Skip to main content

Multi-scale Analysis of Polycristalline Metals and Composites

  • Conference paper
Book cover Mechanics Down Under

Abstract

Multi-scale methods for the inelastic modelling of materials were already developed since a long time. We will concentrate here on the highest scales, for metals and alloys and for some composites, considering scale changes from the crystal plasticity level in polycrystals to the level of the structural component analysis. Lower scales, involving methods like discrete dislocation dynamics, molecular dynamics or atomistic simulations are out of the scope of the present discussion. We also limit the considered area to the context of elasto-plasticity and viscoplasticity, at moderate strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walker, K.P., Jordan, E.H., Freed, A.D.: Equivalence of Green’s function and the fourier series representation of composites with periodic microstructures. In: Weng, G., Taya, M., Abe, H. (eds.) Micromechanics and Inhomogeneity, San Francisco, pp. 535–558. Springer (1990)

    Google Scholar 

  2. Fotiu, P.A., Nemat-Nasser, S.: Overall properties of elastic–viscoplastic periodic composites. Int. J. of Plasticity 12(2), 163–190 (1996)

    Article  MATH  Google Scholar 

  3. Moulinec, H., Suquet, P.: A FFT-based numerical method for computing the mechanical properties of composites from images of their microstructure. In: Pyrz, R. (ed.) Microstructure Property Interactions in Composite Materials, pp. 235–246. Kluwer Academic Pub. (1995)

    Google Scholar 

  4. Michel, J.-C., Moulinec, H., Suquet, P.: A computational method based on augmented lagrangians and fast fourier transforms for composites with high contrast. Comput. Modeling Eng. Sci. 1(2), 79 (2000)

    MathSciNet  Google Scholar 

  5. Moulinec, H., Suquet, P.: A numerical method for computing the overall response of non-linear composites with complex microstructure. Computer Methods in Applied Mechanics and Engineering 157, 69–94 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Moulinec, H., Suquet, P.: Intraphase fluctuations in nonlinear composites: a computational approach. Eur. J. Mech., A/Solids 22, 751–770 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feyel, F.: Application du calcul parallèle aux modèles à grand nombre de variables internes. Thèse de doctorat, École Nationale Supérieure des Mines de Paris (1998)

    Google Scholar 

  8. Feyel, F., Chaboche, J.L.: FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Computer Methods in Applied Mechanics and Engineering 183, 309–330 (2000)

    Article  MATH  Google Scholar 

  9. Terada, K., Kikuchi, N.: Nonlinear homogenization method for practical applications. In: Ghosh, S., Ostoja-Starzewski, M. (eds.) Computational Methods in Micromechanics. ASME, vol. AMD - 212 (1995)

    Google Scholar 

  10. Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of non-linear heterogeneous systems by multi-level finite element modelling. Computer Methods in Applied Mechanics and Engineering 155, 181–192 (1998)

    Article  MATH  Google Scholar 

  11. Feyel, F.: Multiscale FE2 elastoviscoplastic analysis of composite structures. Computational Materials Science 16, 344–354 (1999)

    Article  Google Scholar 

  12. Feyel, F., Chaboche, J.L.: Multi-scale non linear FE2 analysis of co mposite structures : damage and fiber size effects. Revue Européenne des Éléments Finis 10(2-3-4), 449–472 (2001)

    MATH  Google Scholar 

  13. Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity. Computer Methods in Applied Mechanics and Engineering 171, 317–418 (1999)

    Article  Google Scholar 

  14. Terada, K., Kikuchi, N.: A class of general algorithms for multi-scale analysis of heterogeneous media. Computer Methods in Applied Mechanics and Engineering 190, 5427–5464 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Monteiro, E., Yvonnet, J., He, Q.C.: Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction. Computational Materials Science 42, 704–712 (2008)

    Article  Google Scholar 

  16. Carrère, N.: Sur l’analyse multiéchelle des matériaux composites à matrice métallique : application au calcul de structure. Doctorat de l’ecole Polytechnique, Ecole Polytechnique (2001)

    Google Scholar 

  17. Boso, D.P., Lefik, M., Schrefler, B.A.: A multilevel homogenised model for superconducting strands thermomechanics. Cryogenics 45(4), 259–271 (2005)

    Article  Google Scholar 

  18. Kouznetsova, V., Brekelmans, W.A., Baaijens, F.T.: An approach to micro-macro modelling of heterogeneous materials. Comput. Mech. 27, 37–48 (2001)

    Article  MATH  Google Scholar 

  19. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Royal Soc. London, A 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dvorak, G.: Transformation Field Analysis of inelastic composite materials. Proc. Royal Soc. London, A 437, 311–327 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kröner, E.: Zur plastischen verformung des vielkristalls. Acta. Metall. Mater. 9, 155–161 (1961)

    Article  Google Scholar 

  22. Dvorak, G., Benveniste, Y.: On transformation strains and uniform fields in multiphase elastic media. Proc. Royal Soc. London, A 437, 291–310 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dvorak, G., Bahei-El-Din, Y., Wafa, A.: Implementation of the Transformation Field Analysis for inelastic composite materials. Comput. Mech. 14, 201–228 (1994)

    Article  MATH  Google Scholar 

  24. Carrère, N., Feyel, F., Kanouté, P.: A comparison between an embedded FE2 approach and a tfa-like model. Int. J. for Multi. Comp. Eng. 2(4), 20–38 (2004)

    Google Scholar 

  25. Gilormini, P.: A critical evaluation of various nonlinear extensions of the self-consistent model. In: Pineau, A., Zaoui, A. (eds.) Micromechanics of Plasticity and Damage of Multiphase Materials, pp. 67–74. Kluwer Acad. Publ. (1996)

    Google Scholar 

  26. Berveiller, M., Zaoui, A.: An extension of the self–consistent scheme to plastically flowing polycrystal. J. Mech. Phys. Solids 6, 325–344 (1979)

    Google Scholar 

  27. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965)

    Article  Google Scholar 

  28. Zaoui, A., Masson, R.: Modelling stress-dependent transformation strains of heterogeneous materials. In: Transformation Problems in Composite and Active Materials IUTAM Symposium, pp. 3–15. Kluwer Academic Pub., Cairo (1998)

    Google Scholar 

  29. Molinari, A., Canova, G.R., Ahzi, S.: A self–consistent approach to the large deformation polycrystal viscoplasticity. Acta. Metall. Mater. 35, 2983–2994 (1987)

    Article  Google Scholar 

  30. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta. Metallurgica et Materialia 21, 597–629 (1973)

    Google Scholar 

  31. Chaboche, J.L., Kanouté, P., Roos, A.: On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites. Int. J. of Plasticity 21, 1409–1434 (2005)

    Article  MATH  Google Scholar 

  32. Chaboche, J.L., Kanouté, P.: Sur les approximations ”isotrope” et ”anisotrope” de l’opérateur tangent pour les méthodes tangentes incrémentales et affine. C. R. Acad. Sci. Paris, 857–864 (2003)

    Google Scholar 

  33. Suquet, P.: Effective properties of nonlinear composites. In: Suquet, P. (ed.) Continuum Micromechanics. CISM Lecture Notes, vol. 377, pp. 197–264. Springer (1997)

    Google Scholar 

  34. González, C., Llorca, J.: A self-consistent approach to the elasto-plastic behaviour of two-phase materials including damage. J. Mech. Phys. Solids 48, 675–692 (2000)

    Article  MATH  Google Scholar 

  35. Doghri, I., Ouaar, A.: Homogenization of two-phase elasto-plastic composite materials and structures. study of tangent operators, cyclic plasticity and numerical algorithms. Int. J. Solids Structures 40, 1681–1712 (2003)

    Article  MATH  Google Scholar 

  36. Ponte Castañeda, P.: New variational principles in plasticity and their application to composite materials. J. Mech. Phys. Solids 40, 1757–1788 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Suquet, P.: Overall properties of nonlinear composites : a modified secant moduli theory and its link with Ponte Castañeda’s nonlinear variational procedure. C.R. Acad. Sc. Paris 320, 563–571 (1995)

    MATH  Google Scholar 

  38. Ponte Castañeda, P.: Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I - theory. J. Mech. Phys. Solids 50, 737–757 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lahellec, N., Suquet, P.: On the effective behavior of nonlinear elasto-viscoplastic composites: I. Incremental variational principles. J. Mech. Phys. Solids 55(9), 1932–1963 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Aboudi, J.: Mechanics of composite materials - A unified micromechanical approach. Elsevier, Amsterdam (1991)

    MATH  Google Scholar 

  41. Arnold, S.M., Pindera, M.J., Wilt, T.E.: Influence of fiber architecture on the inelastic response of metal matrix composites. Int. J. of Plasticity 12(4), 507–545 (1996)

    Article  MATH  Google Scholar 

  42. Aboudi, J., Pindera, M.J., Arnold, S.M.: Higher-order theory for periodic multiphase materials with inelastic phases. Int. J. of Plasticity 19, 805–847 (2003)

    Article  MATH  Google Scholar 

  43. Bansal, Y., Pindera, M.J.: Finite-volume direct averaging micromechanics of heterogeneous materials with elastic-plastic phases. Int. J. of Plasticity 22(5), 775–825 (2006)

    Article  MATH  Google Scholar 

  44. Khatam, H., Pindera, M.J.: Parametric finite-volume micromechanics of periodic materials with elastoplastic phases. Accepted for IJP (2008)

    Google Scholar 

  45. Michel, J.C., Galvanetto, U., Suquet, P.: Constitutive relations involving internal variables based on a micromechanical analysis. In: Drouot, R., Maugin, G.A., Sidoroff, F. (eds.) Continuum Thermomechanics, pp. 301–312. Kluwer Academic Publishers, The Netherlands (2000)

    Google Scholar 

  46. Michel, J.C., Suquet, P.: Nonuniform transformation field analysis. Int. J. Solids Structures 40, 6937–6955 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Halphen, B., Nguyen, Q.S.: Sur les matériaux standards généralisés. J. de Mécanique 14(1), 39–63 (1975)

    MATH  Google Scholar 

  48. Michel, J.C., Suquet, P.: Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Computer Methods in Applied Mechanics and Engineering 193, 5477–5502 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Chaboche, J.L., Kruch, S., Maire, J.F., Pottier, T.: Towards a micromechanics based inelastic and damage modeling of composites. Int. J. of Plasticity 17, 411–439 (2001)

    Article  MATH  Google Scholar 

  50. Chaboche, J.L., Carrère, N.: Multiscale structural analyses incorporating damage mechanics at the meso- or micro-scales. In: Skrzypek, J.J., Ganczarski, W. (eds.) Anisotropic Behavior of Damaged Materials, pp. 35–74. Springer (2003)

    Google Scholar 

  51. Chaboche, J.L., Rousselier, G.: On the plastic and viscoplastic constitutive equations, parts I and II. Int. J. Pressure Vessel & Piping 105, 153–158, 159–164 (1983)

    Article  Google Scholar 

  52. El Mayas, N.: Modélisation microscopique et macroscopique du comportement d’un composite à matrice métallique. Thèse de doctorat, ENPC (1994)

    Google Scholar 

  53. Pottier, T.: Modélisation multiéchelle du comportement et de l’endommagement de composites à matrice métallique. Doctorat d’Université, Ecole Nationale des Ponts et Chaussées (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -L. Chaboche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 © Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Chaboche, J.L. (2013). Multi-scale Analysis of Polycristalline Metals and Composites. In: Denier, J., Finn, M. (eds) Mechanics Down Under. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5968-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5968-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5967-1

  • Online ISBN: 978-94-007-5968-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics