The Peculiar Physical Properties of Nanosized Ferroics (Nanoferroics)

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 177)


This Chapter contains the experimental facts about size effects in nanoferroics. They include ferroelectric, ferroelastic, magnetic and multiferroic nanostructured materials. The main peculiar feature of nanoferroics is the geometric confinement originating from their surfaces and interfaces. This is in contrast to the ordinary bulk ferroics, where the sample surface plays a minor role. In particular, in nanoferroics, the surface generates the physical properties gradients in the normal (to the surface) direction. This fact yields strong size effects and spatial inhomogeneity of the nanoferroics properties, which should be taken into account to get their adequate physical description. We report and analyze an extensive collection of experimental results regarding nanoferroics symmetry, lattice constants, dielectric response, magnetic susceptibility, polarization and hysteresis loops, magnetization and coercive field, heat capacity, soft mode and optical properties.


Electron Spin Resonance Electron Spin Resonance Spectrum Dielectric Permittivity Field Cool Zero Field Cool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zangwill, A.: Physics at Surfaces, 454 pp. Cambridge University Press, Cambridge (1988)Google Scholar
  2. 2.
    Glinchuk, M.D., Deigen, M.F.: Theory of local electronic states on the surface of nonmetallic crystals. Surf. Sci. 3(N3), 243–260 (1965)CrossRefGoogle Scholar
  3. 3.
    Tamm, I.: On the possible bound states of electrons on a crystal surface. Phys. Z. Sov. Union 1, 733 (1932)Google Scholar
  4. 4.
    Lifshits, I.M., Rosenzweig, L.N.: The dynamics of crystal lattice covering the space. Zhurn. Eksp. Teor. Phys. 18, 1012–1023 (1948) (in Russian)Google Scholar
  5. 5.
    Rosenzweig, L.N.: Kharkov State University Transactions. Phys. Math. Series 2, 19 (1950) (in Russian)Google Scholar
  6. 6.
    Rossetti Jr., G.A., Cross, L.E., Kushida, K.: Stress induced shift of the Curie point in epitaxial PbTiO3 thin films. Appl. Phys. Lett. 59, 2524–2526 (1991)CrossRefGoogle Scholar
  7. 7.
    Speck, J.S., Pompe, W.: Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. I. Theory. J. Appl. Phys. 76, 466–476 (1994)CrossRefGoogle Scholar
  8. 8.
    Glinchuk, M.D., Zaulychny, B.Y., Stephanovich, V.A.: Influence of semiconducting electrodes on properties of thin ferroelectric films. Phys. Status Solidi (b) 243(2), 542–554 (2006)CrossRefGoogle Scholar
  9. 9.
    Landau, L.D., Lifshits, E.M.: Statistical physics, Part I, 583 p. Pergamon Press, Oxford (1982)Google Scholar
  10. 10.
    Ma, W., Zhang, M., Lu, Z.: A study of size effects in PbTiO3 nanocrystals by Raman spectroscopy. Phys. Status Solidi (a) 166, 811–815 (1998)CrossRefGoogle Scholar
  11. 11.
    Fattuzo, E., Merz, W.J.: Ferroelectricity, 457 pp. North-Holland, Amsterdam (1967)Google Scholar
  12. 12.
    Glinchuk, M.D. Grachev, V.G., Deygen, M.F., Roytsin, A.B., Suslin, L.A.: Electric effects in radiospectroscopy. Nauka, Мoscow (1981) (in Russian)Google Scholar
  13. 13.
    Bunde, A., Dieterich, W.: Percolation in composites. J. Electroceram. 5(2), 81–92 (2000)CrossRefGoogle Scholar
  14. 14.
    Yeon Yi, J., Man Choi, G.: Percolation behavior of conductor-insulator composites with varying aspect ratio of conductive fiber. J. Electroceram. 3(4), 361–369 (1999)CrossRefGoogle Scholar
  15. 15.
    Petzelt, J., Rychetsky, I.: Effective dielectric function in high-permittivity ceramics and films. Ferroelectrics 316, 89–95 (2005)CrossRefGoogle Scholar
  16. 16.
    Weinstein, B.K. (ed.): Modern Crystallography, vol. 1., 383 p. Nauka, Moscow (1979) (in Russian)Google Scholar
  17. 17.
    Li, X., Shih, W.-H.: Size effects in barium titanate particles and clusters. J. Am. Ceram. Soc 80(11), 2844–2852 (1997)CrossRefGoogle Scholar
  18. 18.
    Uchino, K., Sadanaga, E., Hirose, T.: Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 72, 1555–1558 (1989)CrossRefGoogle Scholar
  19. 19.
    Zhao, Z., Buscaglia, V., Viviani, M., Buscaglia, M.T., Mitoseriu, L., Testino, A., Nygren, M., Johnsson, M., Nanni, P.: Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70, 024107(8) (2004)Google Scholar
  20. 20.
    Lichtensteiger, C., Triscone, J.M., Junquera, J., Chosez, P.: Ferroelectricity and tetragonality in ultrathin PbTiO3 films. Phys. Rev. Lett. 94, 047603(4) (2005)CrossRefGoogle Scholar
  21. 21.
    Lines, M.E., Glass, A.M.: Principles and Applications of Ferroelectrics and Related Phenomena, 612 p. Oxford University Press, Oxford (1978)Google Scholar
  22. 22.
    Wada, S., Yasuno, H., Hoshina, T., Nam, S.-M., Kakemoto, H., Tsurumi, T.: Preparation of nm-sized barium titanate fine particles and their powder dielectric properties. Jpn. J. Appl. Phys. 42, 6188–6195 (2003)CrossRefGoogle Scholar
  23. 23.
    Basceri, C., Streiffer, S.K., Kingon, A.I., Waser, R.: The dielectric response as a function of temperature and film thickness of fiber-textured (BaSr)TiO3 thin films grown by chemical vapor deposition. J. Appl. Phys. 82(5), 2497–2504 (1997)CrossRefGoogle Scholar
  24. 24.
    Tyunina, M., Levoska, J.: Coexistence of ferroelectric and relaxor properties in epitaxial films of Ba1-xSrxTiO3. Phys. Rev. B 70, 132105(4) (2004)CrossRefGoogle Scholar
  25. 25.
    Lemanov, V.V., Smirnova, E.P., Syrnikov, P.P., Tarakanov, E.A.: Phase transitions and glasslike behavior in Sr1-xBaxTiO3. Phys. Rev. B 54, 3151–3157 (1996)CrossRefGoogle Scholar
  26. 26.
    Viehland, D., Jang, S.J., Cross, L.E., Wuttig, M.: Deviation from Curie-Weiss behavior in relaxor ferroelectrics. Phys. Rev. B 46, 8003–8006 (1992)CrossRefGoogle Scholar
  27. 27.
    Ziebert, C., Schmitt, H., Kruger, J.K., Sternberg, A., Ehses, K.-H.: Grain-size-induced relaxor properties in nanocrystalline perovskite films. Phys. Rev. B 69, 214106(10) (2004)CrossRefGoogle Scholar
  28. 28.
    Kighelman, Z., Damianovich, D., Setter, N.: Electromechanical properties and self-polarization in relaxor Pb(Mg1/3Nb2/3)O3 thin films. J. Appl. Phys. 89(2), 1393–1401 (2001)CrossRefGoogle Scholar
  29. 29.
    Kim, Y., Gerhardt, R.A., Erbil, A.: Dynamical properties of epitaxial ferroelectric superlattices. Phys. Rev. B 55, 8766–8775 (1997)CrossRefGoogle Scholar
  30. 30.
    Tsurumi, T., Ichikawa, T., Harigai, T., Kakemoto, H., Wada, S.: Dielectric and optical properties of BaTiO3/SrTiO3 and BaTiO3/BaZrO3 superlattices. J. Appl. Phys. 91, 2284–2289 (2002)CrossRefGoogle Scholar
  31. 31.
    Sawyer, C.B., Tower, C.H.: Rochelle salt as a dielectric. Phys. Rev. 35, 269–273 (1930)CrossRefGoogle Scholar
  32. 32.
    Deineka, A., Glinchuk, M.D., Jastrabik, L., Suchaneck, G.: Ellipsometry and LIMM investigations of the interaction between PZT thin films and platinum electrodes and air. Ferroelectrics 254, 205–211 (2001)CrossRefGoogle Scholar
  33. 33.
    Deineka, A., Glinchuk, M., Jastrabik, L., Suchaneck, G., Gerlach, G.: Influence of surface and interface on PLZT film optical properties. Phys. Status Solidi (a) 175, 443–446 (1999)CrossRefGoogle Scholar
  34. 34.
    Suchaneck, G., Sandner, T., Kohler, R., Gerlach, G.: Investigation of the spatial polarization distribution of sputtered PZT thin films using LIMM. Integr. Ferroelectr. 27, 127–136 (1999)CrossRefGoogle Scholar
  35. 35.
    Rudiger, A., Schneller, T., Roelofs, A., Tiedke, S., Schmitz, T., Waser, R.: Nanosize ferroelectric oxides – tracking down the superparaelectric limit. Appl. Phys. A 80, 1247–1255 (2005)CrossRefGoogle Scholar
  36. 36.
    Roelofs, A., Schneller, T., Szot, K., Waser, R.: Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity. Appl. Phys. Lett. 81(27), 5231–5233 (2002)CrossRefGoogle Scholar
  37. 37.
    Kohler, R., Suchaneck, G., Padmini, P., Sandner, T., Gerlach, G., Hofmann, G.: RF-sputtered PZT thin films for infrared sensor arrays. Ferroelectrics 225, 57–66 (1999)CrossRefGoogle Scholar
  38. 38.
    Kanno, I., Fujii, S., Kamada, T., Takayama, R.: Piezoelectric properties of c-axis oriented Pb(Zr, Ti)O3 thin films. Appl. Phys. Lett. 70(11), 1378–1380 (1997)CrossRefGoogle Scholar
  39. 39.
    Pike, G.E., Warren, W.L., Dimos, D., Tuttle, B.A., Ramesh, R., Lee, J., Keramidas, V.G., Evans, J.T.: Voltage offsets in (Pb, La)(Zr, Ti)O3 thin films. Appl. Phys. Lett. 66(4), 484–486 (1995)CrossRefGoogle Scholar
  40. 40.
    Turell, G., Corset, J.: Raman Microscopy, Developments and Applications, 463 p. Academic/Harcourt & Brace Company, London (1996)Google Scholar
  41. 41.
    Anastassakis, E., Pinczuk, A., Burstein, E., Pollack, F.H., Cardona, M.: Effect of static uniaxial stress on the Raman spectrum of silicon. Solid State Commun. 8, 133–138 (1970)CrossRefGoogle Scholar
  42. 42.
    Morrison, F.D., Luo, Y., Szafraniak, I., Nagarajan, V., Wehrspohn, R.B., Steinhart, M., Wendroff, J.H., Zakharov, N.D., Mishina, E.D., Vorotilov, K.A., Sigov, A.S., Nakabayashi, S., Alexe, M., Ramesh, R., Scott, J.F.: Ferroelectric nanotubes. Rev. Adv. Mater. Sci. 4(2), 114–122 (2003)Google Scholar
  43. 43.
    Yadlovker, D., Berger, S.: Uniform orientation and size of ferroelectric domains. Phys. Rev. B 71, 184112(6) (2005)CrossRefGoogle Scholar
  44. 44.
    Zhong, W.L., Jiang, B., Zhang, P.L., Ma, J.M., Cheng, H.M., Yang, Z.H., Li, L.X.: Phase transitions in PbTiO3 ultrafine particles of different sizes. J. Phys. Condens. Matter 5, 2619–2624 (1993)CrossRefGoogle Scholar
  45. 45.
    Strukov, B.A., Davitadze, S.T., Kravchun, S.N., Taraskin, S.A., Goltzman, M., Lemanov, V.V., Shulman, S.G.: Specific heat and heat conductivity of BaTiO3 polycrystalline films in the thickness range 20–1100 nm. J. Phys. Condens. Matter 15, 4331–4340 (2003)CrossRefGoogle Scholar
  46. 46.
    Davitadze, S.T., Kravchun, S.N., Strukov, B.A., Goltzman, M., Lemanov, V.V., Shulman, S.G.: Specific heat and thermal conductivity of BaTiO3 polycrystalline thin films. Appl. Phys. Lett. 80(9), 1631–1633 (2002)CrossRefGoogle Scholar
  47. 47.
    Strukov, B.A., Davitadze, S.T., Shulman, S.G., Goltzman, M., Lemanov, V.V.: Classification of size effects in polycrystalline BaTiO3 thin films by means of the specific heat measurements: grain size or film thickness? cond-mat/0405224 (6) (2004)Google Scholar
  48. 48.
    Burns, G., Scott, B.A.: Raman spectra of polycrystalline solids; application to the PbTi1-xZrxO3 system. Phys. Rev. Lett. 25, 167–170 (1970); Lattice modes in ferroelectric perovskites: PbTiO3, Phys. Rev. B 7, 3088–3101 (1973)Google Scholar
  49. 49.
    Sanjurlo, J.A., Lopez-Cruz, E., Burns, G.: High-pressure Raman study of zone-center phonons in PbTiO3. Phys. Rev. B 28, 7260–7268 (1983)CrossRefGoogle Scholar
  50. 50.
    Bottcher, R., Klimm, C., Semmelhack, H.-C., Volkel, G., Glaser, H.J., Hartmann, E.: Size effect in Mn2+ doped barium titanate nanopowders observed by mean of electron paramagnetic resonance (EPR). Phys. Status Solidi (b) 215, R3–R4 (1999)CrossRefGoogle Scholar
  51. 51.
    Bottcher, R., Klimm, C., Michel, D., Semmelhack, H.-C., Volkel, G.: Size effect in Mn2+-doped BaTiO3 nanopowders observed by electron paramagnetic resonance. Phys. Rev. B 62, 2085–2095 (2000)CrossRefGoogle Scholar
  52. 52.
    Glinchuk, M.D., Morozovskaya, A.N., Slipenyuk, A.M., Bykov, I.P.: Peculiarities of the radiospectroscopy line shape in nanomaterials. Appl. Magn. Reson. 24, 333–342 (2003)CrossRefGoogle Scholar
  53. 53.
    Chadwick, A.V., Poplett, J.J.F., Maitland, D.T.S., Smith, M.E.: Oxygen speciation in nanophase MgO from solid state 17O NMR. Chem. Mater. 10, 864–870 (1998)CrossRefGoogle Scholar
  54. 54.
    Glinchuk, M.D., Bykov, I.P., Slipenyuk, A.M., Laguta, V.V., Jastrabik, L.: ESR study of impurities in strontium titanate films. Phys. Solid State 43, 841–843 (2001)CrossRefGoogle Scholar
  55. 55.
    Glinchuk, M.D., Kondakova, I.V., Laguta, V.V., Slipenyuk, A.M., Bykov, I.P., Ragulya, A.V., Klimenko, V.P.: Size effects in radiospectroscopy spectra of ferroelectric nanopowders. Acta Phys. Polonica A 108, 47–60 (2005)Google Scholar
  56. 56.
    Zvezdin, A.K.: Magnetic molecules and quantum mechanics. Priroda, N12, 11–19 (2000) (in Russian)Google Scholar
  57. 57.
    Billas, J.M.L., Chatelain, A., de Heer, W.A.: Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 265, 1682–1684 (1994)CrossRefGoogle Scholar
  58. 58.
    Przenioslo, R., Winter, R., Natter, H., Schmelzer, M., Hempelmann, R., Wagner, W.: Fractal pore distribution and magnetic microstructure of pulse – electrodeposited nanocrystalline Ni and Co. Phys. Rev. B 63, 054408(11) (2001)CrossRefGoogle Scholar
  59. 59.
    Nakae, Y., Seino, Y., Teranishi, T., Miyake, M., Yamada, S., Hori, H.: Anomalous spin polarization in Pd and Au nano-particles. Physica B 284, 1758–1759 (2000)CrossRefGoogle Scholar
  60. 60.
    Lopez-Perez, J.A., Lopez Quintela, M.A., Mira, J., Rivas, J., Charles, S.W.: Advances in the preparation of magnetic nanoparticles by the microemulsion method. J. Phys. Chem. B 101, 8045–8047 (1997)CrossRefGoogle Scholar
  61. 61.
    Bandow, S., Kimura, K.: Disappearance of long range spin-order in ultrafine magnetite particles. Z. Phys. D 19, 271–273 (1991)CrossRefGoogle Scholar
  62. 62.
    Wiekhorst, F., Shevchenko, E., Weller, H., Kotzler, J.: Anisotropic superparamagnetism of monodispersive cobalt-platinum nanocrystals. Phys. Rev. B 67, 224416(11) (2003)CrossRefGoogle Scholar
  63. 63.
    Respaud, M., Broto, J.M., Rakoto, H., Fert, A.R., Thomas, L., Barbara, B., Verelst, M., Snoeck, E., Lecante, P., Mosset, A., Osuna, J., Ould Ely, T., Amiens, C., Chaudret, B.: Surface effects on the magnetic properties of ultrafine cobalt particles. Phys. Rev. B 57, 2925–2935 (1998)CrossRefGoogle Scholar
  64. 64.
    Fedosyuk, V.M., Danishevskiframe, A.M., Kurdyukov, D.A., Shuman, V.B., Gordeev, S.K.: Magnetic properties of nickel clusters in nanoporous carbon. Phys. Solid State 45(N9), 1750–1752 (2003)CrossRefGoogle Scholar
  65. 65.
    Gambardella, P., Dallmeyer, A., Maiti, K., Malagoli, M.C., Eberhardt, W., Kern, K., Carbone, C.: Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301–304 (2002)CrossRefGoogle Scholar
  66. 66.
    Gambardella, P., Dallmeyer, A., Maiti, K., Malagoli, M.C., Rusponi, S., Ohresser, P., Eberhardt, W., Carbone, C., Kern, K.: Oscillatory magnetic anisotropy in one-dimensional atomic wires. Phys. Rev. Lett. 93, 077203(4) (2004)Google Scholar
  67. 67.
    Stampanoni, M., Vaterlaus, A., Aeschlimann, M., Meier, F.: Magnetism of epitaxial bcc iron on Ag(001) observed by spin-polarized photoemission. Phys. Rev. Lett. 59, 2483–2485 (1987)CrossRefGoogle Scholar
  68. 68.
    Pescia, D., Stampanoni, M., Bona, G.L., Vaterlaus, A., Willis, R.F., Meier, F.: Magnetism of epitaxial fcc iron films on Cu(001) investigated by spin-polarized photoelectron emission. Phys. Rev. Lett. 58, 2126–2129 (1987)CrossRefGoogle Scholar
  69. 69.
    Kubetzka, A., Ferriani, P., Bode, M., Heinze, S., Bihlmayer, G., von Bergmann, K., Piezsch, O., Blugel, S., Wiesendanger, R.: Revealing antiferromagnetic order of the Fe monolayer on W(001): spin-polarized scanning tunneling microscopy and first-principles calculations. Phys. Rev. Lett. 94, 087204(4) (2005)CrossRefGoogle Scholar
  70. 70.
    Stachow-Wojcik, A., Story, T., Dobrowolski, W., Arciszewska, M., Galazka, R.R., Kreijveld, M.W., Swuste, C.H.W., Swagten, H.J.M., de Jonge, W.J.M., Twardowski, A., Sipatov, A.Y.: Ferromagnetic transition in EuS-PbS multilayers. Phys. Rev. B 60, 15220–15229 (1999)CrossRefGoogle Scholar
  71. 71.
    Gubin, S.P., Spichkin, Y.I., Koksharov, Y.A., Yurkov, G.Y., Kozinkin, A.V., Nedoseikina, T.I., Korobov, M.S., Tishin, A.M.: Magnetic and structural properties of Co nanoparticles in a polymeric matrix. J. Magn. Magn. Mater. 265, 234–242 (2003)CrossRefGoogle Scholar
  72. 72.
    Koksharov, Y.A., Gubin, S.P., Kosobudsky, I.D., Yurkov, G.Y., Pankratov, D.A., Ponomarenko, L.A., Mikheev, M.G., Bertran, M., Khodorkovsky, Y., Tishin, A.M.: Electron paramagnetic resonance spectra near the spin-glass transition in iron oxide nanoparticles. Phys. Rev. B 63, 012407(4) (2000)CrossRefGoogle Scholar
  73. 73.
    Nagata, K., Ishihara, A.: ESR of ultrafine magnetic particles. J. Magn. Magn. Mater. 104–107, 1571–1573 (1992)CrossRefGoogle Scholar
  74. 74.
    Aizu, K.: Possible species of “ferroelastric” crystals and of simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc. Jpn. 27, 387–396 (1969)CrossRefGoogle Scholar
  75. 75.
    Aizu, K.: Possible species of ferromagnetic, ferroelectric and ferroelastic crystals. Phys. Rev. B 2, 754–772 (1970)CrossRefGoogle Scholar
  76. 76.
    Minh, N.Q., Takahashi, T.: Science and Technology of Ceramic Fuel Cells, 327 pp. Elsevier, Amsterdam (1995)Google Scholar
  77. 77.
    Alivisatos, A.P.: Semiconductor nanocrystals. MRS Bull. 20(8), 23–32 (1995)Google Scholar
  78. 78.
    Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223–315 (1989)CrossRefGoogle Scholar
  79. 79.
    Hadjipanayis, G.C., Siegel, R.W. (eds.): Nanophase Materials, Synthesis-Properties-Applications, 728 pp. Kluwer Academic Publishers, Dordrecht (1994)Google Scholar
  80. 80.
    Siegel, R.W.: Exploring mesoscopia: the bold new world of nanostructures. Phys. Today 46(October), 64–68 (1993)CrossRefGoogle Scholar
  81. 81.
    Siegel, R.W.: Nanophase materials. In: Trigg, G.L. (ed.) Encyclopedia of Applied Physics, vol. 11, pp. 173–200. VSH, New York (1994)Google Scholar
  82. 82.
    Tuller, H.L.: Solid state electrochemical systems – opportunities for nanofabricated or nanostructured materials. J. Electroceram. 1, 211–218 (1997)CrossRefGoogle Scholar
  83. 83.
    Kosacki, I., Anderson, H.U.: Nanostructured oxide thin films for gas sensors. Sens. Actuators B 48, 263–269 (1998)CrossRefGoogle Scholar
  84. 84.
    Fuel cells – technology status report. Report NDOE/METC-87/0257, Morgantown Energy Technology Center, Morgantown, WV, 62 pp (1986)Google Scholar
  85. 85.
    Kosacki, I., Anderson, H.U.: Microstructure – property relationships in nanocrystalline oxide thin films. Ionics 6, 294–311 (2000)CrossRefGoogle Scholar
  86. 86.
    Ross Macdonald, J. (ed.): Impedance Spectroscopy, 427 pp. Wiley, New York (1987)Google Scholar
  87. 87.
    Kosacki, I., Gorman, B., Anderson, H.U.: Microstructure and electrical conductivity in nanocrystalline oxide thin films. In: Electrochemical Society Symposium Proceedings, vol. 97-24, pp. 631–642. The Electrochemical Society Inc., Pennington (1998)Google Scholar
  88. 88.
    Aoki, M., Chiang, Y.M., Kosacki, I., Lee, L.J., Tuller, H.L., Liu, Y.: Solute segregation and grain-boundary impedance in high-purity stabilized zirconia. J. Am. Ceram. Soc. 79, 1169–1180 (1996)CrossRefGoogle Scholar
  89. 89.
    Kosacki, I., Petrovsky, V., Anderson, H.U.: Electrical conductivity in nanocrystalline ZrO2:Y. In: Materials Research Society Symposium Proceedings, vol. 548., pp. 505–510 Materials Research Society, Pittsburgh, PA (1999)Google Scholar
  90. 90.
    Campbell, I.H., Fuchet, P.M.: The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739–741 (1986)CrossRefGoogle Scholar
  91. 91.
    Weber, W.H., Hass, K.C., McBride, J.R.: Raman study of CeO2: second-order scattering, lattice dynamics and particle-size effects. Phys. Rev. B 48, 178–185 (1993)CrossRefGoogle Scholar
  92. 92.
    Parayanthal, P., Pollak, F.H.: Raman scattering in alloy semiconductors: “Spatial correlation” model. Phys. Rev. Lett. 52, 1822–1825 (1984)CrossRefGoogle Scholar
  93. 93.
    Kosacki, I., Shumsky, M., Anderson, H.U.: The growth and structure of nanocrystalline ZrO2:Y thin films. In: Ustuhdag, E., Fishman, G. (eds.) Ceramic Engineering and Science Proceedings 20(3), pp. 135–162. The American Ceramic Society, Westerville (1999)Google Scholar
  94. 94.
    Kosacki, I., Anderson, H.U.: Microstructure – electrical transport correlation in ceramic oxide thin films. In: Bray, D (ed.) Ceramic Engineering and Science Proceedings 19 (4), 217–264. The American Ceramic Society, Westerville, 447 pp (1998)Google Scholar
  95. 95.
    Brus, L.E.: Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)CrossRefGoogle Scholar
  96. 96.
    Freedhoff, M.I., Marchetti, A.P.: Quantum confinement in semiconductor nanocrystals. In: Hummel, R.E., Wissman, P. (eds.) Optical Properties. Vol. II: Optics of Small Particles, Interfaces and Structures, pp. 1–30. CRC Press Inc., New York (1997)Google Scholar
  97. 97.
    Kittel, Ch.: Introduction to Solid State Physics, 792 pp. Willey, New York (1978)Google Scholar
  98. 98.
    Kosacki, I., Petrovsky, V., Anderson, H.U.: Band gap energy in nanocrystalline ZrO2:16%Y thin films. Appl. Phys. Lett. 74, 341–343 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Functional Oxide MaterialsInstitute of Material Science NASKievUkraine
  2. 2.Department of Physical ChemistryInstitute of Material Science NASKievUkraine
  3. 3.Department of PhysicsOpole UniversityOpolePoland

Personalised recommendations