.C., Zhang, L.Z., Li, Q., Kwong, K.W., Xu, A.W., Lin, J.: Sonochemical preparation of nanoporous composites of titanium oxide and size-tunable strontium titanate crystals. Langmuir 19, 7673–7675 (2003)

    CAS  Google Scholar 

  277. Pang, G., Xu, X., Markovich, V., Avivi, S., Palchik, O., Koltypin, Y., Gorodetsky, G., Yeshurun, Y., Buchkremer, H.P., Gedanken, A.: Preparation of La1-xSrxMnO3 nanoparticles by sonication-assisted coprecipitation. Mater. Res. Bull. 38, 11–16 (2003)

    CAS  Google Scholar 

  278. Das, N., Bhattacharya, D., Sen, A., Maiti, H.S.: Sonochemical synthesis of LaMnO3 nano powder. Ceram. Inter. 35(1), 21–27 (2009)

    CAS  Google Scholar 

  279. Skorokhod, V.V., Uvarova, I.V., Ragulya, A.V.: Physicochemical Kinetics in the Nanostructured Systems. Academperiodika, Kiev (2001)

    Google Scholar 

  280. Oleinikov, N.N.: Effect of topochemical memory: nature and role in synthesis of solid substances and materials. Rus. Chem. J. 39(2), 85–93 (1995)

    Google Scholar 

  281. Ragulya, A.V., Vasyl’kiv, O.O., Skorokhod, V.V.: Synthesis and sintering of nanocrystalline barium titanate powder under non-isothermal conditions: I. Control of dispersity of barium titanate during its synthesis from barium titanyl-oxalate. Powder Metall. Metal Ceram. 36(3/4), 170–175 (1997)

    CAS  Google Scholar 

  282. Vasyl’kiv, O.O., Ragulya, A.V., Skorokhod, V.V.: Synthesis and sintering of nanocrystalline barium titanate powder under nonisothermal conditions. II. Phase analysis of the decomposition products of barium titanyl-oxalate and the synthesis of barium titanate. Powder Metall. Metal Ceram. 36(5–6), 277–282 (1997)

    Google Scholar 

  283. Vasyl’kiv, O.O., Ragulya, A.V., Klymenko, V.P., Skorokhod, V.V.: Synthesis and sintering of nanocrystalline barium titanate powder under non-isothermal conditions: III. Chromatographic analysis of barium titanyl-oxalate gaseous decomposition products. Powder Metall. Metal Ceram. 36(11–12), 575–578 (1997)

    Google Scholar 

  284. Ragulya, A.V.: Rate-controlled synthesis and sintering of nanocrystalline barium titanate powder. Nanostruct. Mater. 10, 349–355 (1998)

    CAS  Google Scholar 

  285. Sakabe, Y.: Multilayer ceramic capacitors. Curr. Opin. Solid State Mater. Sci. 2, 584–587 (1997)

    CAS  Google Scholar 

  286. Kishi, H., Mizuno, Y., Chazono, H.: Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn. J. Appl. Phys. 42, 1–15 (2003)

    CAS  Google Scholar 

  287. Pithan, C., Hennings, D., Waser, R.: Progress in the synthesis of nanocrystalline BaTiO3 powders for MLCC. Int. J. Appl. Ceram. Technol. 2(1), 1–14 (2005)

    CAS  Google Scholar 

  288. Kudaka, K., Iizumi, K., Sasaki, K.: Preparation of stoichiometric barium titanyl oxalate tetrahydrate. Am. Ceram. Soc. Bull. 61, 1236–1239 (1982)

    CAS  Google Scholar 

  289. Hennings, D., Thermal, M.W.: Decomposition of (BaTi) citrates into barium titanate. J. Solid State Chem. 26, 329–338 (1978)

    CAS  Google Scholar 

  290. Yen, F.-S., Chang, C.T., Chang, Y.H.: Characterization of barium titanyl oxalate tetrahydratе. J. Am. Ceram. Soc. 73, 3422–3427 (1990)

    CAS  Google Scholar 

  291. Polotai, A.V., Ragulya, A.V., Randall, C.A.: Preparation and size effect in pure nanocrystalline barium titanate ceramics. Ferroelectrics 288, 93–102 (2003)

    CAS  Google Scholar 

  292. Stockenhuber, M., Mayer, H., Lercher, J.A.: Preparation of barium titanates from oxalates. J. Am. Ceram. Soc. 76, 1185–1190 (1993)

    CAS  Google Scholar 

  293. Fang, T.-T., Lin, H.B.: Factors affecting the preparation of barium titanyl oxalate tetrahydrate. J. Am. Ceram. Soc. 72, 1899–1906 (1989)

    CAS  Google Scholar 

  294. Gallagher, P.K., Schrey, F.: Thermal decomposition of some substituted barium titanyl oxalates and its effect on the semiconducting properties of the doped materials. J. Am. Ceram. Soc. 46, 567–573 (1963)

    CAS  Google Scholar 

  295. Gallagher, P.K., Thomson, J.H.: Thermal analysis of some barium and strontium titanyl oxalates. J. Am. Ceram. Soc. 48, 644–647 (1965)

    CAS  Google Scholar 

  296. Bind, J.M., Dupin, T., Schaefer, J., Titeux, M.: Industrial synthesis of coprecipitated BaTiO3 powders. J. Metals 39, 60–61 (1987)

    CAS  Google Scholar 

  297. Wada, S., Narahara, M., Hoshina, T., Kakemono, H., Tsurumi, T.: Preparation of nm-sized BaTiO3 particles using a New 2-step thermal decomposition of barium titanyl oxalate. J. Mater. Sci. 38, 2655–2660 (2003)

    CAS  Google Scholar 

  298. Arya, P.R., Jha, P., Subbanna, G.N., Ganguli, A.K.: Polymeric citrate precursor route to the synthesis of nano-sized barium–lead titanates. Mater. Res. Bull. 38, 617–628 (2003)

    CAS  Google Scholar 

  299. Kumar, S., Messing, G.L., White, W.B.: Metal organic resin derived barium titanate: I, Formation of barium titanium oxycarbonate intermediate. J. Am. Ceram. Soc. 76, 617–624 (1993)

    CAS  Google Scholar 

  300. Duran, P., Capel, F., Tartan, J., Gutierrez, D., Moure, C.: Heating-rate effect on the BaTiO3 formation by thermal decomposition of metal citrate polymeric precursors. Solid State Ionics 141–142, 529–539 (2001)

    Google Scholar 

  301. Vasylkiv, O., Sakka, Y.: Nonisothermal synthesis of yttria-stabilized zirconia nanopowder through oxalate processing: 1, Characteristics of Y-Zr oxalate synthesis and its decomposition. J. Am. Ceram. Soc. 83(9), 2196–2202 (2000)

    CAS  Google Scholar 

  302. Osuna, J., de Caro, D., Amiens, C., Chaudret, B., Snoeck, E., Respaud, M., Broto, J.-M., Fert, A.: Synthesis, characterization, and magnetic properties of cobalt nanoparticles from an organometallic precursor. J. Phys. Chem. 100, 14571–1457462 (1996)

    CAS  Google Scholar 

  303. Verelst, M., Ely, T.O., Amiens, C., Snoeck, E., Lecante, P., Mosset, A., Respaud, M., Broto, J.M., Chaudret, B.: Synthesis and characterization of CoO, Co3O4, and mixed Co/CoO nanoparticules. Chem. Mater. 11(10), 2702–2708 (1999)

    CAS  Google Scholar 

  304. Puntes, V.F., Krishnan, K.M., Alivisatos, A.P.: Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt//2001, ISSU 5511, pp. 2115–2117.

