Skip to main content

Bridged and Cohesive Crack Models for Fracture in Composite Materials

  • Conference paper
Mechanics Down Under

Abstract

The presentation revisits work done by the author and her collaborators over the last decade on two fundamental approaches for studying fracture in composite material systems, the bridged- and cohesive-crack models. Characteristic length scales and dimensionless groups that control fracture characteristics in finite size members and slender bodies, including the stability of crack growth, scaling transitions in the mechanical response and modes of failure, are recalled and discussed. Applications to composite materials for civil, naval and aeronautical structures are presented to highlight the significance of the bridged-crack model in the design of and with advanced composites. Recent results on the problem of multiple dynamic delamination fracture in multilayered systems are used to show how controlled fracture via material/structure design can be exploited to improve mechanical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barenblatt, G.I.: The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J. Applied Mathematics and Mechanics 23, 622–636 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mechanics Physics Solids 8, 100–104 (1960)

    Article  Google Scholar 

  3. Bao, G., Suo, Z.: Remarks of crack-bridging concepts. Applied Mechanics Review 24, 355–366 (1992)

    Article  Google Scholar 

  4. Cox, B.N., Marshall, D.B.: Concepts for bridged cracks in fracture and fatigue. Acta. Metall. Mater. 42, 341–363 (1994)

    Article  Google Scholar 

  5. Massabò, R.: The bridged-crack model. In: Carpinteri, A., Gladwell, G. (eds.). Nonlinear Crack Models for Nonmetallic Materials. Solid Mechanics and its Applications Series, pp. 141–208. Kluwer Academic Publisher, Dordrecht (1999) ISBN 0-7023-5750-7

    Google Scholar 

  6. Massabò, R.: Single and multiple delamination in the presence of nonlinear crack phase mechanisms. In: Delamination Behavior of Composites (Ed. Sridharan), pp. 514–558. Woodhead Publishing Ltd., Cambridge (2008) ISBN: 978-1-84569-244-5

    Chapter  Google Scholar 

  7. Rugg, K.L., Cox, B.N., Massabò, R.: Mixed mode delamination of polymer composite laminates reinforced through the thickness by z-fibers. Composites, Part A 33(2), 177–190 (2002)

    Google Scholar 

  8. Massabò, R., Mumm, D., Cox, B.N.: Characterizing mode II de-lamination cracks in stitched composites. Int. Journal of Fracture 92(1), 1–38 (1998)

    Article  Google Scholar 

  9. Carpinteri, A., Massabò, R.: Bridged versus cohesive crack in the flexural behavior of brittle matrix composites. Int. Journal of Fracture 81, 125–145 (1996)

    Article  Google Scholar 

  10. Carpinteri, A.: Stability of fracturing process in r.c. beams. J. Structural Engineering 110, 544–558 (1984)

    Article  Google Scholar 

  11. Bosco, C., Carpinteri, A.: Discontinuous constitutive response of brittle matrix fibrous composites. J. Mechanics Physics Solids 43, 261–274 (1995)

    Article  MATH  Google Scholar 

  12. Carpinteri, A., Massabò, R.: Continuous versus discontinuous bridged crack model for fiber-reinforced materials in flexure. Int. Journal of Solids and Structures 34(18), 2321–2338 (1997)

    Article  MATH  Google Scholar 

  13. Carpinteri, A., Massabò, R.: Reversal in the failure scaling transition of brittle matrix fibrous composites. Journal of Engineering Mechanics (ASCE) 123(2), 107–114 (1997)

    Article  Google Scholar 

  14. Massabò, R., Brandinelli, L., Cox, B.N.: Mode I Weight Functions for an Orthotropic Double Cantilever Beam. International Journal of Engineering Science 41, 1497–1518 (2003)

    Article  Google Scholar 

  15. Brandinelli, L., Massabò, R.: Mode II Weight Functions for isotropic and orthotropic Double Cantilever Beams. Int. Journal of Fracture 139, 1–25 (2006)

    Article  MATH  Google Scholar 

  16. Bilby, B.A., Cottrell, A.H., Swinden, K.H.: The spread of plastic yield from a notch. Proceedings Royal Society London A 272, 304–314 (1963)

    Article  Google Scholar 

  17. Marshall, D.B., Cox, B.N., Evans, A.G.: The mechanics of matrix cracking in brittle-matrix fiber composites. Acta. Metal. Mater. 33, 2013–2021 (1985)

    Article  Google Scholar 

  18. Cottrell, A.H.: Mechanics of Fracture. In: Tewksbury Symposium of Fracture, pp. 1–27. University of Melbourne, Australia (1963)

    Google Scholar 

  19. Hillerborg, A., Modeer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 6, 773–782 (1976)

    Article  Google Scholar 

  20. Suo, Z., Bao, G., Fan, B.: Delamination R-Curve phenomena due to damage. J. Mech. Phys. Solids 40, 1–16 (1992)

    Article  Google Scholar 

  21. Massabò, R., Cox, B.N.: Concepts for bridged mode II delamination cracks. Journal of the Mechanics and Physics of Solids 47(6), 1265–1300 (1999)

    Article  MATH  Google Scholar 

  22. Aveston, J., Cooper, G.A., Kelly, A.: Single and multiple fracture. In: The Properties of Fiber Composites, Conf. Proc., National Physical Laboratory, pp. 15–24. IPC Science and Technology Press Ltd. (1971)

    Google Scholar 

  23. Carpinteri, A.: Cusp catastrophe interpretation of fracture instability. J. Mechanics Physics Solids 37, 567–582 (1989)

    Article  MATH  Google Scholar 

  24. Levi, F., Bosco, C., Debernardi, P.G.: Two aspects of the behavior of slightly reinforced structures. CEB Bulletin d’Information 185, 39–50 (1988)

    Google Scholar 

  25. Jenq, Y.S., Shah, S.P.: Crack propagation in fiber-reinforced concrete. J. Structural Engineering 112, 19–34 (1986)

    Article  Google Scholar 

  26. Massabò, R., Cox, B.N.: Unusual characteristics of mixed mode delamination fracture in the presence of large scale bridging. Mechanics of Composite Materials and Structures 8(1), 61–80 (2001)

    Article  Google Scholar 

  27. Sridhar, N., Massabò, R., Cox, B.N., Beyerlein, I.: Delamination dynamics in through-thickness reinforced laminates with application to DCB specimen. International Journal of Fracture 118, 119–144 (2002)

    Article  Google Scholar 

  28. Andrews, M.G., Massabò, R., Cox, B.N.: Elastic interaction of multiple delaminations in plates subject to cylindrical bending. International Journal of Solids and Structures 43(5), 855–886 (2006)

    Article  MATH  Google Scholar 

  29. Andrews, M.G., Massabò, R.: Delamination in flat sheet geometries in the presence of material imperfections and thickness variations. Composites Part B 39, 139–150 (2008) (special issue on Marine Composites)

    Article  Google Scholar 

  30. Andrews, M.G., Massabò, R., Cavicchi, A., Cox, B.N.: Dynamic interaction effects of multiple delaminations in plates subject to cylindrical bending. Int. Journal of Solids and Structures 46, 1815–1833 (2009)

    Article  MATH  Google Scholar 

  31. Andrews, M.G.: The Static and Dynamic Interaction of Multiple De-laminations in Plates Subject to Cylindrical Bending, Dissertation. Ph.D. Degree, Northwestern University, Evanston, IL, U.S.A. (2005)

    Google Scholar 

  32. Massabò, R., Cavicchi, A.: Influence of crack wake mechanisms on the dynamic fracture of multiply delaminated plates. In: Proceedings of the 16th Int. Conference on Composite Materials, ICCM 16, Kyoto, CDrom. Japan Society of Composite Materials, pp. 1–7 (July 2007)

    Google Scholar 

  33. Massabò, R.: Dynamic interaction of multiple damage mechanisms in multilayered systems. In: Proceedings of the XVIII National Congress of the Italian Association of Theoretical and Applied Mechanics, AIMETA 2007, Brescia. CDROM, pp. 1–12 (September 2007)

    Google Scholar 

  34. Massabò, R.: Interaction of multiple damage mechanisms in composite and sandwich structures. In: Daniels, et al. (eds.) Major Accomplishments in Composite Materials and Sandwich Structures – An Anthology of ONR Sponsored Research, pp. 133–168. Springer (2009) (in press)

    Google Scholar 

  35. Robinson, P., Besant, T., Hitchings, D.: Delamination growth prediction using a finite element approach. In: 2nd ESIS TC4 Conference on Polymers and Composites, Les Diablerets, Switzerland (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Massabò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 © Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Massabò, R. (2013). Bridged and Cohesive Crack Models for Fracture in Composite Materials. In: Denier, J., Finn, M. (eds) Mechanics Down Under. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5968-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5968-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5967-1

  • Online ISBN: 978-94-007-5968-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics