Skip to main content

The Peculiar Physical Properties of Nanosized Ferroics (Nanoferroics)

  • Chapter
  • First Online:
Nanoferroics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 177))

Abstract

This Chapter contains the experimental facts about size effects in nanoferroics. They include ferroelectric, ferroelastic, magnetic and multiferroic nanostructured materials. The main peculiar feature of nanoferroics is the geometric confinement originating from their surfaces and interfaces. This is in contrast to the ordinary bulk ferroics, where the sample surface plays a minor role. In particular, in nanoferroics, the surface generates the physical properties gradients in the normal (to the surface) direction. This fact yields strong size effects and spatial inhomogeneity of the nanoferroics properties, which should be taken into account to get their adequate physical description. We report and analyze an extensive collection of experimental results regarding nanoferroics symmetry, lattice constants, dielectric response, magnetic susceptibility, polarization and hysteresis loops, magnetization and coercive field, heat capacity, soft mode and optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zangwill, A.: Physics at Surfaces, 454 pp. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  2. Glinchuk, M.D., Deigen, M.F.: Theory of local electronic states on the surface of nonmetallic crystals. Surf. Sci. 3(N3), 243–260 (1965)

    Article  Google Scholar 

  3. Tamm, I.: On the possible bound states of electrons on a crystal surface. Phys. Z. Sov. Union 1, 733 (1932)

    CAS  Google Scholar 

  4. Lifshits, I.M., Rosenzweig, L.N.: The dynamics of crystal lattice covering the space. Zhurn. Eksp. Teor. Phys. 18, 1012–1023 (1948) (in Russian)

    Google Scholar 

  5. Rosenzweig, L.N.: Kharkov State University Transactions. Phys. Math. Series 2, 19 (1950) (in Russian)

    Google Scholar 

  6. Rossetti Jr., G.A., Cross, L.E., Kushida, K.: Stress induced shift of the Curie point in epitaxial PbTiO3 thin films. Appl. Phys. Lett. 59, 2524–2526 (1991)

    Article  CAS  Google Scholar 

  7. Speck, J.S., Pompe, W.: Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. I. Theory. J. Appl. Phys. 76, 466–476 (1994)

    Article  CAS  Google Scholar 

  8. Glinchuk, M.D., Zaulychny, B.Y., Stephanovich, V.A.: Influence of semiconducting electrodes on properties of thin ferroelectric films. Phys. Status Solidi (b) 243(2), 542–554 (2006)

    Article  CAS  Google Scholar 

  9. Landau, L.D., Lifshits, E.M.: Statistical physics, Part I, 583 p. Pergamon Press, Oxford (1982)

    Google Scholar 

  10. Ma, W., Zhang, M., Lu, Z.: A study of size effects in PbTiO3 nanocrystals by Raman spectroscopy. Phys. Status Solidi (a) 166, 811–815 (1998)

    Article  CAS  Google Scholar 

  11. Fattuzo, E., Merz, W.J.: Ferroelectricity, 457 pp. North-Holland, Amsterdam (1967)

    Google Scholar 

  12. Glinchuk, M.D. Grachev, V.G., Deygen, M.F., Roytsin, A.B., Suslin, L.A.: Electric effects in radiospectroscopy. Nauka, Мoscow (1981) (in Russian)

    Google Scholar 

  13. Bunde, A., Dieterich, W.: Percolation in composites. J. Electroceram. 5(2), 81–92 (2000)

    Article  CAS  Google Scholar 

  14. Yeon Yi, J., Man Choi, G.: Percolation behavior of conductor-insulator composites with varying aspect ratio of conductive fiber. J. Electroceram. 3(4), 361–369 (1999)

    Article  Google Scholar 

  15. Petzelt, J., Rychetsky, I.: Effective dielectric function in high-permittivity ceramics and films. Ferroelectrics 316, 89–95 (2005)

    Article  CAS  Google Scholar 

  16. Weinstein, B.K. (ed.): Modern Crystallography, vol. 1., 383 p. Nauka, Moscow (1979) (in Russian)

    Google Scholar 

  17. Li, X., Shih, W.-H.: Size effects in barium titanate particles and clusters. J. Am. Ceram. Soc 80(11), 2844–2852 (1997)

    Article  CAS  Google Scholar 

  18. Uchino, K., Sadanaga, E., Hirose, T.: Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 72, 1555–1558 (1989)

    Article  CAS  Google Scholar 

  19. Zhao, Z., Buscaglia, V., Viviani, M., Buscaglia, M.T., Mitoseriu, L., Testino, A., Nygren, M., Johnsson, M., Nanni, P.: Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70, 024107(8) (2004)

    Google Scholar 

  20. Lichtensteiger, C., Triscone, J.M., Junquera, J., Chosez, P.: Ferroelectricity and tetragonality in ultrathin PbTiO3 films. Phys. Rev. Lett. 94, 047603(4) (2005)

    Article  Google Scholar 

  21. Lines, M.E., Glass, A.M.: Principles and Applications of Ferroelectrics and Related Phenomena, 612 p. Oxford University Press, Oxford (1978)

    Google Scholar 

  22. Wada, S., Yasuno, H., Hoshina, T., Nam, S.-M., Kakemoto, H., Tsurumi, T.: Preparation of nm-sized barium titanate fine particles and their powder dielectric properties. Jpn. J. Appl. Phys. 42, 6188–6195 (2003)

    Article  CAS  Google Scholar 

  23. Basceri, C., Streiffer, S.K., Kingon, A.I., Waser, R.: The dielectric response as a function of temperature and film thickness of fiber-textured (BaSr)TiO3 thin films grown by chemical vapor deposition. J. Appl. Phys. 82(5), 2497–2504 (1997)

    Article  CAS  Google Scholar 

  24. Tyunina, M., Levoska, J.: Coexistence of ferroelectric and relaxor properties in epitaxial films of Ba1-xSrxTiO3. Phys. Rev. B 70, 132105(4) (2004)

    Article  Google Scholar 

  25. Lemanov, V.V., Smirnova, E.P., Syrnikov, P.P., Tarakanov, E.A.: Phase transitions and glasslike behavior in Sr1-xBaxTiO3. Phys. Rev. B 54, 3151–3157 (1996)

    Article  CAS  Google Scholar 

  26. Viehland, D., Jang, S.J., Cross, L.E., Wuttig, M.: Deviation from Curie-Weiss behavior in relaxor ferroelectrics. Phys. Rev. B 46, 8003–8006 (1992)

    Article  Google Scholar 

  27. Ziebert, C., Schmitt, H., Kruger, J.K., Sternberg, A., Ehses, K.-H.: Grain-size-induced relaxor properties in nanocrystalline perovskite films. Phys. Rev. B 69, 214106(10) (2004)

    Article  Google Scholar 

  28. Kighelman, Z., Damianovich, D., Setter, N.: Electromechanical properties and self-polarization in relaxor Pb(Mg1/3Nb2/3)O3 thin films. J. Appl. Phys. 89(2), 1393–1401 (2001)

    Article  CAS  Google Scholar 

  29. Kim, Y., Gerhardt, R.A., Erbil, A.: Dynamical properties of epitaxial ferroelectric superlattices. Phys. Rev. B 55, 8766–8775 (1997)

    Article  CAS  Google Scholar 

  30. Tsurumi, T., Ichikawa, T., Harigai, T., Kakemoto, H., Wada, S.: Dielectric and optical properties of BaTiO3/SrTiO3 and BaTiO3/BaZrO3 superlattices. J. Appl. Phys. 91, 2284–2289 (2002)

    Article  CAS  Google Scholar 

  31. Sawyer, C.B., Tower, C.H.: Rochelle salt as a dielectric. Phys. Rev. 35, 269–273 (1930)

    Article  CAS  Google Scholar 

  32. Deineka, A., Glinchuk, M.D., Jastrabik, L., Suchaneck, G.: Ellipsometry and LIMM investigations of the interaction between PZT thin films and platinum electrodes and air. Ferroelectrics 254, 205–211 (2001)

    Article  CAS  Google Scholar 

  33. Deineka, A., Glinchuk, M., Jastrabik, L., Suchaneck, G., Gerlach, G.: Influence of surface and interface on PLZT film optical properties. Phys. Status Solidi (a) 175, 443–446 (1999)

    Article  CAS  Google Scholar 

  34. Suchaneck, G., Sandner, T., Kohler, R., Gerlach, G.: Investigation of the spatial polarization distribution of sputtered PZT thin films using LIMM. Integr. Ferroelectr. 27, 127–136 (1999)

    Article  Google Scholar 

  35. Rudiger, A., Schneller, T., Roelofs, A., Tiedke, S., Schmitz, T., Waser, R.: Nanosize ferroelectric oxides – tracking down the superparaelectric limit. Appl. Phys. A 80, 1247–1255 (2005)

    Article  Google Scholar 

  36. Roelofs, A., Schneller, T., Szot, K., Waser, R.: Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity. Appl. Phys. Lett. 81(27), 5231–5233 (2002)

    Article  CAS  Google Scholar 

  37. Kohler, R., Suchaneck, G., Padmini, P., Sandner, T., Gerlach, G., Hofmann, G.: RF-sputtered PZT thin films for infrared sensor arrays. Ferroelectrics 225, 57–66 (1999)

    Article  Google Scholar 

  38. Kanno, I., Fujii, S., Kamada, T., Takayama, R.: Piezoelectric properties of c-axis oriented Pb(Zr, Ti)O3 thin films. Appl. Phys. Lett. 70(11), 1378–1380 (1997)

    Article  CAS  Google Scholar 

  39. Pike, G.E., Warren, W.L., Dimos, D., Tuttle, B.A., Ramesh, R., Lee, J., Keramidas, V.G., Evans, J.T.: Voltage offsets in (Pb, La)(Zr, Ti)O3 thin films. Appl. Phys. Lett. 66(4), 484–486 (1995)

    Article  CAS  Google Scholar 

  40. Turell, G., Corset, J.: Raman Microscopy, Developments and Applications, 463 p. Academic/Harcourt & Brace Company, London (1996)

    Google Scholar 

  41. Anastassakis, E., Pinczuk, A., Burstein, E., Pollack, F.H., Cardona, M.: Effect of static uniaxial stress on the Raman spectrum of silicon. Solid State Commun. 8, 133–138 (1970)

    Article  CAS  Google Scholar 

  42. Morrison, F.D., Luo, Y., Szafraniak, I., Nagarajan, V., Wehrspohn, R.B., Steinhart, M., Wendroff, J.H., Zakharov, N.D., Mishina, E.D., Vorotilov, K.A., Sigov, A.S., Nakabayashi, S., Alexe, M., Ramesh, R., Scott, J.F.: Ferroelectric nanotubes. Rev. Adv. Mater. Sci. 4(2), 114–122 (2003)

    CAS  Google Scholar 

  43. Yadlovker, D., Berger, S.: Uniform orientation and size of ferroelectric domains. Phys. Rev. B 71, 184112(6) (2005)

    Article  Google Scholar 

  44. Zhong, W.L., Jiang, B., Zhang, P.L., Ma, J.M., Cheng, H.M., Yang, Z.H., Li, L.X.: Phase transitions in PbTiO3 ultrafine particles of different sizes. J. Phys. Condens. Matter 5, 2619–2624 (1993)

    Article  CAS  Google Scholar 

  45. Strukov, B.A., Davitadze, S.T., Kravchun, S.N., Taraskin, S.A., Goltzman, M., Lemanov, V.V., Shulman, S.G.: Specific heat and heat conductivity of BaTiO3 polycrystalline films in the thickness range 20–1100 nm. J. Phys. Condens. Matter 15, 4331–4340 (2003)

    Article  CAS  Google Scholar 

  46. Davitadze, S.T., Kravchun, S.N., Strukov, B.A., Goltzman, M., Lemanov, V.V., Shulman, S.G.: Specific heat and thermal conductivity of BaTiO3 polycrystalline thin films. Appl. Phys. Lett. 80(9), 1631–1633 (2002)

    Article  CAS  Google Scholar 

  47. Strukov, B.A., Davitadze, S.T., Shulman, S.G., Goltzman, M., Lemanov, V.V.: Classification of size effects in polycrystalline BaTiO3 thin films by means of the specific heat measurements: grain size or film thickness? cond-mat/0405224 (6) (2004)

    Google Scholar 

  48. Burns, G., Scott, B.A.: Raman spectra of polycrystalline solids; application to the PbTi1-xZrxO3 system. Phys. Rev. Lett. 25, 167–170 (1970); Lattice modes in ferroelectric perovskites: PbTiO3, Phys. Rev. B 7, 3088–3101 (1973)

    Google Scholar 

  49. Sanjurlo, J.A., Lopez-Cruz, E., Burns, G.: High-pressure Raman study of zone-center phonons in PbTiO3. Phys. Rev. B 28, 7260–7268 (1983)

    Article  Google Scholar 

  50. Bottcher, R., Klimm, C., Semmelhack, H.-C., Volkel, G., Glaser, H.J., Hartmann, E.: Size effect in Mn2+ doped barium titanate nanopowders observed by mean of electron paramagnetic resonance (EPR). Phys. Status Solidi (b) 215, R3–R4 (1999)

    Article  CAS  Google Scholar 

  51. Bottcher, R., Klimm, C., Michel, D., Semmelhack, H.-C., Volkel, G.: Size effect in Mn2+-doped BaTiO3 nanopowders observed by electron paramagnetic resonance. Phys. Rev. B 62, 2085–2095 (2000)

    Article  CAS  Google Scholar 

  52. Glinchuk, M.D., Morozovskaya, A.N., Slipenyuk, A.M., Bykov, I.P.: Peculiarities of the radiospectroscopy line shape in nanomaterials. Appl. Magn. Reson. 24, 333–342 (2003)

    Article  CAS  Google Scholar 

  53. Chadwick, A.V., Poplett, J.J.F., Maitland, D.T.S., Smith, M.E.: Oxygen speciation in nanophase MgO from solid state 17O NMR. Chem. Mater. 10, 864–870 (1998)

    Article  CAS  Google Scholar 

  54. Glinchuk, M.D., Bykov, I.P., Slipenyuk, A.M., Laguta, V.V., Jastrabik, L.: ESR study of impurities in strontium titanate films. Phys. Solid State 43, 841–843 (2001)

    Article  CAS  Google Scholar 

  55. Glinchuk, M.D., Kondakova, I.V., Laguta, V.V., Slipenyuk, A.M., Bykov, I.P., Ragulya, A.V., Klimenko, V.P.: Size effects in radiospectroscopy spectra of ferroelectric nanopowders. Acta Phys. Polonica A 108, 47–60 (2005)

    CAS  Google Scholar 

  56. Zvezdin, A.K.: Magnetic molecules and quantum mechanics. Priroda, N12, 11–19 (2000) (in Russian)

    Google Scholar 

  57. Billas, J.M.L., Chatelain, A., de Heer, W.A.: Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 265, 1682–1684 (1994)

    Article  CAS  Google Scholar 

  58. Przenioslo, R., Winter, R., Natter, H., Schmelzer, M., Hempelmann, R., Wagner, W.: Fractal pore distribution and magnetic microstructure of pulse – electrodeposited nanocrystalline Ni and Co. Phys. Rev. B 63, 054408(11) (2001)

    Article  Google Scholar 

  59. Nakae, Y., Seino, Y., Teranishi, T., Miyake, M., Yamada, S., Hori, H.: Anomalous spin polarization in Pd and Au nano-particles. Physica B 284, 1758–1759 (2000)

    Article  Google Scholar 

  60. Lopez-Perez, J.A., Lopez Quintela, M.A., Mira, J., Rivas, J., Charles, S.W.: Advances in the preparation of magnetic nanoparticles by the microemulsion method. J. Phys. Chem. B 101, 8045–8047 (1997)

    Article  CAS  Google Scholar 

  61. Bandow, S., Kimura, K.: Disappearance of long range spin-order in ultrafine magnetite particles. Z. Phys. D 19, 271–273 (1991)

    Article  CAS  Google Scholar 

  62. Wiekhorst, F., Shevchenko, E., Weller, H., Kotzler, J.: Anisotropic superparamagnetism of monodispersive cobalt-platinum nanocrystals. Phys. Rev. B 67, 224416(11) (2003)

    Article  Google Scholar 

  63. Respaud, M., Broto, J.M., Rakoto, H., Fert, A.R., Thomas, L., Barbara, B., Verelst, M., Snoeck, E., Lecante, P., Mosset, A., Osuna, J., Ould Ely, T., Amiens, C., Chaudret, B.: Surface effects on the magnetic properties of ultrafine cobalt particles. Phys. Rev. B 57, 2925–2935 (1998)

    Article  CAS  Google Scholar 

  64. Fedosyuk, V.M., Danishevskiframe, A.M., Kurdyukov, D.A., Shuman, V.B., Gordeev, S.K.: Magnetic properties of nickel clusters in nanoporous carbon. Phys. Solid State 45(N9), 1750–1752 (2003)

    Article  CAS  Google Scholar 

  65. Gambardella, P., Dallmeyer, A., Maiti, K., Malagoli, M.C., Eberhardt, W., Kern, K., Carbone, C.: Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301–304 (2002)

    Article  CAS  Google Scholar 

  66. Gambardella, P., Dallmeyer, A., Maiti, K., Malagoli, M.C., Rusponi, S., Ohresser, P., Eberhardt, W., Carbone, C., Kern, K.: Oscillatory magnetic anisotropy in one-dimensional atomic wires. Phys. Rev. Lett. 93, 077203(4) (2004)

    Google Scholar 

  67. Stampanoni, M., Vaterlaus, A., Aeschlimann, M., Meier, F.: Magnetism of epitaxial bcc iron on Ag(001) observed by spin-polarized photoemission. Phys. Rev. Lett. 59, 2483–2485 (1987)

    Article  CAS  Google Scholar 

  68. Pescia, D., Stampanoni, M., Bona, G.L., Vaterlaus, A., Willis, R.F., Meier, F.: Magnetism of epitaxial fcc iron films on Cu(001) investigated by spin-polarized photoelectron emission. Phys. Rev. Lett. 58, 2126–2129 (1987)

    Article  CAS  Google Scholar 

  69. Kubetzka, A., Ferriani, P., Bode, M., Heinze, S., Bihlmayer, G., von Bergmann, K., Piezsch, O., Blugel, S., Wiesendanger, R.: Revealing antiferromagnetic order of the Fe monolayer on W(001): spin-polarized scanning tunneling microscopy and first-principles calculations. Phys. Rev. Lett. 94, 087204(4) (2005)

    Article  Google Scholar 

  70. Stachow-Wojcik, A., Story, T., Dobrowolski, W., Arciszewska, M., Galazka, R.R., Kreijveld, M.W., Swuste, C.H.W., Swagten, H.J.M., de Jonge, W.J.M., Twardowski, A., Sipatov, A.Y.: Ferromagnetic transition in EuS-PbS multilayers. Phys. Rev. B 60, 15220–15229 (1999)

    Article  CAS  Google Scholar 

  71. Gubin, S.P., Spichkin, Y.I., Koksharov, Y.A., Yurkov, G.Y., Kozinkin, A.V., Nedoseikina, T.I., Korobov, M.S., Tishin, A.M.: Magnetic and structural properties of Co nanoparticles in a polymeric matrix. J. Magn. Magn. Mater. 265, 234–242 (2003)

    Article  CAS  Google Scholar 

  72. Koksharov, Y.A., Gubin, S.P., Kosobudsky, I.D., Yurkov, G.Y., Pankratov, D.A., Ponomarenko, L.A., Mikheev, M.G., Bertran, M., Khodorkovsky, Y., Tishin, A.M.: Electron paramagnetic resonance spectra near the spin-glass transition in iron oxide nanoparticles. Phys. Rev. B 63, 012407(4) (2000)

    Article  Google Scholar 

  73. Nagata, K., Ishihara, A.: ESR of ultrafine magnetic particles. J. Magn. Magn. Mater. 104–107, 1571–1573 (1992)

    Article  Google Scholar 

  74. Aizu, K.: Possible species of “ferroelastric” crystals and of simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc. Jpn. 27, 387–396 (1969)

    Article  CAS  Google Scholar 

  75. Aizu, K.: Possible species of ferromagnetic, ferroelectric and ferroelastic crystals. Phys. Rev. B 2, 754–772 (1970)

    Article  Google Scholar 

  76. Minh, N.Q., Takahashi, T.: Science and Technology of Ceramic Fuel Cells, 327 pp. Elsevier, Amsterdam (1995)

    Google Scholar 

  77. Alivisatos, A.P.: Semiconductor nanocrystals. MRS Bull. 20(8), 23–32 (1995)

    CAS  Google Scholar 

  78. Gleiter, H.: Nanocrystalline materials. Prog. Mater. Sci. 33, 223–315 (1989)

    Article  CAS  Google Scholar 

  79. Hadjipanayis, G.C., Siegel, R.W. (eds.): Nanophase Materials, Synthesis-Properties-Applications, 728 pp. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  80. Siegel, R.W.: Exploring mesoscopia: the bold new world of nanostructures. Phys. Today 46(October), 64–68 (1993)

    Article  CAS  Google Scholar 

  81. Siegel, R.W.: Nanophase materials. In: Trigg, G.L. (ed.) Encyclopedia of Applied Physics, vol. 11, pp. 173–200. VSH, New York (1994)

    Google Scholar 

  82. Tuller, H.L.: Solid state electrochemical systems – opportunities for nanofabricated or nanostructured materials. J. Electroceram. 1, 211–218 (1997)

    Article  CAS  Google Scholar 

  83. Kosacki, I., Anderson, H.U.: Nanostructured oxide thin films for gas sensors. Sens. Actuators B 48, 263–269 (1998)

    Article  CAS  Google Scholar 

  84. Fuel cells – technology status report. Report NDOE/METC-87/0257, Morgantown Energy Technology Center, Morgantown, WV, 62 pp (1986)

    Google Scholar 

  85. Kosacki, I., Anderson, H.U.: Microstructure – property relationships in nanocrystalline oxide thin films. Ionics 6, 294–311 (2000)

    Article  CAS  Google Scholar 

  86. Ross Macdonald, J. (ed.): Impedance Spectroscopy, 427 pp. Wiley, New York (1987)

    Google Scholar 

  87. Kosacki, I., Gorman, B., Anderson, H.U.: Microstructure and electrical conductivity in nanocrystalline oxide thin films. In: Electrochemical Society Symposium Proceedings, vol. 97-24, pp. 631–642. The Electrochemical Society Inc., Pennington (1998)

    Google Scholar 

  88. Aoki, M., Chiang, Y.M., Kosacki, I., Lee, L.J., Tuller, H.L., Liu, Y.: Solute segregation and grain-boundary impedance in high-purity stabilized zirconia. J. Am. Ceram. Soc. 79, 1169–1180 (1996)

    Article  CAS  Google Scholar 

  89. Kosacki, I., Petrovsky, V., Anderson, H.U.: Electrical conductivity in nanocrystalline ZrO2:Y. In: Materials Research Society Symposium Proceedings, vol. 548., pp. 505–510 Materials Research Society, Pittsburgh, PA (1999)

    Google Scholar 

  90. Campbell, I.H., Fuchet, P.M.: The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739–741 (1986)

    Article  CAS  Google Scholar 

  91. Weber, W.H., Hass, K.C., McBride, J.R.: Raman study of CeO2: second-order scattering, lattice dynamics and particle-size effects. Phys. Rev. B 48, 178–185 (1993)

    Article  CAS  Google Scholar 

  92. Parayanthal, P., Pollak, F.H.: Raman scattering in alloy semiconductors: “Spatial correlation” model. Phys. Rev. Lett. 52, 1822–1825 (1984)

    Article  CAS  Google Scholar 

  93. Kosacki, I., Shumsky, M., Anderson, H.U.: The growth and structure of nanocrystalline ZrO2:Y thin films. In: Ustuhdag, E., Fishman, G. (eds.) Ceramic Engineering and Science Proceedings 20(3), pp. 135–162. The American Ceramic Society, Westerville (1999)

    Google Scholar 

  94. Kosacki, I., Anderson, H.U.: Microstructure – electrical transport correlation in ceramic oxide thin films. In: Bray, D (ed.) Ceramic Engineering and Science Proceedings 19 (4), 217–264. The American Ceramic Society, Westerville, 447 pp (1998)

    Google Scholar 

  95. Brus, L.E.: Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)

    Article  CAS  Google Scholar 

  96. Freedhoff, M.I., Marchetti, A.P.: Quantum confinement in semiconductor nanocrystals. In: Hummel, R.E., Wissman, P. (eds.) Optical Properties. Vol. II: Optics of Small Particles, Interfaces and Structures, pp. 1–30. CRC Press Inc., New York (1997)

    Google Scholar 

  97. Kittel, Ch.: Introduction to Solid State Physics, 792 pp. Willey, New York (1978)

    Google Scholar 

  98. Kosacki, I., Petrovsky, V., Anderson, H.U.: Band gap energy in nanocrystalline ZrO2:16%Y thin films. Appl. Phys. Lett. 74, 341–343 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Glinchuk, M.D., Ragulya, A.V., Stephanovich, V.A. (2013). The Peculiar Physical Properties of Nanosized Ferroics (Nanoferroics). In: Nanoferroics. Springer Series in Materials Science, vol 177. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5992-3_2

Download citation

Publish with us

Policies and ethics