    Google Scholar 

  305. Puntes, V.F., Krishnan, K.M., Alivisatos, A.P.: Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal epsilon-Co nanoparticles. Appl. Phys. Lett. 78, 2187–2189 (2001)

    CAS  Google Scholar 

  306. Ely, T.O., Amiens, C., Chaudret, B., Snoeck, E., Varelst, M., Respaud, M., Broto, J.M.: Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties. Chem. Mater. 11, 526–529 (1999)

    CAS  Google Scholar 

  307. van Leewen, D.A., van Ruitenbeek, J.M., de Jongh, L.J., Ceriotti, A., Pacchioni, G., Haberlen, O.D., Rosch, N.: Quenching of magnetic moments by ligand-metal interactions in nanosized magnetic metal clusters. Phys. Rev. Lett. 73, 1432–1435 (1994)

    Google Scholar 

  308. Rosch, N., Ackermann, L., Pacchioni, G., Dunlap, B.I.: Paramagnetism of high nuclearity metal cluster compounds as derived from local density functional calculations. J. Chem. Phys. 95, 7004–7007 (1991)

    Google Scholar 

  309. Dinega, D.P., Bawendi, M.G.: Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem. Int. Ed. Engl. 38, 1784–1788 (1999)

    Google Scholar 

  310. Puntes, V.F., Krishnan, K., Alivisatos, A.P.: Synthesis of colloidal cobalt nanoparticles with controlled size and shapes. Top. Catal. 19(2), 145–148 (2002)

    CAS  Google Scholar 

  311. Sidorov, S.N., Bronstein, L.M., Davankov, V.A., Tsyurupa, M.P., Solodovnikov, S.P., Valetsky, P.M., Wilder, E.A., Spontak, R.J.: Cobalt nanoparticle formation in the pores of hyper-cross-linked polystyrene. Control Nanopart. Growth Morphol. 11(11), 3210–3215 (1999)

    CAS  Google Scholar 

  312. Cordente, N., Respaud, M., Senocq, F., Casanove, M.J., Amiens, C., Chaudret, B.: Synthesis and magnetic properties of nickel nanorods. Nano Lett. 1, 565–568 (2001)

    CAS  Google Scholar 

  313. Tripp, S.L., Pusztay, S.V., Ribbe, A.E., Wei, A.: Self-assembly of cobalt nanoparticle rings. J. Am. Chem. Soc. 124, 7914–7915 (2002)

    CAS  Google Scholar 

  314. Skorokhod, V.V., Solonin, Y.M., Uvarova, I.V.: Khimicheskie, diffuzionnye i reologicheskie protsessy v tekhnologii poroshkovykh materialov (Chemical, Diffusion, and Rheological Processes in the Technology of Powder Materials). Naukova Dumka, Kiev (1990) (in Russian)

    Google Scholar 

  315. Stepanyuk, S.A., Savjak, M.P., Uvarova, I.V., Ragulya, A.V.: Simulation of the processes of solid-phase transformation during reduction of Ni from NiO under nonisothermal conditions. Powder Metall. Metal Ceram. 35(1/2), 1–4 (1996)

    Google Scholar 

  316. Delmon, B.: Kinetics of Heterogeneous Reactions. Mir, Moscow (1972)

    Google Scholar 

  317. Eliseev, A.A., Napolskii, K.S., Lukashin, A.V., Tretyakov, Y.D.: Ordered iron nanowires in the mesoporous silica matrix. J. Magn. Magn. Mater. 272–276, 1609–1611 (2004)

    Google Scholar 

  318. Masala, O., Seshadri, R.: Spinel ferrite/MnO core/shell nanoparticles: chemical synthesis of all-oxide exchange biased architectures. J. Am. Chem. Soc. 127(26), 9354–9355 (2005)

    CAS  Google Scholar 

  319. Zeng, H., Li, J., Wang, Z.L., Liu, J.P., Sun, S.: Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett. 4, 187–190 (2004)

    CAS  Google Scholar 

  320. Kim, H., Achermann, M., Balet, L.P., Hollingsworth, J.A., Klimov, V.I.: Synthesis and characterization of Co/CdSe core/shell nanocomposites: bifunctional magnetic-optical nanocrystals. J. Am. Chem. Soc. 127, 544–546 (2005)

    CAS  Google Scholar 

  321. Kwon, K.-W., Shim, M.: γ-Fe2O3/II-VI sulfide nanocrystal heterojunctions. J. Am. Chem. Soc. 127, 10269–10275 (2005)

    CAS  Google Scholar 

  322. Yu, H., Chen, M., Rice, P.M., Wang, S.X., White, R.L., Sun, S.: Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 5(2), 379–382 (2005)

    CAS  Google Scholar 

  323. Park, J.I., Cheon, J.: Synthesis of “Solid Solution” and “Core-Shell” type cobalt-platinum magnetic nanoparticles via transmetallation reactions. J. Am. Chem. Soc. 123, 5743–5746 (2001)

    CAS  Google Scholar 

  324. Hyeon, T., Lee, S.S., Park, J., Chung, Y., Na, H.B.: Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798–12801 (2001)

    CAS  Google Scholar 

  325. Hyeon, T., Chung, Y., Park, J., Lee, S.S., Kim, Y.W., Park, B.H.: Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. J. Phys. Chem. B 106, 6831–6833 (2002)

    CAS  Google Scholar 

  326. Menon, A.K., Gupta, B.K.: Nanotechnology: a data storage perspective. Nanostruct. Mater. 11, 965–986 (1999)

    CAS  Google Scholar 

  327. Kirk, K.J.: Nanomagnets for sensors and data storage. Contemp. Phys. 41, 61–66 (2000)

    CAS  Google Scholar 

  328. Nikiforov, M.P., Chernysheva, M.V., Eliseev, A.A., Lukashin, A.V., Tretyakov, Y.D., Maksimov, Y.V., Suzdalev, I.P., Goernert, P.: Synthesis of iron oxide nanocomposites using layered double hydroxides. Mater. Sci. Eng. B 109, 226–231 (2004)

    Google Scholar 

  329. Nikiforov, M.P., Chernysheva, M.V., Lukashin, A.V., Vertegel, A.A., Maximov, Y.V., Novichikhin, S.V., Suzdalev, I.P., Tretiakov, Y.D.: Synthesis of iron-containing oxide nanocomposites from LDH precursors. Doklady RAN, Chem. 391(1–3), 173–176 (2003)

    CAS  Google Scholar 

  330. Guari, Y., Thieuleux, C., Mehdi, A., Reyé, C., Corriu, R.J.P., Gomez-Gallardo, S., Philippot, K., Chaudret, B.: In situ formation of gold nanoparticles within thiol functionalized HMS-C16 and SBA-15 type materials via an organometallic two-step approach. Chem. Mater. 15, 2017–2019 (2003)

    CAS  Google Scholar 

  331. Chernysheva, M.V., Eliseev, A.A., Napolskii, K.S., Lukashin, A.V., Tretyakov, Y.D., Grigoryeva, N.A., Grigoryev, S.V., Wolff, M.: Ordered nanowire arrays in the mesoporous silica thin films. Thin Solid Films 495, 73–77 (2006)

    CAS  Google Scholar 

  332. Grun, M., Ungera, K.K., Matsumoto, A., Tsutsumi, K.: Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Microporous Mater. 27, 207 (1999)

    CAS  Google Scholar 

  333. Eliseev, A.A., Napolskii, K.S., Gorozhankin, D.F., Lukashin, A.V., Tretyakov, Y.D., Grigorieva, N.A., Grigoriev, S.V., Vorobiev, A.A., Goеrnet, P.: The use of mesoporous systems for preparation of one-dimensional ordered magnetic nanowires. MRS Proc. 788, L6.1.1 (2004)

    Google Scholar 

  334. Eliseev, A.A., Gorozhankin, D.F., Zaitsev, D.D., Lukashin, A.V., Knotko, A.V., Tretyakov, Y.D., Goernert, P.: Preparation of strontium hexaferrite nanowires in the mesoporous silica matrix (MCM-41). J. Magn. Magn. Mater. 290–291, 106–109 (2005)

    Google Scholar 

  335. Kushnir, S.E., Kazin, P.E., Trusov, L.A., Tretyakov, Y.D.: Self-organization of micro- and nanoparticles in ferrofluid. Russ. Chem. Rev. 81(6), 560 (2012)

    CAS  Google Scholar 

  336. Kotov, N.A.: Practical aspects of self-organization of nanoparticles: experimental guide and future applications. J. Mater. Chem. 21, 16673–16674 (2011)

    CAS  Google Scholar 

  337. Weddemann, A., Ennen, I., Regtmeier, A., et al.: Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors. Beilstein J. Nanotechnol. 1, 75–93 (2010)

    CAS  Google Scholar 

  338. Chaudret, B.: Organometallic approach to nanoparticles synthesis and self-organization. C. R. Phys. 6, 117–131 (2005)

    CAS  Google Scholar 

  339. Pileni, M.P.: Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals. Adv. Funct. Mater. 11, 323–327 (2001)

    CAS  Google Scholar 

  340. Soulantica, K., Maisonnat, A., Fromen, M.-C., Casanove, M.-J., Chaudret, B.: Spontaneous formation of ordered 3D superlattices of nanocrystals from polydisperse colloidal solutions. Chem. Int. Ed. 42, 1945 (2003)

    CAS  Google Scholar 

  341. Murray, C.B., Sun, S., Doyle, H., Betley, T.: Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles. MRS Bull. 985–987 (2001)

    Google Scholar 

  342. Collier, C.P., Vossmeyer, T., Heath, J.R.: Nanocrystal superlattices. Annu. Rev. Phys. Chem. 49, 371–404 (1998)

    CAS  Google Scholar 

  343. Bentzon, M.D., van Wonterghem, J., Miurup, S., Thölen, A.: Ordered aggregates of ultrafine iron oxide particles: ‘Super crystals’. Philos. Mag. B 60, 169–178 (1989)

    CAS  Google Scholar 

  344. Shevchenko, E.V., Talapin, D.V., Rogach, A.L., Kornowski, A., Haase, M., Weller, H.: Colloidal synthesis and self-assembly of CoPt3 nanocrystals. J. Am. Chem. Soc. 124, 11480–11485 (2002)

    CAS  Google Scholar 

  345. Redl, F.X., Cho, K.-S., Murray, C.B., O’Brien, S.: Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423, 968–971 (2003)

    CAS  Google Scholar 

  346. Hong, X., Li, J., Wang, M., Xu, J., Guo, W., Li, J., Bai, Y., Li, T.: Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chem. Mater. 16, 4022–4025 (2004)

    CAS  Google Scholar 

  347. Boyen, H.-G., Kästle, G., Zürn, K., Herzog, T., Weigl, F., Ziemann, P., Mayer, O., Jerome, C., Möller, M., Spatz, J.P., Garnier, M.G., Oelhafen, P.: A micellar route to ordered arrays of magnetic nanoparticles: from size-selected pure cobalt dots to cobalt-cobalt oxide core-shell systems. Adv. Funct. Mater. 13, 359–364 (2003)

    CAS  Google Scholar 

  348. Sohn, B.-H., Choi, J.-H., Yoo, S.I., Yun, S.-H., Zin, W.C., Jung, J.C., Kanehara, M., Hirata, T., Teranishi, T.: Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles. J. Am. Chem. Soc. 125, 6368–6372 (2003)

    CAS  Google Scholar 

  349. Gross, A.F., Diehl, M.R., Beverly, K.C., Richman, E.K., Tolbert, S.H.: Controlling magnetic coupling between cobalt nanoparticles through nanoscale confinement in hexagonal mesoporous silica. J. Phys. Chem. B 107, 5475–5482 (2003)

    CAS  Google Scholar 

  350. Yin, J.S., Wang, Z.L.: Ordered self-assembling of tetrahedral oxide nanocrystals. Phys. Rev. Lett. 79, 2570–2573 (1997)

    CAS  Google Scholar 

  351. Park, S.J., Kim, S., Lee, S., Khim, Z.G., Char, K., Hyeon, T.: Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J. Am. Chem. Soc. 122, 8581 (2000)

    CAS  Google Scholar 

  352. Rotstein, H.G., Tannenbaum, R.: Cluster coagulation and growth limited by surface interactions with polymers. J. Phys. Chem. B 106, 146–150 (2002)

    CAS  Google Scholar 

  353. Hyeon, T., Chung, Y., Park, J., Lee, S.S., Kim, Y.W., Park, B.H.: Synthesis and magnetic properties of nearly monodisperse CoFe2O4 nanoparticles through a simple hydrothermal condition. J. Phys. Chem. B 106, 6831–6837 (2002)

    CAS  Google Scholar 

  354. DeCaro, D., Bradley, J.S.: Surface spectroscopic study of carbon monoxide adsorption on nanoscale nickel colloids prepared from a zerovalent organometallic precursor. Langmuir 13, 3067–3070 (1997)

    CAS  Google Scholar 

  355. Lee, G.H., Huh, S.H., Jeong, J.W., Choi, B.J., Kim, S.H., Ri, H.-C.: Anomalous magnetic properties of MnO nanoclusters. J. Am. Chem. Soc. 124, 12094–12099 (2002)

    CAS  Google Scholar 

  356. Kahn, H.R., Petrikowski, K.: Anisotropic structural and magnetic properties of arrays of Fe26Ni74 nanowires electrodeposited in the pores of anodic alumina. J. Magn. Magn. Mater. 215–216, 526–528 (2000)

    Google Scholar 

  357. Zeng, H., Zheng, M., Skomski, R., Sellmyer, D.J., Liu, Y., Menon, L., Bandyopadhyay, S.: Magnetic properties of self-assembled Co nanowires of varying length and diameter. J. Appl. Phys. 87, 4718–4720 (2000)

    CAS  Google Scholar 

  358. Kazadi, A., Bantu, M., Rivas, J., Zaragoza, G., Lopez-Quintela, M.A., Blanco, M.C.: Influence of the synthesis parameters on the crystallization and magnetic properties of cobalt nanowires. J. Non-Cryst. Solids 287, 5–9 (2001)

    Google Scholar 

  359. Whitney, T.M., Jiang, J.S., Searson, P.C., Chien, C.L.: Fabrication and magnetic properties of arrays of metallic nanowires. Science 261, 1316 (1993)

    CAS  Google Scholar 

  360. Martin, C.R.: Nanomaterials: a membrane-based synthetic approach. Science 266, 1961–1966 (1994)

    CAS  Google Scholar 

  361. Meier, J., Doudin, B., Ansermet, J.P.: Magnetic properties of nanosized wires. J. Appl. Phys. 79, 6010–6012 (1996)

    CAS  Google Scholar 

  362. Ferre, R., Ounadjela, K., George, J.M., Piraux, L., Dubois, S.: Magnetization processes in nickel and cobalt electrodeposited nanowires. Phys. Rev. B 56, 14066–14075 (1997)

    CAS  Google Scholar 

  363. Huang, Y.H., Okumura, H., Hadjipanayis, G.C., Weller, D.: CoPt and FePt nanowires by electrodeposition. J. Appl. Phys. 91, 6869–6871 (2002)

    CAS  Google Scholar 

  364. Khan, H.R., Petrikowski, K.: Synthesis and properties of the arrays of magnetic nanowires of Co and CoFe. Mater. Sci. Eng. C 19, 345–348 (2002)

    Google Scholar 

  365. Sun, L., Searson, P.C., Chien, C.L.: Finite-size effects in nickel nanowire arrays. Phys. Rev. B 61, R6463–R6466 (2000)

    CAS  Google Scholar 

  366. Zhang, Z., Dai, S., Blom, D.A., Shen, J.: Synthesis of ordered metallic nanowires inside ordered mesoporous materials through electroless deposition. Chem. Mater. 14, 965–968 (2002)

    CAS  Google Scholar 

  367. Penner, R.M.: Mesoscopic particles and wires by electrodeposition. J. Phys. Chem. 106, 3339–3353 (2002)

    CAS  Google Scholar 

  368. Zoval, J.V., Lee, J., Gorth, S., Penner, R.M.: Electrochemical preparation of platinum nanocrystals with size selectivity on basal plane oriented graphite surfaces. J. Phys. Chem. 102, 1166–1175 (1998)

    CAS  Google Scholar 

  369. Dierstein, A., Natter, H., Meyer, F., Stephan, H.O., Kropf, C., Hempelmann, R.: Electrochemical deposition under oxidizing conditions (EDOC): a new synthesis for nanocrystalline metal oxides. Scr. Mater. 44, 2209–2212 (2001)

    CAS  Google Scholar 

  370. Lauer, S., Guan, Z., Wolf, H., Natter, H., Schmelzer, M., Hempelmann, R., Wichert, T.: Local magnetic properties of nanocrystalline Ni and Pd-Fe. Nanostruct. Mater. 12, 955–958 (1999)

    Google Scholar 

  371. Pascal, C., Pascal, J.L., Favier, F., Elidrissi, M.L., Payen, C.: Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior. Chem. Mater. 11, 141–147 (1999)

    CAS  Google Scholar 

  372. Amigo, R., Asenjo, J., Krotenko, E., Torres, F., Tejada, J., Brillas, E.: Electrochemical synthesis of new magnetic mixed oxides of Sr and Fe: composition, magnetic properties, and microstructure. Chem. Mater. 12, 573–579 (2000)

    CAS  Google Scholar 

  373. Torres, F., Amigo, R., Asenjo, J., Krotenko, E., Tejada, J., Brillas, E.: Electrochemical route for the synthesis of new nanostructured magnetic mixed oxides of Mn, Zn, and Fe from an acidic chloride and nitrate medium. Chem. Mater. 12, 3060–3067 (2000)

    CAS  Google Scholar 

  374. Zach, M.P., Penner, R.M.: Nanocrystalline nickel nanoparticles. Adv. Mater. 12, 878–883 (2000)

    CAS  Google Scholar 

  375. Delplancke, J.L., Dille, J., Reisse, J., Long, G.J., Mohan, A., Grandjean, F.: Magnetic nanopowders: ultrasound-assisted electrochemical preparation and properties. Chem. Mater. 12, 946–949 (2000)

    CAS  Google Scholar 

  376. Liu, H., Favier, F., Ng, K., Zach, M.P., Penner, R.M.: A general method for the electrodeposition of dimensionally uniform meso-scale metal particles. Electrochim. Acta 47, 671–677 (2001)

    CAS  Google Scholar 

  377. Liu, H., Penner, R.M.: Electrodeposition of size monodisperse metal nano- and micro-crystallites in the uncoupled limit. J. Phys. Chem. B 104, 9131 (2000)

    CAS  Google Scholar 

  378. Khomutov, G.B., Obydenov, A.Y., Yakovenko, S.A., Soldatov, E.S., Trifonov, S., Khanin, V.V., Gubin, S.P.: Synthesis of nanoparticles in Langmuir monolayer. Mater. Sci. Eng. C 8–9, 309–318 (2000)

    Google Scholar 

  379. Reeb, M.T., Helbig, W., Quasick, S.A.: In: Furster, A. (ed.) Active Metals, Preparation, Characterization, Applications. VCH, Weinheim (1996)

    Google Scholar 

  380. Ono, K., Kakefuda, Y., Okuda, R., Ishii, Y., Kamimura, K., Kitamura, A., Oshima, M.: Organometallic synthesis and magnetic properties of ferromagnetic Sm–Co nanoclusters. J. Appl. Phys. 91, 8480–8482 (2002)

    CAS  Google Scholar 

  381. Chen, D.H., Wu, S.H.: Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem. Mater. 12, 1354–1360 (2000)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Glinchuk, M.D., Ragulya, A.V., Stephanovich, V.A. (2013). Synthesis of Nanoferroics. In: Nanoferroics. Springer Series in Materials Science, vol 177. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5992-3_5

Download citation

Publish with us

Policies and ethics