Skip to main content

Failure of Rocks in the Laboratory and in the Earth

  • Conference paper
Mechanics Down Under

Abstract

Although rocks, at least some of them, are nearly as old as the Earth itself, their behaviour continues to play an important role in a variety of applications and phenomena of societal interest. These include natural disasters, such as landslides, volcanic eruptions and earthquakes. Rocks are widely used for building materials, foundations, tunnels and underground facilities. Most of the world’s energy now, and for the foreseeable future, comes from the shallow crust and an understanding of rock behaviour is essential to efficient and safe production and storage. Moreover, many of the by-products of energy production are re-injected to the shallow crust. An increasingly important application is geological sequestration of carbon dioxide, injection into the earth to mitigate harmful effects on the climate [42]. Many of these problems involve not only mechanical behaviour but also its coupling with fluid flow, heat and chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baud, P., Klein, E., Wong, T.-F.: Compaction localization in porous sandstones: Spatial evolution of damage and acoustic emission activity. Journal of Structural Geology 26, 603–624 (2004)

    Article  Google Scholar 

  2. Bernard, X.D., Eichhubl, P., Aydin, A.: Dilation bands: A new form of localized failure in granular media. Geophysical Research Letters 29(24), 2176 (2002), doi:10.1029/2002GL015966

    Article  Google Scholar 

  3. Bésuelle, P., Rudnicki, J.W.: Localization: Shear bands and compaction bands. In: Guéguen, Y., Boutéca, M. (eds.) Mechanics of Fluid Saturated Rocks. International Geophysics Series, vol. 89, pp. 219–321. Academic Press, London (2004)

    Chapter  Google Scholar 

  4. Borja, R.I., Sama, K.M., Sanz, P.F.: On the numerical integration of three-invariant elastoplastic constitutive models. Computer Methods in Applied Mechanics and Engineering 192, 1227–1258 (2003), doi:10.1016/S0045-7825(02)00620-5

    Article  MATH  Google Scholar 

  5. Chang, C., Haimson, B.: True triaxial stength and defomrability of the german continental deep drilling program (KTB) deep hole amphibolite. Journal of Geophysical Research 105(B8), 999–919 (2000)

    Google Scholar 

  6. DiGiovanni, A.A., Fredrich, J.T., Holcomb, D.J., Olsson, W.A.: Micromechanics of compaction in an analogue reservoir sandstone. In: Girard, J., Liebman, M., Breeds, C., Doe, T. (eds.) Pacific Rocks 2000, Proceedings of the 4th North American Rock Mechanics Symposium, pp. 1153–1158. A. A. Balkema (2000)

    Google Scholar 

  7. Fôrtin, J., Stanchits, S., Dresen, G., Guéguen, Y.: Acoustic emission and velocities associated with the formation of compaction bands in sandstone. Journal of Geophysical Research 111(B10203) (2006), doi:10.1029/2005JB003854

    Google Scholar 

  8. Hadamard, J.: Leçons sur la Propagation de Ondes et Les Equations de L’Hydrodynamique, Paris (1903)

    Google Scholar 

  9. Haimson, B.: True triaxial stresses and the brittle fracture of rock. Pure and Applied Geophysics 163, 1101–1130 (2006), doi: 10.007/s00024-006-0065-7

    Article  Google Scholar 

  10. Haimson, B., Chang, C.: A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite. International Journal of Rock Mechanics and Mining Science 37(1-2), 285–296 (2000)

    Article  Google Scholar 

  11. Hill, R.: The Mathematical Theory of Plasticity. Oxford Engineering Science Series, Oxford, London (1950)

    MATH  Google Scholar 

  12. Hill, R.: Acceleration waves in solids. Journal of the Mechanics and Physics of Solids 10, 1–16 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  13. Holcomb, D.J., Olsson, W.A.: Compaction localization and fluid flow. Journal of Geophysical Research 108(B6, 2290) (2003), doi: 10.1029/2001JB000813

    Google Scholar 

  14. Jaeger, J.C., Cook, N.G.W.: Fundamentals of Rock Mechanics. John Wiley and Sons, Inc., New York (1969)

    Google Scholar 

  15. Jiang, J., Pietruszczak, S.: Convexity of yield loci for pressure sensitive materials. Computers and Geotechnics, 51–63 (1988)

    Google Scholar 

  16. Klein, E., Baud, P., Reuschlé, T., Wong, T.-F.: Mechanical behaviour and failure mode of Bentheim sandstone under triaxial compression. Physics and Chemistry of the Earth (A) 26, 21–25 (2001)

    Article  Google Scholar 

  17. Lade, P.V., Duncan, J.M.: Elastoplastic stress-strain theory for cohesioness soil. J. Geotech. Engrg. Div., ASCE 101, 1037–1053 (1975)

    Google Scholar 

  18. Mandel, J.: Conditions de stabilté et postulat de drucker. In: Kravtchenko, J., Sirieys, P.M. (eds.) Rheology and Soil Mechanics, pp. 58–68. Springer (1966)

    Google Scholar 

  19. Matsuoka, H., Nakai, T.: Stress-deformation and strength characteristics of soil under three different principal stresses. Proc. Japan Soc. Civil Engn., 1037–1053 (1974)

    Google Scholar 

  20. Mogi, K.: Effect of the intermediate principal stress on rock failure. Journal of Geophysical Research 72, 5117–5131 (1967)

    Article  Google Scholar 

  21. Mogi, K.: Effect of the triaxial stress system on the failure of dolomite and limstone. Tectonophysics 11, 111–127 (1971)

    Article  Google Scholar 

  22. Mogi, K.: Experimental Rock Mechanics. Geomechanics Research Series, vol. 3.Taylor & Francis (2007)

    Google Scholar 

  23. Molenkamp, F.: Comparison of frictional material models with respect to shear band initiation. Géotechnique 35(2), 127–143 (1985)

    Article  Google Scholar 

  24. Oku, H., Haimson, B., Song, S.-R.: True triaxial strength and deformability of the siltstone overlying the chelungpu fault (chi-chi earthquake), taiwan. Geophysical Research Letters 34(L09306) (2007), doi:10.1029/2007GLO29601

    Google Scholar 

  25. Olsson, W.A.: Theoretical and experimental investigation of compaction bands. Journal of Geophysical Research 104, 7219–7228 (1999)

    Article  Google Scholar 

  26. Olsson, W.A., Holcomb, D.J.: Compaction localization in porous rock. Geophysical Research Letters 27(21), 3537–3540 (2000)

    Article  Google Scholar 

  27. Ottosen, N.S.: Theoretical framework for modelling the behaviour of frictional materials. International Journal of Solids and Structures 22(11), 1325–1342 (1986)

    Article  MATH  Google Scholar 

  28. Ottosen, N.S., Runesson, K.: Properties of discontinuous bifurcation solutions in elasto-plasticity. International Journal of Solids and Structures 27, 401–421 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Paterson, M.S., Wong, T.-F.: Experimental Rock Deformation - The Brittle Field, 2nd edn. Springer, Heidelberg (2005)

    Google Scholar 

  30. Rice, J.R.: The localization of plastic deformation. In: Koiter, W.T. (ed.) Proceedings of the 14th International Congress on Theoretical and Applied Mechanics Theoretical and Applied Mechanics, pp. 207–220. North-Holland Publishing Company, Delft (1976)

    Google Scholar 

  31. Rudnicki, J.W.: Localized Failure in Brittle Rock. In: Proceedings of the 3rd International Symposium GeoProc 2008, pp. 25–40. Wiley (2008)

    Google Scholar 

  32. Rudnicki, J.W., Olsson, W.A.: Reexamination of fault angles predicted by shear localization theory. International Journal of Rock Mechanics and Mining Science 35, 512–513 (1998); extended abstract, full paper on CD Rom.

    Article  Google Scholar 

  33. Rudnicki, J.W., Rice, J.R.: Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal of the Mechanics and Physics of Solids 23, 371–394 (1975)

    Article  Google Scholar 

  34. Sternlof, K.R.: Structural geology, propagation mechanics and hydraulic effects of compaction bands in sandstone, Ph.D. thesis, Stanford University (2006)

    Google Scholar 

  35. Sternlof, K.R., Chapin, J.R., Pollard, D.D., Durlofsky, L.J.: Permeability effects of deformation band arrays in sandstone. American Association of Petroleum Geologists Bulletin 88, 1315–1329 (2004)

    Google Scholar 

  36. Sternlof, K.R., Rudnicki, J.W., Pollard, D.D.: Anti-crack inclusion model for compaction bands in sandstone. Journal of Geophysical Research 110(B11403) (2005), doi:10.1029/2005JB003764

    Google Scholar 

  37. Sternlof, K.R., Karimi-Fard, M., Pollard, D.D., Durlofsky, L.J.: Flow effects of compaction bands in sandstone at scales relevant to aquifer and reservoir management. Water Resources Research 42(W07425) (2006), doi:10.1029/2005WR004664

    Google Scholar 

  38. Tembe, S., Vajdova, V., Wong, T.-F., Zhu, W.: Initiation and propagation of strain localization in circumferentially notched samples of two porous sandstones. Journal of Geophysical Research 111(B02409) (2006), doi:10.1029/2005JB003611

    Google Scholar 

  39. Thomas, T.Y.: Plastic Flow and Fracture in Solids. Academic Press (1961)

    Google Scholar 

  40. Vajdova, V., Wong, T.-F.: Incremental propagation of discrete compaction bands and microstructural observations on circumferentially notched samples of Bentheim sandstone. Geophysical Research Letters 30(14), 1775 (2003), doi:10.1029/2003GL017750.

    Article  Google Scholar 

  41. Vajdova, V., Baud, P., Wong, T.-F.: Permeability evolution during localized deformation in Bentheim sandstone. Journal of Geophysical Research 109(B10406) (2004), doi:10.1029/2003JB002942

    Google Scholar 

  42. Wawersik, W.R., et al.: Terrestrial sequestration of CO2: An assessment of research needs. In: Dmowska, R. (ed.) Advances in Geophysics, vol. 43, pp. 97–177. Academic Press (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Rudnicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 © Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Rudnicki, J.W. (2013). Failure of Rocks in the Laboratory and in the Earth. In: Denier, J., Finn, M. (eds) Mechanics Down Under. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5968-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5968-8_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5967-1

  • Online ISBN: 978-94-007-5968-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics