Skip to main content

True Nanoferroics with the Properties Absent in Corresponding Bulk Samples

  • Chapter
  • First Online:
Nanoferroics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 177))

  • 1312 Accesses

Abstract

The Chapter covers the theoretical and experimental approaches to the investigations of the physical properties, which are inherent in ferroics of nanosize and absent in corresponding bulk materials. Namely, the strong surface influence along with other effects of geometrical confinement generates number of physical effects, which do not occur in bulk ferroics samples. One example of such phenomena is room-temperature ferromagnetism in nanoparticles and thin films of undoped CeO2, HfO2, SnO2, Al2O3 and other nonmagnetic (in bulk samples) oxides. Theo other striking example is appearance of so-called spontaneous flexoeffects (i.e. flexoelectric, flexomagnetic, flexoelastic) in ferroic nanosamples due to strong gradient terms generated by the effects of geometrical confinement. We predict strong altering of phase transition temperature, magnetic and/or dielectric susceptibilities, piezomoduli and other physical properties of nanoferroics by the above spontaneous flexoeffects. Latter permits to describe many previously unclear experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sundaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U., Rao, C.N.R.: Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 74, 161306(R)(4) (2006)

    Google Scholar 

  2. Coey, J.M.D., Venkatesan, M., Syamenov, P., Fitzgerald, C.B., Dorneles, L.S.: Magnetism in hafnium dioxide. Phys. Rev. B 72, 024450 (2005)

    Google Scholar 

  3. Hong, N.H.: Magnetism due to defects/oxygen vacancies in HfO2 thin films. Phys. Status Solidi (c) 4(3), 1270–1275 (2007)

    CAS  Google Scholar 

  4. Hong, N.H., Sakai, J., Poirot, N., Brize, V.: Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Phys. Rev. B 73, 132404 (2006)

    Google Scholar 

  5. Kapilashrami, M., Xu, J., Rao, K.V., Belova, L.: Thickness dependent magnetic transitions in pristine MgO and ZnO sputtered thin films. Process. Appl. Ceram. 4(3), 225–229 (2010)

    CAS  Google Scholar 

  6. Yadlovker, D., Berger, S.: Uniform orientation and size of ferroelectric domains. Phys. Rev. B 71, 184112(6) (2005)

    Google Scholar 

  7. Haenu, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Tian, W., Hawley, M.E., Craigo, B., Tagantsev, A.K., Pan, X.Q., Streiffer, S.K., Chen, L.Q., Kirchoefer, S.W., Levy, J., Schlom, D.G.: Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004)

    Google Scholar 

  8. Morozovska, A.N., Glinchuk, M.D., Eliseev, E.A.: Phase transitions induced by confinement of ferroic nanoparticles. Phys. Rev. B 76, 014102(13) (2007)

    Google Scholar 

  9. Lee, J.H., Fang, L., Vlahos, E., Ke, X., Jung, Y.W., Kourkoutis, L.F., Kim, J.-W., Ryan, P.J., Heeg, T., Roeckerath, M., Goian, V., Bernhagen, M., Uecker, R., Hammel, P.C., Rabe, K.M., Kamba, S., Schubert, J., Freeland, J.W., Muller, D.A., Fennie, C.J., Schiffer, P., Gopalan, V., Johnston-Halperin, E., Schlom, D.: A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nat. Lett. 466(19), 954 (2010)

    CAS  Google Scholar 

  10. Fennie, C.J., Rabe, K.M.: Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys. Rev. Lett. 97, 267602 (2006)

    Google Scholar 

  11. Morozovska, A.N., Glinchuk, M.D., Behera, R.K., Zaulychny, B.Y., Deo, C.S., Eliseev, E.A.: Ferroelectricity and ferromagnetism in EuTiO3 nanowires. Phys. Rev. B 84, 205403 (2011)

    Google Scholar 

  12. Seshadri, R.: Zinc oxide-based diluted magnetic semiconductors. Curr. Opin. Solid State Mater. Sci. 9, 1–7 (2006)

    Google Scholar 

  13. Hu, J., Zhang, Z., Zhao, M., Qin, H., Jiang, M.: Room-temperature ferromagnetism in MgO nanocrystalline powders. Appl. Phys. Lett. 93, 192503(3) (2008)

    Google Scholar 

  14. Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D.: Thin films: unexpected magnetism in a dielectric oxide. Nature 430, 630 (2004)

    CAS  Google Scholar 

  15. Chang, G.S., Forrest, J., Kurmaev, E.Z., Morozovska, A.N., Glinchuk, M.D., McLeod, J.A., Moewes, A., Surkova, T.P., Hong, N.H.: Oxygen-vacancy-induced ferromagnetism in undoped SnO2 thin films. Phys. Rev. B 85, 165319(5) (2012)

    Google Scholar 

  16. Wang, C., Ge, M., Jiang, J.Z.: Magnetic behavior of SnO2 nanosheets at room temperature. Appl. Phys. Lett. 97, 042510 (2010)

    Google Scholar 

  17. Kapilashrami, M., Xu, J., Rao, K.V., Belova, L., Carlegum, E., Fahlman, M.: Experimental evidence for ferromagnetism at room temperature in MgO thin films. J. Phys. Condens. Matter. 22, 345004 (2010)

    Google Scholar 

  18. Araujo, C.M., Kapilashrami, M., Xu, J., Jayakumar, O.D., Nagar, S., Wu, Y., Arhammar, C., Johansson, B., Belova, L., Ahuja, R., Gehring, G.A., Rao, K.V.: Room temperature ferromagnetism in pristine MgO thin films. Appl. Phys. Lett. 96, 232505 (2010)

    Google Scholar 

  19. Kapilashrami, M., Xu, J., Strom, V., Rao, K.V., Belova, L.: Transition from ferromagnetism to diamagnetism in undoped ZnO thin films. Appl. Phys. Lett. 95, 033104(3) (2009)

    Google Scholar 

  20. Eerenstein, W., Mathur, N.D., Scott, J.F.: Muliferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    CAS  Google Scholar 

  21. Ramesh, R., Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007)

    CAS  Google Scholar 

  22. Lee, J.H., Ke, X., Podraza, N.J., Fitting Kourkoutis, L., Heeg, T., Roeckerath, M., Freeland, J.W., Fennie, C.J., Schubert, J., Muller, D.A., Schiffer, P., Schlom, D.G.: Optical band gap and magnetic properties of unstrained EuTiO3 films. Appl. Phys. Lett. 94, 212509(3) (2009)

    Google Scholar 

  23. Bussmann-Holder, A., Kohler, J., Kremer, R.K., Law, J.M.: Relation between structural instabilities in EuTiO3 and SrTiO3. Phys. Rev. B 83, 212102 (2011)

    Google Scholar 

  24. Kamba, S., Nuzhnyy, D., Vanek, P., Savinov, M., Knizek, K., Shen, Z., Santava, E., Maca, K., Sadowski, M., Petzelt, J.: Magnetodielectric effect and optic soft mode behaviour in quantum paraelectric EuTiO3. Europhys. Lett. 80, 27002 (2007)

    Google Scholar 

  25. Goian, V., Kamba, S., Hlinka, P., Vanek, P., Belik, A.A., Kolodiazhnyi, T., Petzelt, J.: Polar phonon mixing in magnetoelectric EuTiO3 ceramics. Eur. Phys. J. B 71, 429–434 (2009)

    CAS  Google Scholar 

  26. Zhai, J.Y., Xing, Z.P., Dong, S., Li, J., Viehland, D.: Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature. Appl. Phys. Lett. 88, 062510(3) (2006)

    Google Scholar 

  27. Gajek, M., Bibes, M., Fusil, S., Bouzehouane, K., Fontcuberta, J., Barthélémy, A., Fert, A.: Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296–302 (2007)

    CAS  Google Scholar 

  28. Bayrashev, A., Robbins, W.P., Ziaie, B.: Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate composites. Sens. Actuators A 114, 244–249 (2004)

    CAS  Google Scholar 

  29. Fetisov, Y.K., Srinivasan, G.: Electric field tuning characteristics of a ferrito-piezoelectric microwave resonator. Appl. Phys. Lett. 88, 143503 (2006)

    Google Scholar 

  30. Das, J., Song, Y.-Y., Mo, N., Krivosik, P., Patton, C.E.: Electric-field-tunable low loss multiferroic ferromagnetic-ferroelectric heterostructures. Adv. Mater. 21, 2045–2049 (2009)

    CAS  Google Scholar 

  31. Volnyanska, O., Boguslawski, P.: Magnetism of solids resulting from spin polarization of p orbitals. J. Phys. Condens. Matter 22, 073202 (2010)

    Google Scholar 

  32. Wang, F., Pang, Z., Lin, L., Fang, S., Dai, Y., Han, S.: Magnetism in undoped MgO studied by density functional theory. Phys. Rev. B 80, 144424(7) (2009); Chanier, T., Opahle, I., Sargolzaei, M., Hayn, R., Lannoo, M.: Magnetic state around cation vacancies in II-VI semiconductos. Phys. Rev. Lett. 100, 026405(4) (2008)

    Google Scholar 

  33. Jin, H., Dai, Y., Huang, B.B., Whangbo, M.-H.: Ferromagnetism of undoped GaN mediated by through-bond spin polarization between nitrogen dangling bonds. Appl. Phys. Lett. 94, 162505(3) (2009)

    Google Scholar 

  34. Elfimov, I.S., Yunoki, S., Sawatzky, G.A.: Possible path to a new class of ferromagnetic and half-metallic ferromagnetic materials. Phys. Rev. Lett. 89, 216403(4) (2002)

    Google Scholar 

  35. Peng, H., Li, J., Li, S.-S., Xia, J.-B.: Possible origin of ferromagnetism in undoped anatase TiO2. Phys. Rev. B 79, 092411(4) (2009)

    Google Scholar 

  36. Maca, F., Kudrnovsky, J., Drchal, V., Bouzerar, G.: Magnetism without magnetic impurities in ZrO2 oxide. Appl. Phys. Lett. 92, 212503(3) (2008)

    Google Scholar 

  37. Dev, P., Xue, Y., Zhang, P.: Defect-induced intrinsic magnetism in wide-gap III nitrides. Phys. Rev. Lett. 100, 117204(4) (2008)

    Google Scholar 

  38. Pemmaraju, C.D., Sanvito, S.: Ferromagnetism driven by intrinsic point defects in HfO2. Phys. Rev. Lett. 94, 217205(4) (2005)

    Google Scholar 

  39. Gallego, S., Beltran, J.I., Cerda, J., Munoz, M.C.: Magnetism and half-metallicity at the O surfaces of ceramic oxides. J. Phys. Condens. Matter 17, L451–L457 (2005)

    CAS  Google Scholar 

  40. Wang, F., Pang, Z., Lin, L., Fang, S., Dai, Y., Han, S.: Magnetism in undoped MgO studied by density functional theory. Phys. Rev. B 80, 144424(7) (2009)

    Google Scholar 

  41. Deigen, M.F., Glinchuk, M.D.: Theory of local electronic states on the surface of nonmetallic crystals. Surf. Sci. 3, 243 (1965)

    CAS  Google Scholar 

  42. Morozovska, A.N., Eliseev, E.A., Glinchuk, M.D., Blinc, R.: Surface-induced magnetization of the solids with impurities and vacancies. Phys. B: Condens. Matter 406, 1673 (2011)

    CAS  Google Scholar 

  43. Cole, M.W., Cohen, M.H.: Image-potential-induced surface bands in insulators. Phys. Rev. Lett. 23, 1238–1241 (1969)

    CAS  Google Scholar 

  44. Sze, S.M.: Physics of Semiconductor Devices, 2nd edn., 868 p. Willey-Interscience, New York (1981)

    Google Scholar 

  45. Finnis, M.W.: The interaction of a point charge with an aluminium (111) surface. Surf. Sci. 241, 61–72 (1991)

    CAS  Google Scholar 

  46. Niquet, Y.M., Genovese, L., Delerue, C., Deutsch, T.: Ab initio calculation of the binding energy of impurities in semiconductors: application to Si nanowires. Phys. Rev. B 81, 161301(R)(4) (2010)

    Google Scholar 

  47. Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, 2nd edn., 460 p. Butterworth-Heinemann, Oxford (1984)

    Google Scholar 

  48. Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Blinc, R.: Anion vacancy-driven magnetism in incipient ferroelectrics SrTiO3 and KTaO3. J. Appl. Phys. 109, 094105 (2011)

    Google Scholar 

  49. Flugge, S.: Practical Quantum Mechanics, vol. II., 624 p. Springer, Berlin (1978)

    Google Scholar 

  50. Osorio-Guillen, J., Lany, S., Barabash, S.V., Zunger, A.: Magnetism without magnetic ions: percolation, exchange, and formation energies of magnetism-promoting intrinsic defects in CaO. Phys. Rev. Lett. 96, 107203(4) (2006)

    Google Scholar 

  51. Vlasenko, L.S., Watkins, G.D.: Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K. Phys. Rev. B 72, 035203(12) (2005)

    Google Scholar 

  52. Carrasco, J., Illas, F., Lopez, N., Kotomin, E.A., Zhukovskii, Y.F., Evarestov, R.A., Mastrikov, Y.A., Piskunov, S., Maier, J.: First-principles calculations of the atomic and electronic structure of F centers in the bulk and on the (001) surface of SrTiO3. Phys. Rev. B 73, 064106(11) (2006)

    Google Scholar 

  53. Herwadkar, A., Lambrecht, W.R.L.: Mn-doped ScN: a dilute ferromagnetic semiconductor with local exchange coupling. Phys. Rev. B 72, 235207(6) (2005)

    Google Scholar 

  54. Ruderman, M.A., Kittel, C.: Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954)

    CAS  Google Scholar 

  55. Kasuya, T.: A theory of metallic ferro- and antiferromagnetism on Zener’s model. Prog. Theor. Phys. 16, 45–57 (1956)

    Google Scholar 

  56. Yosida, K.: Magnetic properties of Cu-Mn allows. Phys. Rev. 106, 893–898 (1957)

    Google Scholar 

  57. Vladar, K., Zawadowski, A.: Theory of the interaction between electrons and the two-level system in amorphous metals. Phys. Rev. B 28, 1564–1612 (1983)

    CAS  Google Scholar 

  58. Stephanovich, V.A., Glinchuk, M.D., Blinc, R.: Magnetoelectric effect in mixed-valency oxides mediated by charge carriers. EPL 83, 37004(5) (2008)

    Google Scholar 

  59. Glinchuk, M.D., Kirichenko, E.V., Stephanovich, V.A., Zaulychny, B.Y.: Nature of ferroelectricity in nonperovskite semiconductors like ZnO:Li. J. Appl. Phys. 105, 104101(4) (2009)

    Google Scholar 

  60. Anselm, A.I.: Introduction to Semiconductor Theory, 645 p. Mir/Prentice-Hall, Moscow/Englewood Cliffs (1982)

    Google Scholar 

  61. Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Zaulychny, B.Y., Skorokhod, V.V., Blinc, R.: Surface-induced piezomagnetic, piezoelectric and linear magnetoelectric effects in nanosystems. Phys. Rev. B 82, 085408(7) (2010)

    Google Scholar 

  62. Shuvalov, L.A. (ed.): Modern Crystallography, Vol. IV: Physical Properties of Crystals. Springer Series in Solid-State Sciences, 538 p. Springer, Berlin (1988)

    Google Scholar 

  63. Eliseev, E.A.: Complete symmetry analysis of the surface-induced piezomagnetic, piezoelectric and linear magnetoelectric effects. Ferroelectrics 417, 100–109 (2011)

    CAS  Google Scholar 

  64. Glinchuk, M.D., Skorokhod, V.V., Eliseev, E.A., Khist, V., Zaulychny, B.Y.: Surface influence on the tensor of elasticity moduli. Reports of National Academy of Sciences of Ukraine N 12, 72–78 (2011) (in Russian)

    Google Scholar 

  65. Mashkevich, V.S., Tolpygo, K.B.: Electrical, optic and elastic properties of crystals of diamond type. Sov. Phys. - JETP 4, 455–460 (1957)

    Google Scholar 

  66. Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. – Solid State 5, 2069 (1964)

    Google Scholar 

  67. Tagantsev, A.K.: Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B. 34, 5883–5889 (1986); Phase Trans. 35, 119 (1991)

    Google Scholar 

  68. Ma, W., Cross, L.E.: Large flexoelectric polarization in ceramic lead magnesium niobate. Appl. Phys. Lett. 79, 4420–4422 (2001)

    CAS  Google Scholar 

  69. Ma, W., Cross, L.E.: Flexoelectric polarization of barium strontium titanate in the paraelectric state. Appl. Phys. Lett. 81, 3440–3442 (2002)

    CAS  Google Scholar 

  70. Ma, W., Cross, L.E.: Strain-gradient-induced electric polarization in lead zirconate titanate ceramics. Appl. Phys. Lett. 82, 3293–3295 (2003)

    CAS  Google Scholar 

  71. Zubko, P., Catalan, G., Buckley, A., Welche, P.R.L., Scott, J.F.: Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601(4) (2007)

    Google Scholar 

  72. Catalan, G., Sinnamon, L.J., Gregg, J.M.: The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films. J. Phys. Condens. Matter 16, 2253–2264 (2004)

    CAS  Google Scholar 

  73. Catalan, G., Noheda, B., McAneney, J., Sinnamon, L.J., Gregg, J.M.: Strain gradients in epitaxial ferroelectrics. Phys. Rev. B 72, 020102(4) (2005)

    Google Scholar 

  74. Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424(9) (2008)

    Google Scholar 

  75. Kalinin, S.V., Meunier, V.: Electronic flexoelectricity in low-dimensional systems. Phys. Rev. B 77, 033403(4) (2008)

    Google Scholar 

  76. Lee, D., Yoon, A., Jang, Y., Yoon, J.-G., Chung, J.-S., Kim, M., Scott, J.F., Noh, T.W.: Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett. 107, 057602(4) (2011)

    Google Scholar 

  77. Eliseev, E.A., Morozovska, A.N., Glinchuk, M.D., Blinc, R.: Spontaneous flexoelectric/flexomagnetic effect in nanoferroics. Phys. Rev. B 79, 165433(10) (2009)

    Google Scholar 

  78. Glinchuk, M.D., Eliseev, E.A., Morozovska, A.N., Blinc, R.: Giant magnetic effect induced by intrinsic surface stress in ferroic nanorods. Phys. Rev. B 77, 024106(11) (2008)

    Google Scholar 

  79. Lukashev, P., Sabirianov, R.F.: Spin density in frustrated magnets under mechanical stress: Mn-based antiperovskites. J. Appl. Phys. 107, 09E115(3) (2010)

    Google Scholar 

  80. Lukashev, P., Sabirianov, R.F.: Flexomagnetic effect in frustrated triangular magnetic structures. Phys. Rev. B 82, 094417(6) (2010)

    Google Scholar 

  81. Kimura, T., Lashley, J.C., Ramirez, A.P.: Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2. Phys. Rev. B 73, 220401(R)(4) (2006)

    Google Scholar 

  82. Kimura, T., Sekio, Y., Nakamura, H., Siegrist, T., Ramirez, A.P.: Cupric oxide as an induced-multiferroic with high-TC. Nat. Mater. 7, 291–294 (2008)

    CAS  Google Scholar 

  83. Hong, J., Vanderbilt, D.: First principles study of flexoelectricity, arXiv:1108.4997v1. Bull. Am. Phys. Soc. 56(1), Abstract: V33.00002 (2011)

    Google Scholar 

  84. Line, M.E., Glass, A.M.: Principles and Applications of Ferroelectrics and Related Phenomena, 696 p. Clarendon, Oxford (1977)

    Google Scholar 

  85. Kaganov, M.I., Omelyanchouk, A.N.: To the phenomenological theory of phase transition of thin ferromagnetic plate. Zh. Eksp. Teor. Fiz. 61, 1679 (1971) [Sov. Phys. JETP 34, 895 (1972)]

    Google Scholar 

  86. Rychetsky, I.: Deformation of crystal surfaces in ferroelastic materials caused by antiphase domain boundaries. J. Phys. Condens. Matter 9, 4583–4592 (1997)

    CAS  Google Scholar 

  87. Alpay, S.P., Misirlioglu, I.B., Sharma, A., Ban, Z.-G.: Structural characteristics of ferroelectric phase transformations in single-domain epitaxial films. J. Appl. Phys. 95, 8118–8123 (2004)

    CAS  Google Scholar 

  88. Glinchuk, M.D., Eliseev, E.A., Morozovska, A.N., Blinc, R.: Spontaneous flexoeffect in nanoferroics, arXiv:0811.1031

    Google Scholar 

  89. Tagantsev, A.K., Gerra, G.: Interface-induced phenomena in polarization response of ferroelectric thin films. J. Appl. Phys. 100, 051607(28) (2006)

    Google Scholar 

  90. Woo, C.H., Zheng, Y.: Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional. Appl. Phys. A 91, 59–63 (2007)

    Google Scholar 

  91. Morozovska, A.N., Eliseev, E.A., Glinchuk, M.D.: Ferroelectricity enhancement in confined nanorods: direct variational method. Phys. Rev. B 73, 214106 (2006)

    Google Scholar 

  92. Kimura, T., Goto, T., Ishizaka, H., Arima, T., Tokura, Y.: Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

    CAS  Google Scholar 

  93. Song, K.M., Park, Y.A., Lee, K.D., Yun, B.K., Jung, M.H., Cho, J., Jung, J.H., Hur, N.: Magnetodielectric effect via a noncollinear-to-collinear spin reorientation in rare-earth iron garnets. Phys. Rev. B 83, 012404(4) (2011)

    Google Scholar 

  94. Lawes, G., Harris, A.B., Kimura, T., Rogado, N., Cava, R.J., Aharony, A., Entin-Wohlman, O., Yildrim, T., Kenzelmann, M., Broholm, C., Ramirez, A.P.: Magnetically driven ferroelectric order in Ni3V2O8. Phys. Rev. Lett. 95, 087205 (2005)

    CAS  Google Scholar 

  95. Yamasaki, Y., Miyasaka, S., Kaneko, Y., He, J.-P., Arima, T., Tokura, Y.: Magnetic reversal of the ferroelectric polarization in a multiferroic spinet oxide. Phys. Rev. Lett. 96, 207204(4) (2006)

    Google Scholar 

  96. Eliseev, E.A., Glinchuk, M.D., Khist, V., Skorokhod, V.V., Blinc, R., Morozovska, A.N.: Linear magnetoelectric coupling and ferroelectricity induced by the flexomagnetic effect in ferroics. Phys. Rev. B 84, 174112 (2011)

    Google Scholar 

  97. Bar’yakhtar, V.G., L’vov, V.A., Yablonskii, D.A.: Inhomogeneous magneto-electric effect. JETP Lett. 37, 673–675 (1983)

    Google Scholar 

  98. Tanygin, B.M.: Symmetry theory of the flexomagnetoelectric effect in the magnetic domain walls. J. Magn. Magn. Mater. 323, 616 (2011)

    CAS  Google Scholar 

  99. Pyatakov, A.P., Zvezdin, A.K.: Flexomagnetoelectric interaction in multiferroics. Eur. Phys. J. B 71, 419–427 (2009)

    CAS  Google Scholar 

  100. Akcay, G., Alpay, S.P., Rossetti, G.A., Scott, J.F.: Influence of mechanical boundary conditions on the electrocaloric properties of ferroelectric thin films. J. Appl. Phys. 103, 024104(7) (2008)

    Google Scholar 

  101. Cao, W., Cross, L.E.: Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition. Phys. Rev. B 44, 5–12 (1991)

    Google Scholar 

  102. Jia, C.-L., Nagarajan, V., He, J.-Q., Houben, L., Zhao, T., Ramesh, R., Urban, K., Waser, R.: Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat. Mater. 6, 64–69 (2007)

    CAS  Google Scholar 

  103. Моriуа, Т.: Piezomagnetism in CoF2. J. Phys. Chem. Solids 11, 73–77 (1959)

    Google Scholar 

  104. Smolenskii, G.A., Chupis, I.E.: Ferroelectromagnets. Sov. Phys. – Uspekhi 25, 475–493 (1982) (in Russian)

    Google Scholar 

  105. Eremenko, V.V., Sirenko, V.A.: Magnetic and Magneto-Elastic Properties of Atniferromagnets and Superconductors, 295 p. Naukova Dumka, Kiev (2004) (in Russian)

    Google Scholar 

  106. Dzyaloshinskii, I.E.: Thermodynamic theory of “weak” ferromagnetism in antiferromagnetic substances. Sov. Phys. - JETP 5, 1259–1272 (1957) (in Russian)

    Google Scholar 

  107. Mukherjee, S., Chen, C.H., Chou, C.C., Tseng, K.F., Chaudhuri, B.K., Yang, H.D.: Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix. Phys. Rev. B 82, 104107(7) (2010)

    Google Scholar 

  108. Wiekhorst, F., Shevchenko, E., Weller, H., Kotzler, J.: Anisotropic superparamagnetism of monodispersive cobalt-platinum nanocrystals. Phys. Rev. B 67, 224416(11) (2003)

    Google Scholar 

  109. Kumzerov, Y., Vakhrushev, S.: Nanostructures within porous materials. In: Halwa, H.S. (ed.) Encyclopedia of Nanoscienceand Nanotechnology, 10th edn, pp. 811–849. American Scientific Publishers, Stevenson Ranch (2003)

    Google Scholar 

  110. Morrison, F.D., Luo, Y., Szafraniak, I., Nagarajan, V., Wehrspohn, R.B., Steinhart, M., Wendroff, J.H., Zakharov, N.D., Mishina, E.D., Vorotilov, K.A., Sigov, A.S., Nakabayashi, S., Alexe, M., Ramesh, R., Scot, J.F.: Ferroelectric nanotubes. Rev. Adv. Mater. Sci. 4, 114–122 (2003)

    CAS  Google Scholar 

  111. Cross, L.E.: Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987)

    CAS  Google Scholar 

  112. Li, S., Eastman, J.A., Newnham, R.E., Cross, L.E.: Diffuse phase transition in ferroelectrics with mesoscopic heterogeneity: Mean-field theory. Phys. Rev. B 55, 12067–12078 (1997)

    CAS  Google Scholar 

  113. Glazounov, A.E., Bell, A.J., Tagantsev, A.K.: Relaxors as superparaelectrics with distributions of the local transition temperature. J. Phys. Condens. Matter 7, 4145–4168 (1995)

    CAS  Google Scholar 

  114. Kohlstedt, H., Mustafa, Y., Gerber, A., Petraru, A., Fitsilis, M., Meyer, R., Bottger, U., Waser, R.: Current status and challenges of ferroelectric mamory devices. Microelectron. Eng. 80, 296–304 (2005)

    CAS  Google Scholar 

  115. Roelofs, A., Schneller, T., Szot, K., Waser, R.: Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity. Appl. Phys. Lett. 81, 5231–5233 (2002)

    CAS  Google Scholar 

  116. Tiruvalam, R., Kundu, A., Soukhojak, A., Jesse, S., Kalinin, S.V.: Observing the superparaelectric limit of relaxor (Na1/2Bi1/2)0.9Ba0.1TiO3 nanocrystals. Appl. Phys. Lett. 89, 112901 (2006)

    Google Scholar 

  117. Glinchuk, M.D., Eliseev, E.A., Morozovska, A.N.: Superparaelectric phase in the ensemble of noninteracting ferroelectric nanoparticles. Phys. Rev. B 78(N13), 134107(9) (2008)

    Google Scholar 

  118. Vaks, V.G.: Introduction to the Microscopic Theory of Ferroelectricity, 326 p. Nauka, Moscow (1973) (in Russian)

    Google Scholar 

  119. Blinc, R., Zeks, B.: Soft Mode in Ferroelectrics and Antiferroelectrics, 317 p. North-Holland, Amsterdam (1974)

    Google Scholar 

  120. Naumov, I.I., Bellaiche, L., Fu, H.: Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–739 (2004)

    CAS  Google Scholar 

  121. Ponomareva, I., Naumov, I.I., Kornev, I., Fu, H., Bellaiche, L.: Atomistic treatment of depolarizing energy and field in ferroelectric nanostructures. Phys. Rev. B 72, 14 0102(R)(4) (2005)

    Google Scholar 

  122. Prosandeev, S., Ponomareva, I., Naumov, I., Kornev, I., Bellaiche, L.: Original properties of dipole voltices in zero-dimensional ferroelectrics. J. Phys. Condens. Matter 20, 193201 (2008)

    Google Scholar 

  123. Slutsker, J., Artemev, A., Roytburd, A.: Phase-field modeling of domain structure of confined nanoferroelectrics. Phys. Rev. Lett. 100, 087602(4) (2008)

    Google Scholar 

  124. Strukov, B.A., Levanyuk, A.P.: Ferroelectric Phenomena in Crystals, 303 p. Springer, Heidelberg (1998)

    Google Scholar 

  125. Glinchuk, M.D., Morozovskaya, A.N.: Effect of surface tension and depolarization field on ferroelectric nanomaterials properties. Phys. Status Solidi B 238, 81 (2003)

    CAS  Google Scholar 

  126. Zhao, Z., Buscaglia, V., Viviani, M., Buscaglia, M.T., Mitoseriu, L., Testino, A., Nygren, M., Johnsson, M., Nanni, P.: Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70, 024107(8) (2004)

    Google Scholar 

  127. Erdem, E., Semmelhack, H.-C., Bottcher, R., Rumpf, H., Banys, J., Matthes, A., Glasel, H.-J., Hirsch, D., Hartmann, E.: Study of the tetragonal-to-cubic phase transition in PbTiO3 nanopowders. J. Phys. Condens. Matter 18, 3861–3874 (2006)

    CAS  Google Scholar 

  128. Zhang, J.X., Li, Y.L., Wang, Y., Liu, Z.K., Chen, L.Q., Chu, Y.H., Zavaliche, F., Ramesh, R.: Effect of substrate-induced strains on the spontaneous polarization of epitaxial BiFeO3 thin films. J. Appl. Phys. 101, 114105(6) (2007)

    Google Scholar 

  129. Haun, M.J., Furman, E., Jang, S.J., Cross, L.E.: Thermodynamic theory of the lead zorconate-titanate solid solution system, part V: Theoretical calculations. Ferroelectrics 99, 63–86 (1989)

    CAS  Google Scholar 

  130. Jona, F., Shirane, G.: Ferroelectric Crystals, 402 p. Pergamon, Oxford (1962)

    Google Scholar 

  131. Lopez-Perez, J.A., Lopez Quinterla, M.A., Mira, J., Rivas, J., Charles, S.W.: Advanced in the preparation of magnetic nanoparticles by the microemulsion method. J. Phys. Chem. B 101, 8045–8047 (1997)

    CAS  Google Scholar 

  132. Binder, K., Young, A.P.: Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801–976 (1986)

    CAS  Google Scholar 

  133. Wadhawan, V.K.: Introduction to Ferroic Materials, 740 p. Gordon and Breach, New York (2000)

    Google Scholar 

  134. Roduner, E.: Nanoscopic Materials: Size-Dependent Phenomena, 298 p. RSC Publishing, Cambridge (2006)

    Google Scholar 

  135. Hudson, D.J.: Statistics. Lectures on Elementary Statistics and Probability, 242 p. CERN, Geneva (1964); Martin, B.R.: Statistics for Physicists, 209 p. Academic, London (1971)

    Google Scholar 

  136. Liu, F., Lagally, M.G.: Interplay of stress, structure, and stoichiometry in Ge-covered Si(001). Phys. Rev. Lett. 76(17), 3156–3159 (1996)

    CAS  Google Scholar 

  137. Shchukin, V.A., Bimberg, D.: Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71(4), 1125–1171 (1999)

    CAS  Google Scholar 

  138. Zang, J., Huang, M., Liu, F.: Mechanism for nanotube formation from self-bending nanofilms driven by atomic-scale surface-stress imbalance. Phys. Rev. Lett. 98, 146102(4) (2007)

    Google Scholar 

  139. Zang, J., Liu, F.: Theory of bending of Si nanocantilevers induced by molecular absorption: a modified Stoney formula for the calibration of nanomechanochemical sensors. Nanotechnology 18, 405501 (2007)

    Google Scholar 

  140. Lin, S.P., Zheng, Y., Cai, M.Q., Wang, B.: Phase diagram of ferroelectric nanowires and its mechanical force controllability. Appl. Phys. Lett. 96, 232904(3) (2010)

    Google Scholar 

  141. Zheng, Y., Woo, C.H.: Hyper-sensitive piezophotovoltaic effects in ferroelectric nanocylinders. J. Appl. Phys. 107, 104120(7) (2010)

    Google Scholar 

  142. Ma, W., Zhang, M., Lu, Z.: A study of size effects in PbTiO3 nanocrystals by Raman spectroscopy. Phys. Status Solidi (a) 166(2), 811–815 (1998)

    CAS  Google Scholar 

  143. Uchino, K., Sadanaga, E., Hirose, T.: Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 72(8), 1555–1558 (1989)

    CAS  Google Scholar 

  144. Ma, W.: Surface tension and Curie temperature in ferroelectric nanowires and nanodots. Appl. Phys. A 96, 915–920 (2009)

    CAS  Google Scholar 

  145. McLachlan, M.A., McComb, D.W., Ryan, M.P., Eliseev, E.A., Morozovska, A.N., Payzant, E.A., Jesse, S., Seal, K., Baddorf, A.P., Kalinin, S.V.:Probing local and global ferroelectric phase stability and polarization switching in ordered macroporous PZT. Adv. Func. Mater. 21, 941–947 (2011) doi:10.1002/adfm.201002038

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Glinchuk, M.D., Ragulya, A.V., Stephanovich, V.A. (2013). True Nanoferroics with the Properties Absent in Corresponding Bulk Samples. In: Nanoferroics. Springer Series in Materials Science, vol 177. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5992-3_4

Download citation

Publish with us

Policies and ethics