Skip to main content

Modeling of Bone Failure by Cohesive Zone Models

  • Conference paper

Abstract

Cohesive zone models are a powerful tool for investigations of non-linear deformation and failure processes. For the nanoscale, the use of cohesive zone models is particularly attractive as the ratio of interface to volume is high, and because locally acting bonds between material components can become relevant. The present paper demonstrates the relevance of cohesive zone modelling approaches to the development of a nano-mechanical composite model of the mineralized collagen fibril, a fundamental building block of bone. As difficulties exist in determining the independent biomechanical effects of collagen cross-linking using in vitro and in vivo experiments, computational modeling can provide insight into the nanoscale processes. Stress-strain curves for mineralized collagen fibrils were obtained under tensile loading for various collagen cross-linking conditions. Our model predicts that the elastic deformation mode, the yield response and the final failure of the mineralized collagen fibril may depend significantly on the state of collagen cross-linking.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdul-Baqi, A., van der Giessen, E.: Indentation-induced interface delamination of a strong film on a ductile substrate. Thin Solid Films 381, 143–154 (2001)

    Article  Google Scholar 

  2. Allen, M.R., Gineyts, E., Leeming, D.J., Burr, D.B., Delmas, P.D.: Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra. Osteoporosis Int. 19, 329–337 (2008)

    Article  Google Scholar 

  3. Allen, M.R., Burr, D.B.: Mineralization, microdamage, and matrix: How bisphosphonates influence material properties of bone. BoneKEy 4, 49–60 (2007)

    Article  Google Scholar 

  4. Arnoux, P.J., Bonnoit, J., Chabrand, P., Jean, M., Pithioux, M.: Numerical damage models using a structural approach: Application in bones and ligaments. Eur. Phys. J. – Appl. Phys. 17, 65–73 (2002)

    Article  Google Scholar 

  5. Bailey, A.J., Wotton, S.F., Sims, T.J., Thompson, P.W.: Post-translational modifications in the collagen of human osteoporotic femoral head. Biochem. Biophys. Res. Comm. 185, 801–805 (1992)

    Article  Google Scholar 

  6. Bailey, A.J., Paul, R.G., Knott, L.: Mechanisms of maturation and ageing of collagen. Mech. Ageing Dev. 106, 1–56 (1998)

    Article  Google Scholar 

  7. Banse, X., Sims, T.J., Bailey, A.J.: Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J. Bone Min. Res. 17, 1621–1628 (2002)

    Article  Google Scholar 

  8. Beyer, M.K.: The mechanical strength of a covalent bond calculated by density function theory. J. Chem. Phys. 112, 7307–7312 (2000)

    Article  Google Scholar 

  9. Boxberger, J., Vashishth, D.: Nonenzymatic glycation affects bone fracture by modifying creep and inelastic properties of collagen. Trans. Orthop Res. Soc. 29, 0491 (2004)

    Google Scholar 

  10. Bühler, M.J.: Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture, and self-assembly. J. Mat. Res. 21, 1947–1961 (2006)

    Article  Google Scholar 

  11. Burr, D.B.: The contribution of the organic matrix to bone’s material properties. Bone 31, 8–11 (2002)

    Article  Google Scholar 

  12. Catanese, J., Bank, R., Tekoppele, J., Keaveny, T.: Increased cross-linking by non-enzymatic glycation reduces the ductility of bone and bone collagen. Proc. Am. Soc. Mech. Eng. Bioeng. Conf. 42, 267–268 (1999)

    Google Scholar 

  13. Currey, J.D.: Effects of differences in mineralization on the mechanical properties of bone. Phil. Trans. Royal Soc. London Series B, Bio. Sci. 304, 509–518 (1984)

    Article  Google Scholar 

  14. Eyre, D.R., Dickson, I.R., Van Ness, K.: Collagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature hydroxypyridinium residues. Biochem. J. 252, 495–500 (1988)

    Google Scholar 

  15. Eyre, D.R., Wu, J.J.: Collagen cross-links. Top Curr. Chem. 247, 207–229 (2005)

    Google Scholar 

  16. Fritsch, A., Hellmich, C.: ‘Universal’ microstructural patterns in cortical and trabecular, extracellular bone materials, Micromechanics-based prediction of anisotropic elasticity. J. Theor. Bio. 244, 597–620 (2007)

    Article  Google Scholar 

  17. Garnier, L., Gauthier-Manuel, B., van der Vegte, E.W., Snijders, J., Hadziioannou, G.: Covalent bond force profile and cleavage in a single polymer chain. J. Chem. Phys. 113, 2497–2503 (2000)

    Article  Google Scholar 

  18. Garnero, P., Borel, O., Gineyts, E., Duboeuf, F., Solberg, H., Bouxsein, M.L., Christiansen, C., Delmas, P.D.: Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Bone 38, 300–309 (2006)

    Article  Google Scholar 

  19. Gourrier, A., Wagermaier, W., Burghammer, M., Lammie, D., Gupta, H.S., Fratzl, P., Riekel, C., Wess, T.J., Paris, O.: Scanning X-ray imaging with small-angle scattering contrast. J. Appl. Crystal 40, S78-S82 (2007)

    Google Scholar 

  20. Gupta, H.S., Seto, J., Wagermaier, W., Zaslansky, P., Boesecke, P., Fratzl, P.: Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc. Nat. Acad. Sci. USA 104, 17741–17746 (2006)

    Article  Google Scholar 

  21. Hellmich, C., Barthélémy, J.F., Dormieux, L.: Mineral–collagen interactions in elasticity of bone ultrastructure – a continuum micromechanics approach. Eur. J. Mech. A 23, 783–810 (2004)

    Article  MATH  Google Scholar 

  22. Hernandez, C.J., Tang, S.Y., Baumbach, B.M., Hwu, P.B., Sakkee, A.N., van der Ham, F., DeGroot, J., Bank, R.A., Keaveny, T.M.: Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone 37, 825–832 (2005)

    Article  Google Scholar 

  23. Hutchinson, J.W., Evans, A.G.: Mechanics of materials: Top-down approaches to fracture. Acta. Mat. 48, 125–135 (2000)

    Article  Google Scholar 

  24. Jäger, I., Fratzl, P.: Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particle. Biophys. J. 79, 1737–1746 (2000)

    Article  Google Scholar 

  25. Jäger, I.: A model for the stability and creep of organic materials. J. Biomech. 38, 1459–1467 (2005)

    Article  Google Scholar 

  26. Ji, B., Gao, H.: Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 52, 1963–1990 (2004)

    Article  MATH  Google Scholar 

  27. Katz, J., Ukraincik, K.: On the anisotropic elastic properties of hyroxyapatite. J. Biomech. 4, 221–227 (1971)

    Article  Google Scholar 

  28. Keaveny, T.M., Morris, G.E., Wong, E.K., Yu, M., Sakkee, A.N., Verzijl, N., Bank, R.A.: Collagen status and brittleness of human cortical bone in the elderly. J. Bone Mineral Res. 18(supp. l2), S307 (2003)

    Google Scholar 

  29. Knott, L., Bailey, A.J.: Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 22, 181–187 (1998)

    Article  Google Scholar 

  30. Kotha, S.P., Guzelsu, N.: Effect of bone mineral content on the tensile properties of cortical bone: experiments and theory. J. Biomech. Eng. 125, 785–793 (2003)

    Article  Google Scholar 

  31. Landis, W.J.: The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystal in their organic matrix. Bone 16, 533–544 (1995)

    Article  Google Scholar 

  32. Lees, S.: Considerations regarding the structure of the mammalian mineralized osteoid from the viewpoint of the generalized packing model. Connect Tissue Res. 16, 281–303 (1987)

    Article  Google Scholar 

  33. Lees, S., Eyre, D.R., Barnard, S.M.: BAPN dose dependence of mature crosslinking in bone matrix collagen of rabbit compact bone: Corresponding variation of sonic velocity and equatorial diffraction spacing. Connect Tissue Res. 24, 95–105 (1990)

    Article  Google Scholar 

  34. Monnier, V.M.: Toward a Maillard reaction theory of aging. Prog. Clin. Bio. Res. 304, 1–22 (1989)

    Google Scholar 

  35. Needleman, A.: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54, 525–531 (1987)

    Article  MATH  Google Scholar 

  36. Nyman, J.S., Roy, A., Tyler, J.H., Acuna, R.L., Gayle, H.J., Wang, X.: Age-related factors affecting the postyield energy dissipation of human cortical bone. J. Orthop. Res. 25, 646–655 (2007)

    Article  Google Scholar 

  37. Odetti, P., Rossi, S., Monacelli, F., Poggi, A., Cirnigliaro, M., Federici, M., Federici, A.: Advanced glycation end products and bone loss during aging. Annals New York Acad. Sci. 1043, 710–717 (2005)

    Article  Google Scholar 

  38. Oxlund, H., Barckmann, M., Ortoft, G., Ancreassen, T.T.: Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17, 365S-371S (1995)

    Google Scholar 

  39. Oxlund, H., Mosekilde, L., Ortoft, G.: Reduced concentration of collagen reducible cross links in human trabecular bone with respect to age and osteoporosis. Bone 19, 479–484 (1996)

    Article  Google Scholar 

  40. Petruska, J.A., Hodge, A.J.: A subunit model for the tropocollagen macromolecule. Proc. Nat. Acad. Sci. USA 51, 871–876 (1964)

    Article  Google Scholar 

  41. Saito, M., Marumo, K., Fujii, K., Ishioka, N.: Single-column high performance liquid chromatographic fluorescence detection of immature, mature and senescent crosslinks of collagen. Annals. Biochem. 253, 26–32 (1997)

    Article  Google Scholar 

  42. Silver, F.H., Christiansen, D.L., Snowhill, P.B., Chen, Y.: Transition from viscous to elastic-based dependency of mechanical properties of self-assembled type I collagen fibers. J. Appl. Polym. Sci. 79, 134–142 (2001)

    Article  Google Scholar 

  43. Silver, F.H., Freeman, J.W., Seehra, G.P.: Collagen self-assembly and the development of tendon mechanical properties. J. Biomech. 36, 1529–1553 (2003)

    Article  Google Scholar 

  44. Steiner, T.: The hydrogen bond in the solid state. Angewandte Chemie – Int. Ed 41, 48–76 (2002)

    Article  Google Scholar 

  45. Tan, H., Jiang, L.Y., Huang, Y., Liu, B., Hwang, K.C.: The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials. Comp. Sci. Techn. 67, 2941–2946 (2007)

    Article  Google Scholar 

  46. Tang, S., Bank, R., Tekoppele, J., Keaveny, T.: Nonenzymatic glycation causes loss of toughening mechanisms in human cancellous bone. Trans. Orthop. Res. Soc. 30 (2005)

    Google Scholar 

  47. Tang, S., Zeenath, U., Vashishth, D.: Effects of non-enzymatic glycation on cancellous bone fragility. Bone 40, 1144–1151 (2007)

    Article  Google Scholar 

  48. Tvergaard, V.: Effect of fiber debonding in a whisker-reinforced metal. Mat. Sci. Eng. A 125, 203–213 (1990)

    Article  Google Scholar 

  49. Vasan, S., Foiles, P., Founds, H.: Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch. Biochem. Biophys. 419, 89–96 (2003)

    Article  Google Scholar 

  50. Vashishth, D., Gibson, G.J., Khoury, J.I., Schaffler, M.B., Mimura, J., Fyhrie, D.P.: Influence of non-enzymatic glycation on biomechanical properties of cortical bone. Bone 28, 195–201 (2001)

    Article  Google Scholar 

  51. Vashishth, D., Wu, P., Gibson, G.: Age-related loss in bone toughness is explained by non-enzymatic glycation of collagen. Trans. Orthop. Res. Soc. 29 (2004)

    Google Scholar 

  52. Vashishth, D.: The role of collagen matrix in skeletal fragility. Curr. Osteoporos Rep. 5, 62–66 (2007)

    Article  Google Scholar 

  53. Viguet-Carrin, S., Garnero, P., Delmas, D.P.: The role of collagen in bone strength. Osteoporos Int. 17, 319–336 (2006)

    Article  Google Scholar 

  54. Viguet-Carrin, S., Roux, J.P., Arlot, M.E., Merabet, Z., Leeming, D.J., Byrjalsen, I., Delmas, P.D., Bouxsein, M.L.: Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. Bone 39, 1073–1079 (2006)

    Article  Google Scholar 

  55. Viswanath, B., Raghavan, R., Ramamurty, U., Ravishankar, N.: Mechanical properties and anisotropy in hydroxyapatite single crystals. Scripta. Mat. 57, 361–364 (2007)

    Article  Google Scholar 

  56. Wang, X., Shen, X., Li, X., Agarwal, C.M.: Age-related changes in the collagen network and toughness of bone. Bone 31, 1–7 (2002)

    Article  Google Scholar 

  57. Wang, X., Li, X., Shen, X., Agrawal, C.M.: Age-related changes of noncalcified collagen in human cortical bone. Ann. Biomed Eng. 31, 1365–1371 (2003)

    Article  Google Scholar 

  58. Wang, X., Qian, C.: Prediction of microdamage formation using a mineral-collagen composite model. J. Biomech. 39, 595–602 (2006)

    Article  MATH  Google Scholar 

  59. Wilson, E.E., Awonusi, A., Morris, M.D., Kohn, D.H., Tecklenburg, M., Beck, L.W.: Highly ordered interstitial water observed in bone by nuclear magnetic resonance. J. Bone Min. Res. 20, 625–634 (2005)

    Article  Google Scholar 

  60. Wu, P., Koharski, C., Nonnenmann, H., Vashishth, D.: Loading on non-enzymatically glycated and damaged bone results in an instantaneous fracture. Trans. Orthop Res. Soc. 28, 404 (2003)

    Google Scholar 

  61. Xu, X.P., Needleman, A.: Numerical simulation of fast crack growth in brittle solids. J. Mech. Phys. Solids 42, 1397–1415 (1994)

    Article  MATH  Google Scholar 

  62. Zioupos, P., Currey, J.D., Hamer, A.J.: The role of collagen in the declining mechanical properties of aging human cortical bone. J. Biomed Mat. Res. 45, 108–116 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 © Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Siegmund, T., Allen, M.R., Burr, D.B. (2013). Modeling of Bone Failure by Cohesive Zone Models. In: Denier, J., Finn, M. (eds) Mechanics Down Under. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5968-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5968-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5967-1

  • Online ISBN: 978-94-007-5968-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics