Biogeography, Biodiversity and Connectivity of Bermuda’s Coral Reefs

  • Jan M. LockeEmail author
  • Kathryn A. Coates
  • Jaret P. Bilewitch
  • Lyndsey P. Holland
  • Joanna M. Pitt
  • Struan R. Smith
  • Henry G. Trapido-Rosenthal
Part of the Coral Reefs of the World book series (CORW, volume 4)


As the most northern ecoregion within the Tropical Northwestern Atlantic biogeographic province, Bermuda’s reef biodiversity is a reduced complement of that found within the other ecoregions of the TNA. A characteristic of the Bermuda marine fauna is the absence of species otherwise ubiquitous in the TNA province (i.e., Acropora spp.). Notable differences in Bermuda’s species diversity is attributed to both geographic and physical forcing agents that include isolation, temperature, currents, bathymetric or coastal complexity, and environmental seasonality. Pleistocene sea level changes also may have been important to the development of Bermuda’s current diversity. Shallow-water scleractinian and octocorallian species diversity is currently considered well documented, however information is still lacking on the depth limits of many species, including in and extending beyond the mesophotic zone. The shallow-water azooxanthellate coral, Rhizopsammia bermudensis, is the only endemic scleractinian. Bermuda’s Symbiodinium diversity is comparable to the Caribbean in that clades A, B and C predominate in anthozoan hosts, but there is a notable absence of Clade D which has been recorded from several Caribbean conspecifics. In Bermuda, octocorals harbour only clade B. Most fishes in Bermuda have a western Atlantic distribution, but amphi-Atlantic and more widely distributed species are also common. High levels of genetic variation and unique Bermudian haplotypes have been determined for several species, spanning several higher taxa – not just cnidarians and fishes. Studies indicate that Bermuda’s marine populations are panmictic and self-seeding. Population connections with upstream reef systems have been inferred genetically for some but not all of the few species investigated. For Bermuda, population connectivity characteristics are so diverse, even among species with apparently similar reproductive and dispersal patterns, that best practices for management and conservation should be developed on a species by species basis.


Coral Reef Reef Fish Population Connectivity Black Band Disease Pelagic Larval Duration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We wish to acknowledge the assistance of Lisa Greene, Bermuda Natural History Museum; Alison Copeland and Mandy Shailer, Bermuda Department of Conservation Services; Wolfgang Sterrer and Katie Dilke. This is a contribution of the Bermuda Biodiversity Project BBP#199.


  1. Ahrenholz DW, Morris JA (2010) Larval duration of the lionfish, Pterois volitans, along the Bahamian Archipelago. Environ Biol Fish 88:305–309. doi: 10.1007/s10641-010-9647-4 CrossRefGoogle Scholar
  2. Andras JP, Kirk NL, Harvell CD (2011) Range-wide population genetic structure of Symbiodinium associated with the Caribbean Sea fan coral, Gorgonia ventalina. Mol Ecol 20:2525–2542CrossRefGoogle Scholar
  3. Ayre DJ, Hughes TP (2004) Climate change, genotypic diversity and gene flow in reef-building corals. Ecol Lett 7:273–278CrossRefGoogle Scholar
  4. Baker A (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology and biogeography of Symbiodinium. Ann Rev Ecol Syst 34:661–689CrossRefGoogle Scholar
  5. Banford HM (2010) Hyporhamphus collettei, a new species of inshore halfbeak (Hemiramphidae) endemic to Bermuda, with comments on the biogeography of the Hyporhamphus unifasciatus species group. Proc Biol Soc Wash 123:345–358CrossRefGoogle Scholar
  6. Bates NR, Amat A, Andersson AJ et al (2010) Feedbacks and responses of coral calcification on the Bermuda reef system to seasonal changes in biological processes and ocean acidification. Biogeosciences 7:2509–2530CrossRefGoogle Scholar
  7. Bergenius MAJ, Meekan MG, Robertson DR, McCormick MI (2002) Larval growth predicts the recruitment success of a coral reef fish. Oecologia 131:521–525CrossRefGoogle Scholar
  8. Bilewitch JP (2006) The phylogenetic systematics of octocorals with a taxonomic review of five Bermudian species. M.Sc. thesis, University of TorontoGoogle Scholar
  9. Bilewitch JP (2008) Octocoral biodiversity in Bermuda. Report for the Bermuda zoological society, Bermuda, BAMZ #1915, 9ppGoogle Scholar
  10. Bilewitch JP, Coates KA, Currie DC, Trapido-Rosenthal HG (2010) Molecular and morphological variation supports monotypy of the octocoral Briareum Blainville, 1830 (Octocorallia: Alcyonacea) in the Western Atlantic. Proc Biol Soc Wash 123:93–112CrossRefGoogle Scholar
  11. Billinghurst Z, Douglas AE, Trapido-Rosenthal HG (1997) On the genetic diversity of the symbiosis between the coral Montastraea cavernosa and zooxanthellae in Bermuda. In: Proceedings of the 8th international coral reef symposium, Panama vol 2. pp 1291–1294Google Scholar
  12. Boschma H (1925) On the symbiosis of certain Bermuda coelenterates and zooxanthellae. Proc Am Acad Arts Sci 60:451–460CrossRefGoogle Scholar
  13. Bostrom MA, Collette BB, Luckhurst BE, Reece KS, Graves JE (2002) Hybridization between two serranids the coney Cephalopholis fulva and the creole-fish Paranthias furcifer at Bermuda. Fish Bull 100:651–661Google Scholar
  14. Brazeau DA, Lasker HR (1990) Sexual reproduction and external brooding by the Caribbean gorgonian Briareum asbestinum. Mar Biol 104:465–474Google Scholar
  15. Bridge TCL, Fabricius KE, Bongaerts P, Wallace CC, Muir PR, Done TJ, Webster JM (2011) Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs 32:179–189Google Scholar
  16. Brothers EB, Thresher RE (1985) Pelagic duration, dispersal, and the distribution of Indo-Pacific coral-reef fishes. In: Reaka ML (ed) The ecology of coral reefs, vol 3, Symposia series for undersea research, NOAA undersea research program. NOAA, RockvilleGoogle Scholar
  17. Butler JN, Morris BF, Cadwallader J, Stoner AW (1983) Studies of Sargassum and the Sargassum community, vol 22, Special publication. Bermuda Biological Station for Research, St Georges, BermudaGoogle Scholar
  18. Cairns SD (1979) The deep-water Scleractinia of the Caribbean and adjacent waters. Stud Fauna Curaçao 57:1–341Google Scholar
  19. Cairns SD (2000) A revision of the shallow-water azooxanthellate Scleractinia of the Western Atlantic. Nat Hist Caribbean Reg 75:1–240Google Scholar
  20. Cairns SD, Chapman RE (2001) Biogeographic affinities of the North Atlantic deep-water Scleractinia. In: Proceedings of the first international symposium on deep-sea corals, ecology action centre and Nova Scotia Museum, Halifax, Nova Scotia, p 30–57Google Scholar
  21. Cairns SD, den Hartog JC, Arneson C, Reutzler K (1986) Class anthozoa (Corals, Anemones). In: Sterrer W (ed) Marine fauna and flora of Bermuda. A systematic guide to the identification of Marine organisms. Wiley, New YorkGoogle Scholar
  22. Casazza TL, Ross SW (2008) Fishes associated with pelagic Sargassum and open water lacking Sargassum in the Gulf Stream off North Carolina. Fish Bull 106:348–363Google Scholar
  23. Chapman RW, Sedberry GR, McGovern JC, Ball AO, Zatcoff MS, Luckhurst BE (2002) Genetic identification of scamp, Mycteroperca phenax, black grouper, Mycteroperca bonaci, and red grouper, Epinephelus morio, in the western Atlantic. MARFIN Tech Rep NA87FF0423, SC Department of Natural Resources, CharlestonGoogle Scholar
  24. Chester WM (1913) The structure of the gorgonian coral Pseudoplexaura crassa Wright and Studer. Proc Am Acad Arts Sci 48:737–774CrossRefGoogle Scholar
  25. Cook CB, Logan A, Ward J, Luckhurst B, Berg CJ Jr (1990) Elevated temperatures and bleaching on high latitude coral reef: the 1988 Bermuda event. Coral Reefs 9:45–49CrossRefGoogle Scholar
  26. Coston-Clements L, Settle LR, Hoss DE, Cross FA (1991) Utilization of the Sargassum habitat by marine inverterates and vertebrates – a review. NOAA Technical Memorandum. NMFS-SEFSC-296, 30ppGoogle Scholar
  27. Côté IM, Darling ES (2010) Rethinking ecosystem resilience in the face of climate change. PLoS Biol 8(7):e1000438. doi: 10.1371/journal.pbio.1000438 CrossRefGoogle Scholar
  28. Floeter SR, Rocha LA, Robertson DR et al (2008) Atlantic reef fish biogeography and evolution. J Biogeogr 35:22–47Google Scholar
  29. Foighil DÓ, Jozefowicz CJ (1999) Amphi-Atlantic phylogeography of direct-developing lineages of Lasaea, a genus of brooding bivalves. Mar Biol 135:115–122CrossRefGoogle Scholar
  30. Fricke H, Meischner D (1985) Depth limits of Bermudan scleractinian corals: a submersible survey. Mar Biol 88:175–187CrossRefGoogle Scholar
  31. Glasspool AF (1994) Larval distribution, population structure and gene flow in Bermuda’s reef fish. Ph.D. dissertation, University of WalesGoogle Scholar
  32. Goldstein J, Matsuda H, Takenouchi T, Butler MJ IV (2008) The complete development of larval Caribbean spiny lobster Panulirus argus (Latreille, 1804) in culture. J Crustacean Biol 28:306–327CrossRefGoogle Scholar
  33. Goodbody-Gringley G, Vollmer SV, Woollacott RM, Giribet G (2010) Limited gene flow in the brooding coral Favia fragum (Esper, 1797). Mar Biol 157:2591–2602CrossRefGoogle Scholar
  34. Goodbody-Gringley G, Woollacott RM, Giribet G (2011) Population structure and connectivity in the Atlantic scleractinian coral Montastraea cavernosa (Linnaeus, 1767). Mar Ecol. doi: 10.1111/j.1439-0485.2011.00452.x
  35. Goulet TL, Coffroth M-A (2004) The genetic identity of dinoflagellate symbiontsin Caribbean octocorals. Coral Reefs 23:465–472Google Scholar
  36. Goulet TL, Simmons C, Goulet D (2008) Worldwide biogeography of Symbiodinium in tropical octocorals. Mar Ecol Prog Ser 355:45–58CrossRefGoogle Scholar
  37. Gower JFR, King SA (2011) Distribution of floating Sargassum in the Gulf of Mexico and the Atlantic Ocean mapped using MERIS. Int J Remote Sens 32:1917–1929CrossRefGoogle Scholar
  38. Grode SH, James TR, Cardellina JH II (1983) Brianthein Z, a new polyfunctional diterpene from the gorgonian Briareum polyanthes. Tetrahedron Lett 24:691–694CrossRefGoogle Scholar
  39. Hatley JG, Sleeter TD (1993) A biochemical genetic investigation of spiny lobster (Panulirus argus) stock replenishment in Bermuda. Bull Mar Sci 53:993–1006Google Scholar
  40. Healy B, Coates KA (2003) A preliminary investigation of the decomposition of Sargassum stranded on Bermuda beaches, and the particular role of Enchytraeidae in its decomposition. Newsl Enchytraeidae 8:13–24Google Scholar
  41. Hearty PJ, Olson SL (2010) Geochronology, biostratigraphy, and changing shell morphology in the land snail subgenus Poecilozonites during the quaternary of Bermuda. Palaeogeogr Palaeoclim Palaeoecol 293:9–29CrossRefGoogle Scholar
  42. Hearty PJ, Hollin JT, Neumann AC, O’Leary MJ, McCulloch M (2007) Global sea-level fluctuations during the last interglaciation (MIS 5e). Quat Sci Rev 26:2090–2112CrossRefGoogle Scholar
  43. Hoeksema BW, Roos PJ, Cadée GC (2012) Trans-Atlantic rafting by the brooding reef coral Favia fragum on man-made flotsam. Mar Ecol Prog Ser 445:209–218CrossRefGoogle Scholar
  44. Holland LP (2006) The molecular diversity of Symbiodinium (Seussiales: Dinoflagellata) within Alcyonacea of Bermuda and the Caribbean. M.Sc. thesis, University of TorontoGoogle Scholar
  45. Iliffe TM, Kvitek R, Blasco S, Blasco K, Covill R (2011) Search for Bermuda’s deep water caves. Hydrobiologia. doi: 10.1007/s10750-011-0883-1
  46. Jokiel PL (1990) Long-distance dispersal by rafting: re-emergence of an old hypothesis. Endeavour New Ser 14(2):66–73CrossRefGoogle Scholar
  47. Jones RJ, Johnson R, Noyes T, Parsons R (2012) Spatial and temporal patterns of coral black band disease in relation to a major sewage outfall. Mar Ecol Prog Ser 462:79–92CrossRefGoogle Scholar
  48. Kleypas JA (1997) Modeled estimates of global reef habitat and carbonate production since the last glacial maximum. Paleoceanog 12:533–545CrossRefGoogle Scholar
  49. Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159Google Scholar
  50. LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny ofendosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37:866–880CrossRefGoogle Scholar
  51. Lee T, Foighil DO (2005) Placing the Floridian marine genetic disjunction into a regional evolutionary context using the scorched mussel, Brachidontes exustus, species complex. Evolution 59:2139–2158Google Scholar
  52. Lewis CL, Coffroth MA (2004) The acquisition of exogenous algal symbionts by anoctocoral after bleaching. Science 304:1490–1492CrossRefGoogle Scholar
  53. Locke JM (2009) Madracis auretenra (Scleractinia: Pocilloporidae) – testing our knowledge of systematics, biology and connectivity in the western North Atlantic. Ph.D. dissertation, University of Puerto RicoGoogle Scholar
  54. Locke JM, Bilewitch JP, Coates KA (2013) Scleractinia, Octocorallia and Antipatharia of Bermuda’s reefs and deep-water coral communities: a taxonomic perspective including new records. In: Sheppard C (ed) Coral reefs of the world, vol 4. Coral Reefs of the UK Overseas Territories. Springer, Dordrecht, pp 189–200Google Scholar
  55. Locke JM, Weil E, Coates KA (2007) A newly documented species of Madracis (Scleractinia: Pocilloporidae) from the Caribbean. Proc Biol Soc Wash 120:214–226CrossRefGoogle Scholar
  56. Loram JE, Boonham N, O’Toole P, Trapido-Rosenthal HG, Douglas AE (2007a) Molecular quantification of symbiotic dinoflagellate algae of the genus Symbiodinium. Biol Bull 212:259–268CrossRefGoogle Scholar
  57. Loram JE, Trapido-Rosenthal HG, Douglas AE (2007b) Functional significance of genetically different algae Symbiodinium in a coral reef symbiosis. Mol Ecol 16:4849–4857CrossRefGoogle Scholar
  58. Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, PrincetonCrossRefGoogle Scholar
  59. Meyer EL (2012) Integrating ecology, natural history, and regional management for conservation of tropical intertidal gastropod fisheries. Ph.D. dissertation, University of California, BerkeleyGoogle Scholar
  60. Miller KJ, Ayer DJ (2008) Protection of genetic diversity and maintenance of connectivity among reef corals within marine protected areas. Conserv Biol 22:1245–1254CrossRefGoogle Scholar
  61. Miller KJ, Ayre DJ (2004) The role of sexual and asexual reproduction in structuring high latitude populations of the reef coral Pocillopora damicornis. Heredity 92:557–56CrossRefGoogle Scholar
  62. Miloslavich P, Diaz JM, Klein E, Alvarado JJ, Diaz C, Gobin J, Escobar-Briones E, Cruz-Motta JJ, Weil E, Cortés J, Bastidas AC, Robertson R, Zapata F, Martin A, Castillo J, Kazandjian A, Ortiz M (2010) Marine biodiversity in the Caribbean: regional estimates and distributional patterns. PLoS One 5:1–25 and PLoS One 5(8):e11916. doi:10.1371/ journal.pone.0011916Google Scholar
  63. Mitton JB, Berg CJ, Orr KS (1989) Population structure, larval dispersal, and gene flow in the queen conch, Strombus gigas of the Caribbean. Biol Bull 177:356–362CrossRefGoogle Scholar
  64. Moore HB, Moore DM (1946) Preglacial history of Bermuda. Bull Geol Soc Am 57:207–222CrossRefGoogle Scholar
  65. Muhs DR, Simmons KR, Steinke B (2002) Timing and warmth of the last interglacial period: new U-series evidence from Hawaii and Bermuda and a new fossil compilation for North America. Quaternary Sci Rev 21:1355–1383CrossRefGoogle Scholar
  66. Murdoch TJT (2007) A functional group approach for predicting the composition of hard coral assemblages in Florida and Bermuda. Ph.D. dissertation, University of South AlabamaGoogle Scholar
  67. Nagelkerken I, Blaber SJM, Bouillon S, Green P, Haywood M, Kirton LG, Meynecke J-O, Pawlik J, Penrose HM, Sasekumar A, Somerfield PJ (2008) The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat Bot 89:155–185CrossRefGoogle Scholar
  68. Naro-Maciel E, Reid B, Holmes KE, Brumbaugh DR, Martin M, DeSalle R (2011) Mitochondrial DNA sequence variation in spiny lobsters: population expansion, panmixia, and divergence. Mar Biol 158:2027–2041CrossRefGoogle Scholar
  69. Nunes F, Norris RD, Knowlton N (2009) Implications of isolation and low genetic diversity in peripheral populations of an Amphi-Atlantic coral. Mol Ecol 18:4283–4297CrossRefGoogle Scholar
  70. Palumbi SR (1995) Using genetics as an indirect estimator of larval dispersal. In: McEdward L (ed) Ecology of Marine invertebrates. CRC Press, Boca RatonGoogle Scholar
  71. Pandolfi JM (1999) Response of pleistocene coral reefs to environmental change overlong temporal scales. Am Zool 39:113–130Google Scholar
  72. Park J, Foighil DÓ (2000) Genetic diversity of oceanic island Lasaea (Mollusca: Bivalvia) lineages exceeds that of continental populations in the Northwestern Atlantic. Biol Bull 198:396–403CrossRefGoogle Scholar
  73. Pitt JM, Shailer ML (2010) GIS applications in marine resources management: examples of spatial management measures from Bermuda. In: Calado H, Gil A (eds) Geographic technologies applied to marine spatial planning and integrated coastal zone management. Universidade dos Açores, Ponta DelgadaGoogle Scholar
  74. Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497CrossRefGoogle Scholar
  75. Poey F (1860) Memorias sobra la historia natural de la isla de Cuba, acompañadas de sumarios latino y extractos in francés. La Habana 2:97–336Google Scholar
  76. Poey F (1875) Enumeratio piscium Cubensium. An Soc Española Hist Nat 4:75–112Google Scholar
  77. Pollock DE (1992) Palaeoceanography and speciation in the spiny lobster genus Panulirus in the Indo-Pacific. Bull Mar Sci 51:135–146Google Scholar
  78. Precht WF, Miller SL (2007) Chapter 9: ecological shifts along the Florida reef tract: the past is a key to the future. In: Aronson RB (ed) Geological approaches to coral reef ecology. Springer, New York, pp 237–212CrossRefGoogle Scholar
  79. Pyle R, Myers R, Rocha LA, Craig MT (2010) Holacanthus ciliaris. In: IUCN 2011. IUCN red list of threatened species. Version 2011.2. Accessed 8 June 2012
  80. Robertson DR (2001) Population maintenance among tropical reef fishes: inferences from small-island endemics. Proc Nat Acad Sci 98(10):5667–5670CrossRefGoogle Scholar
  81. Rocha LA (2004) Mitochondrial DNA and color pattern variation in three Western Atlantic Halichoeres (Labridae), with the revalidation of two species. Copeia 2004:770–782CrossRefGoogle Scholar
  82. Rocha LA, Robertson DR, Roman J, Bowen BW (2005a) Ecological speciation in tropical reef fishes. Proc R Soc B 272:573–579. doi: 10.1098/2004.3005 Google Scholar
  83. Rocha LA, Robertson DR, Rocha CR, Van Tassell JL, Craig MT, Bowen BW (2005b) Recent invasion of the tropical Atlantic by an Indo-Pacific coral reef fish. Mol Ecol 14:3921–3928. doi: 10.1111/j.1365-294X.2005.02698.x CrossRefGoogle Scholar
  84. Rowan R (1998) Review – diversity and ecology of zooxanthellae on coral reefs. J Phycol 34:407–417CrossRefGoogle Scholar
  85. Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351CrossRefGoogle Scholar
  86. Roy MS, Sponer R (2002) Evidence of a human-mediated invasion of the tropical western Atlantic by the ‘world’s most common brittlestar’. Proc R Soc Lond B 269:1017–1023CrossRefGoogle Scholar
  87. Santos SR, Gutierrez-Rodriguez C, Lasker HR, Coffroth MA (2003) Symbiodinium sp.associations in the gorgonian Pseudopterogorgia elisabethae in the Bahamas: high levels of genetic variability and population structure in symbiotic dinoflagellates. Mar Biol 143:111–120CrossRefGoogle Scholar
  88. Savage AM (2001) Genetic diversity and photosynthetic characteristics of zooxanthellae (Symbiodinium). Ph.D. dissertation, University of YorkGoogle Scholar
  89. Savage AM, Goodson MS, Visram S, Trapido-Rosenthal HG, Wiedenmann J, Douglas AE (2002) Molecular diversity of symbiotic algae at the latitudinal margins of their distribution: dinoflagellates of the genus Symbiodinium in corals and sea anemones. Mar Ecol Prog Ser 244:17–26CrossRefGoogle Scholar
  90. Schultz ET, Cowen RK (1994) Recruitment of coral-reef fishes to Bermuda: local retention or long-distance transport? Mar Ecol Prog Ser 109:15–28CrossRefGoogle Scholar
  91. Schwarz JA, Weis VM, Potts DC (2002) Feeding behaviour and acquisition of zooxanthellae by planula larvae of the sea anemone Anthopleura elegantissima. Mar Biol 140:471–478CrossRefGoogle Scholar
  92. Shanks AL (2009) Pelagic larval duration and dispersal distance revisited. Biol Bull 216:373–385Google Scholar
  93. Shearer TL (2004) Reef connectivity: genetic analysis of recruitment and gene flow among Caribbean scleractinian corals. Ph.D. dissertation, University of New York, BuffaloGoogle Scholar
  94. Silberman JD, Sarver SK, Walsh PJ (1994) Mitochondrial DNA variation and population structure in the spiny lobster Panulirus argus. Mar Biol 120:601–608CrossRefGoogle Scholar
  95. Slatkin M (1985) Gene flow in natural populations. Ann Rev Ecol Syst 16:393–430CrossRefGoogle Scholar
  96. Smith CL (1966) Menephorus Poey, a serranid genus based on two hybrids of Cephalopholi fulva and Paranthias furcifer, with comments on the systematic placement of Paranthias. Am Mus Nov 2276:1–1966Google Scholar
  97. Smith SR (2010) The search for knowledge and understanding of Bermuda’s biological diversity. Envirotalk 78:2–6Google Scholar
  98. Smith ML, Carpenter KE, Walker RW (2002) An introduction to the oceanography, geology, biogeography, and fisheries of the tropical and subtropical Western Central Atlantic. In: Carpenter KE (ed) The living marine resources of the Western Central Atlantic vol. 1, vol 5, FAO species identification guide for fisheries purposes and American Society of Ichthyologists Herpetologists special publication. Food and Agriculture Organization of the United Nations, Rome, pp 1–23Google Scholar
  99. Smith-Vaniz WF, Collette BB, Luckhurst BE (1999) Fishes of Bermuda: history, zoogeography, annotated checklist, and identification keys. Amer Soc Ichthy Herpet Spec Publ. 4, 424 pp. Allen Press, LawrenceGoogle Scholar
  100. Spalding M, Fos H, Allen G, Davidson N, Ferdaña Z, Finlayson M, Halpern BS, Jorge MA, Lomgana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583CrossRefGoogle Scholar
  101. Sponaugle S, Cowen RK (1994) Larval durations and recruitment patterns of two Caribbean gobies (Gobiidae): contrasting early life histories in demersal spawners. Mar Biol 120:133–143Google Scholar
  102. Stat M, Gates RD (2011) Clade D Symbiodinium in scleractinian corals: a “nugget” of hope, a selfish opportunist, an ominous sign, or all of the above? J Mar Biol 2011:9, Article ID 730715Google Scholar
  103. Sterrer WE (1998) How many species are there in Bermuda? Bull Mar Sci 62:809–840Google Scholar
  104. Stone GS, Katona SK, Tucker EB (1987) History, migration and present status of humpback whales, Megaptera novaeangliae, at Bermuda. Biol Conserv 42:133–145CrossRefGoogle Scholar
  105. Stranack I (1990) The Andrew and the onions. The story of the royal navy in Bermuda 1795–1975, 2nd edn. University of Toronto Press, TorontoGoogle Scholar
  106. Swearer SE, Shima JS, Hellberg MA, Thorrold SR, Jones GP, Robertson DR, Morgan SG, Selkoe KA, Ruiz GM, Warner RR (2002) Evidence of self-recruitment in demersal marine populations. Bull Mar Sci 70:251–271Google Scholar
  107. Thresher RE, Colin PL, Bell LJ (1989) Planktonic duration, distribution and population structure of western and central Pacific damselfishes (Pomacentridae). Copeia 1989:420–434CrossRefGoogle Scholar
  108. Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Bio Bull 201:348–359CrossRefGoogle Scholar
  109. Venn AA, Loram JE, Trapido-Rosenthal HG, Joyce DA, Douglas AE (2008) Importance of time and place: patterns in abundance of Symbiodinium clades A and B in the tropical sea anemone Condylactis gigantea. Biol Bull 215:243–252CrossRefGoogle Scholar
  110. Venn AA, Weber FK, Loram JE, Jones RJ (2009) Deep zooxanthellate corals at the high latitude Bermuda Seamount. Coral Reefs 28:135CrossRefGoogle Scholar
  111. Victor BC (1986) Larval settlement and juvenile mortality in a recruitment – limited coral reef fish population. Ecol Mono 56:145–160CrossRefGoogle Scholar
  112. Wellington GM, Victor BC (1989) Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Mar Biol 101:557–567CrossRefGoogle Scholar
  113. Weersing K, Toonen RJ (2009) Population genetics, larval dispersal, and connectivity in marine systems. Mar Ecol Prog Ser 393:1–12CrossRefGoogle Scholar
  114. Whitfield PE, Gardner T, Vives SP, Gilligan MR, Courtenay WR Jr, Carleton Ray G, Hare JA (2002) Biological invasion of the Indo-Pacific lionfish Pterois volitans along the Atlantic coast of North America. Mar Ecol Prog Ser 235:289–297CrossRefGoogle Scholar
  115. Wilkinson CR, Souter D (2008) Status of Caribbean coral reefs after bleaching and hurricanes in 2005. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, TownsvilleGoogle Scholar
  116. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354Google Scholar
  117. Zigler KS, Lessios HA (2004) Speciation on the coasts of the new world: phylogeography and the evolution of bindin in the sea urchin genus Lytechinus. Evolution 58:1225–1241Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jan M. Locke
    • 1
    Email author
  • Kathryn A. Coates
    • 1
  • Jaret P. Bilewitch
    • 2
  • Lyndsey P. Holland
    • 3
  • Joanna M. Pitt
    • 4
  • Struan R. Smith
    • 5
  • Henry G. Trapido-Rosenthal
    • 6
  1. 1.Department of Conservation ServicesMarine Ecology SectionHamilton ParishBermuda
  2. 2.School of Biological SciencesUniversity of QueenslandBrisbaneAustralia
  3. 3.Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
  4. 4.Department of Environmental ProtectionMarine Resources SectionSt. GeorgesBermuda
  5. 5.Department of Conservation ServicesNatural History Museum, Bermuda Aquarium, Museum and ZooHamilton ParishBermuda
  6. 6.Department of Biology, Division of Natural Sciences and MathematicsChaminade University of HonoluluHonoluluUSA

Personalised recommendations