Skip to main content

Biocontrol of Plant Pathogens Using Plant Growth Promoting Bacteria

  • Chapter
  • First Online:
Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 12))

Abstract

Food is the primary requirement for the survival of mankind. Therefore food has always been an issue since prehistoric times. Food production through agriculture is a key process to meet the world food demand. In the last four to five decades global agricultural production has been drastically improved by introduction of improved crop varieties and development of modern agricultural tools. However, more than 25% of the crop yield is lost every year due to various kinds of plant diseases. Most critical plant diseases are caused by soilborne plant pathogens such as fungi, virus and nematodes. Effective measures are thus highly needed to avoid this crop loss. So far, the use of chemical pesticides has been the method of choice to tackle this problem. However, the unwarranted use of chemical tools to enhance the crop yield and control plant diseases has resulted in irreversible loss of soil quality along with serious health and environmental problems. Moreover, alternative controls are needed due to growing public concern about toxic agrochemicals and stringent laws. Microbes are a reasonable option to develop ecofriendly agricultural tools to replace chemical pesticides.

Here we review the role of a special class of soil bacteria, called plant growth promoting rhizobacteria (PGPR). PGPR live in the rhizospheric sites in soil, i.e. in immediate vicinity of the plant roots, and exerts several beneficial effects on the plants, directly or indirectly. PGPR have inherent antagonistic properties against soilborne plant pathogens under natural conditions. The major points discussed here are: (1) biocontrol of plant pathogens as an alternative to chemical control methods. (2) The current market status of various biocontrol products with a noticeable increase of 80% market share in 5 years. (3) The success of PGPR to protect many plant species, against diverse range of plant pathogens. (4) Mechanisms underlying the control and inhibition of soilborne plant pathogens including antagonistic activities such as production of antibiotics, offering stiff competition to the pathogen for nutrients and niches in the rhizosphere, parasitism of the pathogen and induction of systemic resistance in the plants against diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adebayo OS, Ekpo EJA (2004) Efficacy of fungal and bacterial biocontrol organisms for the control of fusarium wilt of tomato. NJHS 9:63–68

    Google Scholar 

  • Agrios G (2004) Plant pathology, 5th edn. Elsevier, London

    Google Scholar 

  • Alabouvette C, Olivain C, Steinberg C (2006) Biological control of plant diseases: the European situation. Eur J Plant Pathol 114:329–341. doi: 10.1007/s10658-005-0233-0

    Article  Google Scholar 

  • Anderson AJ (1983) Isolation from root and shoot surfaces of agglutinins that show specificity for saprophytic pseudomonads. Can J Bot 61:3438–3443. doi: 10.1139/b83-387

    Article  CAS  Google Scholar 

  • Anderson AJ, Habibzadegah-Tari P, Tepper CS (1988) Molecular studies on the role of a root surface agglutinin in adherence and colonization by Pseudomonas putida. Appl Environ Microbiol 54:375–380

    PubMed  CAS  Google Scholar 

  • Anderson AJ, Jasalavich C (1979) Agglutination of pseudomonad cells by plant products. Physiol Plant Pathol 15:149–159. doi: 10.1016/0048-4059(79)90063-8

    Article  CAS  Google Scholar 

  • Anitha A, Rabeeth M (2009) Control of fusarium wilt of tomato by bioformulation of Streptomyces griseus in green house condition. Afr J Basic Appl Sci 1:9–14

    Google Scholar 

  • Ankenbauer RG, Toyokuni T, Staley A, Rinehart KL Jr, Cox CD (1988) Synthesis and biological activity of pyochelin, a siderophore of Pseudomonas aeruginosa. J Bacteriol 170:5344–5351. doi: 0021-9193/88/115344-08$02.00/0

    PubMed  CAS  Google Scholar 

  • Apichaisataienchote B, Korpraditskul V, Fotso S, Laatsch H (2006) Aerugine, an antibiotic from Streptomyces fradiae strain SU. Kasetsart J (Nat Sci) 40:335–340

    PubMed  CAS  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    PubMed  CAS  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant Microbe Interact 15:1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Baker KF, Cook RJ (1974) Biological control of plant pathogens. W.H. Freeman Co., San Francisco, p 433

    Google Scholar 

  • Bakker PAHM, Ran LX, Pieterse CMJ, Van Loon LC (2003) Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Can J Plant Pathol 25:5–9

    Article  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778. doi: 10.1093/jxb/eri197

    Article  PubMed  CAS  Google Scholar 

  • Bargabus-Larson RL, Jacobsen BJ (2007) Biocontrol elicited systemic resistance in sugarbeet is salicylic acid independent and NPR1 dependent. J Sugar Beet Res 44:17–33

    Article  Google Scholar 

  • Bargabus-Larson RL, Zidack NK, Sherwood JE, Jacobsen BJ (2002) Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol 61:289–298

    Article  CAS  Google Scholar 

  • Bargabus-Larson RL, Zidack NK, Sherwood JE, Jacobsen BJ (2003) Oxidative burst elicited by bacillus mycoides isolate Bac J, a biological control agent, occurs independentaly of hypersensitive cell daeth in sugar beet. Mol Plant Microbe Interact 16:1145–1153

    Article  Google Scholar 

  • Bargabus-Larson RL, Zidack NK, Sherwood JW, Jacobsen BJ (2004) Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biol Control 30:342–350

    Article  Google Scholar 

  • Battu PR, Reddy MS (2009) Isolation of secondary metabolites from Pseudomonas fluorescens and its Characterization. Asian J Res Chem 2:26–29

    CAS  Google Scholar 

  • Benitez T, Rincon AM, Limon MC, Codon A (2004) Biocontrol mechanism of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  CAS  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18. doi: 10.1007/s00253-009-2092-7

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  PubMed  CAS  Google Scholar 

  • Bigirimana J, Höfte M (2002) Induction of systemic resistance to Colletotrichum lindemuthianum in bean by a benzothiadiazole derivative and rhizobacteria. Phytoparasitica 30:159–168

    Article  Google Scholar 

  • Bolwerk A, Lagopodi AL, Wijfjes AHM, Lamers GEM, Chin-A-Woeng TFC, Lugtenberg BJJ, Bloemberg GV (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 11:983–993

    Article  Google Scholar 

  • Brandel J, Humbert N, Elhabiri M, Schalk IJ, Mislin GLA, Albrecht-Gary AM (2012) Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton Trans 41:2820–2834. doi: 10.1039/C1DT11804H

    Article  PubMed  CAS  Google Scholar 

  • Buysens S, Poppe J, Höfte M (1994) Role of siderophores in plant growth stimulation and antagonism by Pseudomonas aeruginosa 7NSK2. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. CSIRO, Adelaide, pp 139–141

    Google Scholar 

  • Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    Google Scholar 

  • Cameron RK, Dixon R, Lamb C (1994) Biologically induced systemic acquired resistance in Arabidopsis thaliana. Plant J 5:715–725

    Article  Google Scholar 

  • Capdevila S, Martınez-Granero FM, Sanchez-Contreras M, Rivilla R, Martın M (2004) Analysis of Pseudomonas fluorescens F113 genes implicated in flagellar filament synthesis and their role in competitive root colonization. Microbiology 150:3889–3897

    Article  PubMed  CAS  Google Scholar 

  • Cartwright DK, Chilton WS, Benson DM (1995) Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhizoctonia solani. Appl Environ Microbiol 43:211–216. doi: 10.1007/BF00172814

    CAS  Google Scholar 

  • Castignetti D, Smarrelli J Jr (1986) Siderophores, the iron nutrition of plants, and nitrate reductase. FEBS Lett 209:147–151

    Article  CAS  Google Scholar 

  • Cawoy H, Bettiol W, Fickers P, Ongena M (2011) In: Stoytcheva M (ed) Pesticides in the modern world – pesticides use and management. InTech, Rijeka, pp 273–302

    Google Scholar 

  • Chaiharn M, Chunhaleuchanon S, Lumyong S (2009) Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World J Microb Biot 25:1919–1928. doi:: 10.1007/s11274-009-0090-7

    Article  Google Scholar 

  • Chang WT, Chen CS, Wang SL (2003) An antifungal chitinase produced by Bacillus cereus with shrimp and crab shell powder as a carbon source. Curr Microbiol 47:102–108. doi: 10.1007/s00284-002-3955-7

    Article  PubMed  CAS  Google Scholar 

  • Chang WT, Chen YC, Jao CL (2007) Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin waste. Bioresource Technol 98:1224–1230. doi: 10.1016/j.biortech.2006.05.005

    Article  CAS  Google Scholar 

  • Chao Wei-Liang, Li Ren-Ki, Chang Wen-The (1988) Effect of root agglutinin on microbial activities in the rhizosphere. Appl Environ Microbiol 54:1838–1841. doi: 0099-2240/88/071838-04$02.00/0

    Google Scholar 

  • Chen C, Belanger RR, Benhamou N, Paulitz TC (2000) Defense enzymes induced in cucumber roots by treatment with plant growth promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Pathol 56:13–23

    Article  CAS  Google Scholar 

  • Chen CY, Wang YH, Huang CJ (2004) Enhancement of the antifungal activity of Bacillus subtilis F29-3 by the chitinase encoded by Bacillus circulans chiA gene. Can J Microbiol 50:451–454

    Article  PubMed  CAS  Google Scholar 

  • Chet I, Ordentlich A, Shapira R, Oppenheim A (1990) Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant Soil 129:85–92. doi: 10.1007/BF00011694

    Article  Google Scholar 

  • Chet L (1987) Trochoderma- application, mode of action, and potential as a biocontrol agent of soil borne plant pathogenic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160

    Google Scholar 

  • Chin-a-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact 13:1340–1345

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift KMGM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, Tichy H-T et al (1998) Biocontrol by phenazine-1- carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f.sp. radicislycopersici. Mol Plant Microbe Interact 11:1069–1077

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 1:4951–4959. doi: 10.1128/AEM.71.9.4951-4959.2005

    Article  CAS  Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216

    Article  PubMed  CAS  Google Scholar 

  • Cook RJ (1993) Making greater use of microbial inoculants in agriculture. Annu Rev Phytopathol 31:53–80

    Article  PubMed  CAS  Google Scholar 

  • Cook RJ (1988) Biological control and holistic plant-health care in agriculture. Am J Alternative Agr 3:51–62

    Article  Google Scholar 

  • Cox CD, Rinehart KL, Moore ML, Cook JC (1981) Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA 78:4256–4260

    Article  PubMed  CAS  Google Scholar 

  • Cronin D, Moënne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’Gara F (1997) Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiol Ecol 23:95–106

    Article  CAS  Google Scholar 

  • Curl EA, Truelove B (eds) (1986) The rhizosphere. Springer, Berlin

    Google Scholar 

  • de Meyer G, Audenaert K, Höfte M (1999a) Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid but is not associated with PR1a gene-expression. Eur J Plant Pathol 105:513–517

    Article  Google Scholar 

  • de Meyer G, Capiau K, Audenaert K, Buchala A, Métraux JP, Höfte M (1999b) Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway on bean. Mol Plant Microbe Interact 12:450–459

    Article  PubMed  Google Scholar 

  • de Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    Article  PubMed  Google Scholar 

  • de Souza J, Arnould C, Deulvot C, Lamanceau P, Pearson VG, Raaijmakers JM (2003) Effect of 2,4 diacetyl phloro glucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966–975

    Article  PubMed  Google Scholar 

  • de Weert S, Bloomberg GV (2006) Rhizosphere competence and role of root colonization in biocontrol. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, p 317

    Chapter  Google Scholar 

  • de Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  • de Weger LA, Bakker PAHM, Schippers B, van Loosdrecht MCM, Lugtenberg BJJ (1989a) Pseudomonas spp. with mutational changes in the O-antigenic side chain of their lipopolysaccharide are affected in their ability to colonize potato roots. In: Lugtenberg BJJ (ed) Signal molecules in plants and plant–microbe interactions. Springer, Berlin, pp 197–202

    Google Scholar 

  • de Weger LA, Jann B, Jann K, Lugtenberg B (1987a) Lipopolysaccharides of spp. that stimulate plant growth: composition and use for strain identification. J Bacteriol 169:1441–1446

    PubMed  Google Scholar 

  • de Weger LA, van der Vlugt CIM, Wijfjes AHM, Bakker PAHM, Schippers B, Lugtenberg B (1987b) Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169:2769–2773. doi: 0021-9193/87/062769-05$02.00/0

    PubMed  Google Scholar 

  • de Weger LA, van Loosdrecht MCM, Klaassen HE, Lugtenberg B (1989b) Mutational changes in physicochemical cell surface properties of plant-growth-stimulating spp. do not influence the attachment properties of the cells. J Bacteriol 171:2756–2761

    PubMed  Google Scholar 

  • DeBach P (1964) The scope of biological control. In: DeBach P (ed) Biological control of insect pests and weeds. Reinhold Publishing, New York, pp 3–20

    Google Scholar 

  • Dekker J (1963) Antibiotics in the control of plant diseases. Annu Rev Microbiol 17:243–262

    Article  Google Scholar 

  • Dekkers LC, Bloemendaal CJP, de Weger LA, Wijffelman CA, Spaink HP, Lugtenberg BJJ (1998a) A two- component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 11:45–56

    Article  PubMed  CAS  Google Scholar 

  • Dekkers LC, Mulders IHM, Phoelich CC, Chin-a-Woeng TFC, Wijfjes AHM, Lugtenberg BJJ (2000) The sss colonization gene of the tomato–Fusarium oxysporum f. sp. radicislycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type Pseudomonas spp. bacteria. Mol Plant Microbe Interact 13:1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Dekkers LC, Phoelich CC, Van Der FL, Lugtenberg BJJ (1998b) A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acad Sci USA 95:7051–7056

    Article  PubMed  CAS  Google Scholar 

  • Dekkers LC, van der Bij AJ, Mulders IHM, Phoelich CC, Wentwoord RAR, Glandorf DCM, Wijffelman CA, Lugtenberg BJJ (1998c) Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of ADH: ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact 11:763–771

    Article  PubMed  CAS  Google Scholar 

  • Delany I, Sheenan MM, Fenton A, Bardin S, Aarons S, O’Gara F (2000) Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiol 146:537–543

    CAS  Google Scholar 

  • Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    PubMed  CAS  Google Scholar 

  • Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P (1998) Implication of systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. Eur J Plant Pathol 104:903–910

    Article  Google Scholar 

  • Dunlop CA, Schisler DA, Price NP, Vaughan SF (2011) Cyclic lipopeptide profile of three Bacillus strains; antagonist of fusarium headblight. J Microbiol 49:603.609. doi: 10.10007/s 12275-011-1044-y

    Google Scholar 

  • Dunne C, Crowley JJ, Moënne-Loccoz Y, Dowling DN, de Bruijn FJ, O’Gara F (1997) Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143:3921–3931

    Article  CAS  Google Scholar 

  • Dunne C, Moenne-Loccoz Y, de Bruijn FJ, O’Gara F (2000) Overproduction of an inducible extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81. Microbiology 146:2069–2078

    PubMed  CAS  Google Scholar 

  • Eisendle M, Oberegger H, Buttinger R, Illmer P, Haas H (2004) Biosynthesis and uptake of siderophores is controlled by the PacCmediated ambient-pH regulatory system in Aspergillus nidulans. Euk Cell 3:561–563. doi: 10.1128/EC.3.2.561-563.2004

    Article  CAS  Google Scholar 

  • Elad Y, Baker R (1985) Influence of trace amounts of cations and siderophore-producing pseudomonads on chlamydospore germination of Fusarium oxysporum. Phytopathology 75:1047–1052

    Article  CAS  Google Scholar 

  • Elad Y, Chet I (1987) Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. Phytopathology 77:190–195

    Article  Google Scholar 

  • El-Tarabily KA, Nassar AH, GEStJ H, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26

    Article  PubMed  CAS  Google Scholar 

  • Fenton AM, Stephens PM, Crowley J, O’Callaghan M, O’Gara F (1992) Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a strain. Appl Environ Microbiol 58:3873–3878. doi: 0099-2240/92/123873-06$02.00/0

    PubMed  CAS  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y (2005) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 67–109. doi: 10.1016/j.soilbio.2004.10.021

    Google Scholar 

  • Fernando WGD, Pierson LS III (1999) The effect of increased phenazine antibiotic production on the inhibition of economically important soil-borne plant pathogens by Pseudomonas aureofaciens 30–84. Arch Phytopathol Plant Protect 32:491–502. doi: 10.1080/03235409909383317

    Article  CAS  Google Scholar 

  • Fiume G, Fiume F (2008) Biological control of corky root in tomato. Comm Appl Biol Sci 73:233–248

    CAS  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a β-1,3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221. doi: 10.1016/0038-0717(93)90217-Y

    Article  CAS  Google Scholar 

  • Fushimi S, Nishikawa S, Shimazu A, Seto H (1989) Studies on new phosphate ester antifungal antibiotics phoslactomycine I: taxonomy, fermentation, purification and biological activities. J Antibiot 42:1090–1025

    Google Scholar 

  • Gamliel A, Katan J (1992) Influence of seed and root exudates on fluorescent pseudomonads and fungi in solarized soils. Phytopathology 82:320–327

    Article  Google Scholar 

  • Georgakopoulos D, Hendson M, Panopoulos NJ, Schroth MN (1994) Cloning of a phenazine biosynthetic locus of aureofaciens PGS12 and analysis of its expression in vitro with the ice nucleation reporter gene. Appl Environ Microbiol 60:2931–2938

    PubMed  CAS  Google Scholar 

  • Glandorf DCM, Peters LGL, van der Sluis I, Bakker PAHM, Schippers B (1993) Crop specificity of rhizosphere pseudomonads and the involvement of root agglutinins. Soil Biol Biochem 25:981–989. doi: 10.1016/0038-0717(93)90144-Z

    Article  CAS  Google Scholar 

  • Glandorf DCM, Van Der Sluis I, Anderson AJ, Bakker PAHM, Schippers B (1994) Agglutination, adherence, and root colonization by fluorescent pseudomonads. Appl Environ Microbiol 60:1726–1733. doi:0099-2240/94/$04.00 +0

    PubMed  CAS  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15:353–378

    Article  PubMed  CAS  Google Scholar 

  • Grossman TH, Tuckman M, Ellestad S, Osburne MS (1993) Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: relationship between B. subtilis Sfpo and Escherichia coli Entd genes. J Bacteriol 175:6203–6211. doi: 0021-9193/93/196203-09.00/0

    PubMed  CAS  Google Scholar 

  • Gurusiddaiah S, Weller D, Sarkar A, Cook RJ (1986) Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. Tritici and Pythium spp. Antimicrob Agents Chemother 29:488–495

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 12:1–13. doi: 10.1038/nrmicro1129

    Article  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp and relevance of biological control of plant disease. Annu Rev Phytopathol 41:117–153. doi: 10.1146/annurev.phyto.41.052002.095656

    Article  PubMed  CAS  Google Scholar 

  • Haggag WM (2008) Isolation of bioactive antibiotic peptides from Bacillus brevis and Bacillus polymyxa against Botrytis grey mould in strawberry. Biocontrol Sci Technol 41:477–491. doi: 10.1080/03235400600833704

    CAS  Google Scholar 

  • Hamdan H, Weller DM, Thomashow LS (1991) Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2–79 and M4-80R. Appl Environ Microbiol 57:3270–3277

    PubMed  CAS  Google Scholar 

  • Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869

    PubMed  CAS  Google Scholar 

  • Haran S, Schickler H, Chet I (1996) Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology 142:2321–2331

    Article  CAS  Google Scholar 

  • Hariprasad P, Divakara ST, Niranjana SR (2011) Isolation and characterization of chitinolytic rhizobacteria for the management of Fusarium wilt in tomato. Crop Prot 30:1606–1612. doi: 10.1016/j.cropro.2011.02.032

    Article  Google Scholar 

  • Hassanein WA, Awny NM, El-Mougith AA, Salah El-Dien SH (2009) The antagonistic activities of some metabolites produced by Pseudomonas aeruginosa Sha8. J Appl Sci Res 5:404–414

    CAS  Google Scholar 

  • Hecht EI, Bateman DF (1964) Nonspecific acquired resistance to pathogens resulting from localized infections by Thielaviopsis basicola or viruses in tobacco leaves. Phytopathology 54:523–530

    Google Scholar 

  • Hoffland E, Pieterse CMJ, van Pelt JA (1995) Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiol Mol Plant Pathol 46:309–320

    Article  CAS  Google Scholar 

  • Hogan DA, Wargo MJ, Beck N (2007) Bacterial biofilms on fungal surfaces. In: Kjelleberg S, Givskov M (eds) The biofilm mode of life: mechanisms and adaptations. Horizon Scientific Press, Wymondham, pp 234–245

    Google Scholar 

  • Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum induced damping – off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluterin. Phytopathology 70:712–715

    Article  CAS  Google Scholar 

  • Huang Chien-Jui, Wang Tang-Kai, Chung Shu-Chun, Chen Chao-Ying (2005) Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28–9. J Biochem Mol Bio 38:82–88

    Article  CAS  Google Scholar 

  • Hwang BK, Ahn SJ, Moon SS (1994) Production, purification, and antifungal activity of the antibiotic nucleoside, tubercidin, produced by Streptomyces violaceoniger. Can J Bot 72:480–485. doi: 10.1139/b94-064

    Article  CAS  Google Scholar 

  • Hwang BK, Lim SW, Kim BS, Lee JY, Moon SS (2001) Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl Environ Microbiol 67:3739–3745

    Article  PubMed  CAS  Google Scholar 

  • Inouye S, Shomura T, Ohba K, Watanabe H (2000) Isolation and identification of antifungal N-butylbenzenesulphonamide produced by Pseudomonas sp. AB2 J Antibiot 53:510–513

    Google Scholar 

  • Jackson RM (1965) Antibiosis and fungistasis of soil microorganisms. In: Snyder WC, Baker KF (eds) Ecology of soil borne plant pathogens. University of California Press, Berkeley, pp 363–373

    Google Scholar 

  • James DW Jr, Suslow TV, Steinback KE (1985) Relationship between rapid, firm adhesion and long-term colonization of roots by bacteria. Appl Environ Microbiol 50:392–397

    PubMed  CAS  Google Scholar 

  • Jasalavich CA, Anderson AJ (1981) Isolation from legume tissues of an agglutinin of saprophytic pseudomonads. Can J Bot 59:264–271. doi: 10.1139/b81-037

    Article  CAS  Google Scholar 

  • Jeffery S, Gardi C, Jones A, Montanarella L, Marmo L, Miko L, Ritz K, Peres G, Römbke J, van der Putten WH (eds) (2010) European atlas of soil biodiversity. European Commission Publications Office of the European Union, Luxembourg, pp 17–48

    Google Scholar 

  • Jetiyanon K, Kloepper JW (2002) Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol Control 24:285–291

    Article  Google Scholar 

  • Johnson LF, Carl EA (1972) Methods for research on the ecology of soil borne plant pathogens. Burgees Publ. Co., Minneopolis Minnesota, p 247

    Google Scholar 

  • Kageyama K, Nelson EB (2003) Differential inactivation of seed exudates stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species. Appl Environ Microbiol 69:1114–1120. doi: 10.1128/AEM.69.2.1114-1120.2003

    Article  PubMed  CAS  Google Scholar 

  • Kamensky M, Ovadis M, Chet I, Chernin L (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35:323–331. doi: 10.1016/S0038-0717(02)00283-3

    Article  CAS  Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Défago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Keel C, Wirthner PH, Oberhansli TH, Voisard C, Burger U, Haas D, Defago G (1990) Pseudomonads as antagonists of plant pathogens in the rhizosphere: role of the antibiotic 2, 4- diacetylphloroglucinol in the suppression of black root rot of tobacco. Symbiosis 9:327–342

    CAS  Google Scholar 

  • Kilani-Feki O, Khiari O, Culioli G, Ortalo-Magné A, Zouari N, Blache Y, Jaoua S (2010) Antifungal activities of an endophytic Pseudomonas fluorescens strain Pf1TZ harboring genes from pyoluteorin and phenazine clusters. Biotechnol Lett 32:1279–1285. doi: 10.1007/s10529-010-0286-9

    Article  PubMed  CAS  Google Scholar 

  • Kim BS, Moon SS, Hwang BK (1999) Isolation, identification, and antifungal activity of a macrolide antibiotic, oligomycin A, produced by Streptomyces libani. Can J Bot 77:850–858. doi: 10.1139/b99-044

    CAS  Google Scholar 

  • Kim PI, Bai H, Bai D, Chae H, Chung S, Kim Y, Park R, Chi YT (2004) Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J Appl Microbiol 97:942–949. doi: 10.1111/j.1365-2672.2004.02356.x

    Article  PubMed  CAS  Google Scholar 

  • Kishore G, Pande S (2007) Chitin-supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under controlled conditions. Lett Appl Microbiol 44:98–105. doi: 10.1111/j.1472-765X.2006.02022.x

    Article  PubMed  CAS  Google Scholar 

  • Klement A, Kiraly J, Pzsar BI (1966) Suppression of virus multiplication and local lesion production in tobacco following inoculation with a saprophytic bacteria. Acta Phytopathol Acad Sci Hung 1:1–8

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886. doi: 10.1038/286885a0

    Article  CAS  Google Scholar 

  • Kloepper JW, Rodriguez-Ubana R, Zehnder GW, Murphy JF, Sikora E, Fernández C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australas Plant Pathol 28:21–26

    Article  Google Scholar 

  • Koch B, Nielsen TH, Sørensen D, Andersen JB, Christophersen C, Molin S, Giskov M, Sørensen J, Nybroe O (2002) Lipopeptide production in Pseudomonas sp. Strain Dss73 is regulated by components of sugar beet seed exudates via the Gac two-component regulatory system. Appl Environ Microbiol 68:4509–4516. doi: 10.1128/AEM.68.9.4509–4516.2002

    Article  PubMed  CAS  Google Scholar 

  • Koike ST, Subbarao KV, Davis RM, Turini TA (2003) Vegetable diseases caused by soilborne pathogens. ANR publication 8099, the Regents of University of California, Division of Agriculture and Natural Resources: 1–13

    Google Scholar 

  • Krause MS, DeCeuster TJJ, Tiquia SM, Michel FC Jr, Madden LV, Hoitink HAJ (2003) Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish. Phytopathology 93:1292–1300

    Article  PubMed  CAS  Google Scholar 

  • Kumar BSD, Dube HC (1992) Seed bacterization with a fluorescent Pseudomonas for enhanced plant growth, yield and disease control. Soil Biol Biochem 24:539–542. doi: 10.1016/0038-0717(92)90078-C

    Article  Google Scholar 

  • Laus MC, van Brussel AA, Kijne JW (2005) Role of cellulose fibrils and exopolysaccharides of Rhizobium leguminosarum in attachment to and infection of Vicia sativa root hairs. Mol Plant-Microbe Interact 18:533–538. doi: 10.1094/MPMI-18-0533

    Article  PubMed  CAS  Google Scholar 

  • Laville J, Voisard C, Keel C, Maurhofer M, Defago G, Haas D (1992) Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci USA 89:1562–1566

    Article  PubMed  CAS  Google Scholar 

  • Lee CH, Kempf HJ, Lim Y, Cho YH (2000) Biocontrol activity of Pseudomonas cepacia AF2001 and anthelmintic activity of its novel metabolite, cepacidine A. J Microbiol Biotechnol 10:568–571

    CAS  Google Scholar 

  • Lee JY, Moon SS, Hwang BK (2003) Isolation and antifungal and antioomycete activities of aerugine produced by Pseudomonas fluorescens strain MM-B16. Appl Environ Microbiol 69:2023–2031. doi: 10.1128/AEM.69.4.2023-2031.2003

    Article  PubMed  CAS  Google Scholar 

  • Lee KJ, Kamala-Kannan S, Sub HS, Seong HS, Lee GW (2008) Biological control of Phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J Microbiol Biotechnol 24:1139–1145. doi: 10.1007/s11274-007-9585-2

    Article  CAS  Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995a) Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027

    Article  CAS  Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995b) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to Fusarium wilt, using a novel bioassay. Eur J Plant Pathol 101:655–664

    Article  Google Scholar 

  • Levenfors JJ, Hedman R, Thaning C, Gerhardson B, Welch CJ (2004) Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A153. Soil Biol Biochem 36:677–685. doi: 10.1016/j.soilbio.2003.12.008

    Article  CAS  Google Scholar 

  • Liu H, He Y, Jiang H, Peng H, Huang X, Zhang X, Thomashow LS, Xu Y (2007) Characterization of a phenazine-producing strain Pseudomonas chlororaphis GP72 with broad-spectrum antifungal activity from green pepper rhizosphere. Curr Microbiol 54:302–306

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology 85:695–698

    Article  Google Scholar 

  • Loper JE (1988) Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78:166–172

    Article  CAS  Google Scholar 

  • Loper JE, Henkels MD (1997) Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl Environ Microbiol 63:99–105

    PubMed  CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10. doi: 10.1007/BF00011685

    Article  CAS  Google Scholar 

  • Magnin-Robert M, Trotel-Aziz P, Quantinet D, Biagianti S, Aziz A (2007) Biological control of Botrytis cinerea by selected grapevine-associated bacteria and stimulation of chitinase and b-1,3 glucanase activities under field conditions. Eur J Plant Pathol 118:43–57. doi: 10.1007/s10658-007-9111-2

    Article  CAS  Google Scholar 

  • Martınez-Granero F, Capdevila S, Sanchez -Contrera M, Martın M, Rivilla R (2005) Two site-specific recombinases are implicated in phenotypic variation and competitive rhizosphere colonization in Pseudomonas fluorescens. Microbiology 151:975–983

    Article  PubMed  CAS  Google Scholar 

  • Maurhofer M, Keel C, Haas D, Défago G (1994) Pyoluteorin production by Pseudomonas fluorescens strain CHA0 is involved in the suppression of Pythium damping-off of cress but not of cucumber. Eur J Plant Pathol 100:221–232. doi: 10.1007/BF01876237

    Article  CAS  Google Scholar 

  • Mavrodi OV, McSpadden Gardener BB, Mavrodi DV, Bonsall RF, Weller DM, Thomashow LS (2001) Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Phytopathology 91:35–43. doi: 10.1128/JB.183.21.6454-6465.2001

    Article  PubMed  CAS  Google Scholar 

  • Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent Pseudomonads in soil habitats. Appl Environ Microbiol 58:2616–2624

    PubMed  CAS  Google Scholar 

  • McKinney HH (1929) Mosaic diseases in the Canary islands, West Africa, and Gibraltar. J Agric Res 39:557–578

    Google Scholar 

  • Meneses CHSG, Rouws LFM, Simões-Araújo JL, Vidal MS, Baldani JI (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant Microbe Interact 24:1448–1458

    Article  PubMed  CAS  Google Scholar 

  • Meziane H, Van der Sluis I, Van Loon LC, Hofte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    Article  PubMed  Google Scholar 

  • Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62:3061–3065

    PubMed  CAS  Google Scholar 

  • Montealegre JR, Reyes R, Pérez LM, Herrera R, Silva P, Besoain X (2003) Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato. Electron J Biotechnol 6(2)

    Google Scholar 

  • Murphy JF, Reddy MS, Ryu CM, Kloepper JW, Li R (2003) Rhizobacteria-mediated growth promotion of tomato leads to protection against cucumber mosaic virus. Phytopathology 93:1301–1307

    Article  PubMed  Google Scholar 

  • Murphy JF, Zehnder GW (2000) Plant growth-promoting rhizobacterial mediated protection in tomato against Tomato mottle virus. Plant Dis 84:779–784

    Article  Google Scholar 

  • Nandakumar R, Babu S, Raguchander T, Samiyappan R (2007) Chitinolytic activity of native Pseudomonas fluorescens strains. J Agric Sci Technol 9:61–68

    Google Scholar 

  • Nandakumar R, Viswanathan R, Babu S, Sheela J, Raghuchander T, Samiyappan R (2001) A new bio-formulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. Biocontrol 46:493–510. doi: 10.1023/A:1014131131808

    Article  Google Scholar 

  • Naraghi L, Heydari A, Rezaee S, Razavi M, Jahanifar H, Khaledi EM (2010) Biological control of tomato verticillium wilt disease by Talaromyces flavus. J Plant Prot Res 50:360–365

    Article  Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731. doi: 10.1146/annurev.bi.50.070181.003435

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB, Konopka K, Schwyn B, Coy M, Francis RT, Paw BH, Bagg A (1987) Comparative biochemistry of microbial iron assimilation. In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron transport in microbes, plants and animals. VCH Chemie, Weinheim, pp 3–34

    Google Scholar 

  • Nelson EB, Chao W-L, Norton JM, Nash GT, Harman GE (1986) Attachment of Enterobacter cloccae to hyphae of Pythium ultimum: possible role in biocontrol of Pythium preemergence damping-off. Phytopathology 76:327–335

    Article  Google Scholar 

  • Nielsen TH, Christophersen C, Anthoni U, Sørensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 86:80–90

    Article  Google Scholar 

  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sùrensen J (2000) Structure, production characteristics and fungal antagonism of tensin  ±  a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain. J Appl Microbiol 89:992–1001

    Article  PubMed  CAS  Google Scholar 

  • Niranjan Raj S, Deepak SA, Basavaraju P, Shetty HS, Reddy MS, Kloepper JW (2003) Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Protect 22:579–588

    Article  Google Scholar 

  • Nowak-Thompson B, Gould SJ, Kraus J, Loper JE (1994) Production of 2, 4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Can J Microbiol 40:1064–1066. doi: 10.1139/m94-168

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. The Plant Health Instruct. doi: 10.1094/PHI-A-2006-1117-02

  • Paterson E (2003) Importance of rhizodeposition in the coupling of plant and microbial productivity. Eur J Soil Sci 54:741–750. doi: 10.1111/j.1469-8137.2006.01931.x

    Article  Google Scholar 

  • Phoebe CH Jr, Combie J, Albert FG, Van Tran K, Cabrera J, Correira HJ, Guo Y, Lindermuth J, Rauert N, Galbraith W, Selitrennikoff CP (2001) Extremophilic organisms as an unexplored source of antifungal compounds. J Antibiot 54:56–65

    Article  PubMed  CAS  Google Scholar 

  • Pierson LS, Pierson EA (1996) Phenazine antibiotic production in Pseudomonas aureofaciens: role in rhizosphere ecology and pathogen suppression. FEMS Microbiol Lett 136:101–108. doi: 10.1016/0378-1097(95)00489-0

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Ton J, Van Wees SCM, Hase S, Léon-Kloosterziel KM, Verhagen BWM, Van Pelt JA, Van Loon LC (2002) Rhizobacteria-mediated induced systemic resistance in Arabidopsis IOBC/wprs. In: Schmitt A, Mauch-Mani B (eds) Study group induced resistance in plants against insects and diseases. Proceedings of the meeting at Wageningen, The Netherlands, vol 25, pp 26–28

    Google Scholar 

  • Pieterse CMJ, van Wees SCM, van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580. doi: 10.1105/tpc.10.9.1571

    PubMed  CAS  Google Scholar 

  • Prapagdee B, Kuekulvong C, Mongkolsuk S (2008) Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci 4:330–337

    Article  PubMed  CAS  Google Scholar 

  • Press CM, Loper JE, Kloepper JW (2001) Role of iron in rhizobacteria- mediated induced systemic resistance of cucumber. Phytopathology 91:593–598

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63:881–887

    PubMed  CAS  Google Scholar 

  • Radjacommare R, Venkatesan S, Samiyappan R (2010) Biological control of phytopathogenic fungi of vanilla through lytic action of Trichoderma species and Pseudomonas fluorescens. Arch Phytopathol Plant Protect 43:1–17. doi: 10.1080/03235400701650494

    Article  CAS  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasan V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protect 20:1–11. doi: 10.1016/S0261-2194(00)00056-9

    Article  CAS  Google Scholar 

  • Ran LX, van Loon LC, Bakker PAHM (2005) No role for bacterially produced salicylic acid in rhizobacterial induction of systemic resistance in Arabidopsis. Phytopathology 95:1349–1355. doi: 10.1094/PHYTO-95-1349

    Article  PubMed  CAS  Google Scholar 

  • Reddy P, Rani J, Reddy MS, Krishna Kumar KV (2010) Isolation of siderophore- producing strains of rhizobacterial fluorescent pseudomonads and their biocontrol against rice fungal pathogens. Int J App Biol Pharm Tech 1:133–137

    Google Scholar 

  • Rodriguez-Navarro DN, Dardanelli MS, Ruiz-Sainz JE (2007) Attachment of bacteria to the roots of higher plants. FEMS Microbiol Lett 272:127–136

    Article  PubMed  CAS  Google Scholar 

  • Ryals J, Neuenschwander U, Willits M, Molina A, Steiner HY, Hunt M (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    PubMed  CAS  Google Scholar 

  • Ryu CM, Murphy JF, Mysore KS, Kloepper JW (2004) Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1- independent and jasmonic acid-dependent signaling pathway. Plant J 39:381–392

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Murphy JF, Reddy MS, Kloepper JW (2007) A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thaliana. J Microbiol Biotechnol 17:280–286

    PubMed  CAS  Google Scholar 

  • Sanchez-Contreras M, Martin M, Villacieros M, O’Gara F, Bonilla I, Rivilla R (2002) Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. J Bacteriol 184:1587–1596

    Article  PubMed  CAS  Google Scholar 

  • Sahu GK, Sindhu SS (2011) Disease control and plant growth promotion of green gram by siderophore producing Pseudomonas sp. Res J Microbiol 6:735–749. doi: 10.3923/jm.2011.735.749

    Article  Google Scholar 

  • Sakthivel N, Gnanamanickam SS (1987) Evaluation of Pseudomonas fluorescens for suppression of sheath rot disease and for enhancement of grain yields in rice (Oryza sativa L.). Appl Environ Microbiol 53:2056–2059

    PubMed  CAS  Google Scholar 

  • Sarode PD, Rane MR, Chaudhari BL, Chincholkar SB (2009) Siderophoregenic Acinetobacter calcoaceticus isolated from wheat rhizosphere with strong PGPR activity. Malays J Microbiol 5:6–12

    Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Article  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P et al (2006) Induction of systemic resistance in tomato by N -acyl-Lhomoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  PubMed  CAS  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2, 4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    PubMed  CAS  Google Scholar 

  • Shoresh M, Harman G, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annl Rev Phytopathol 48:21–43

    Article  CAS  Google Scholar 

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030

    PubMed  CAS  Google Scholar 

  • Simons M, Permentier HP, deWeger LA, Wijffelman CA, Lugtenberg BJJ (1997) Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 10:102–106

    Article  CAS  Google Scholar 

  • Simons M, van der Bij AJ, Brand J, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting bacteria. Mol Plant Microbe Interact 9:600–607

    Article  PubMed  CAS  Google Scholar 

  • Slininger PJ, Behle RW, Jackson MA, Schisle DA (2003) Discovery and development of biological agents to control crop pests. Neotrop Entomol 32:183–195

    Article  Google Scholar 

  • Slusarenko AJ, Epperlein M, Wood RKS (1983) Agglutination of plant pathogenic and certain other bacteria by pectic polysaccharides from various plant species. Phytopathology Z 106:337–343

    Google Scholar 

  • Smit G, Kijne JW, Lugtenberg BJJ (1986) Correlation between extracellular fibrils and attachment of Rhizobium leguminosarum to pea root hair tips. J Bacteriol 168:821–827

    PubMed  CAS  Google Scholar 

  • Smith KP, Havey MJ, Handelsman J (1993) Suppression of cottony leak of cucumber with Bacillus cereus strain Uw85. Plant Dis 77:139–142

    Article  Google Scholar 

  • Someya N, Nakajima M, Hibi T, Yamaguchi I, Akutsu K (2002) Induced resistance to rice blast by antagonistic bacterium, Serratia marcescens strain B2. J Gen Plant Pathol 68:177–182

    Article  CAS  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, synthesis and specific functions. Mol Microbiol 56(4):845–857

    Article  PubMed  CAS  Google Scholar 

  • Streit WR, Joseph CM, Phillips DA (1996) Biotin and other water-soluble vitamins are key growth factors for alfalfa root rot colonization by Rhizobium meliloti. 1021. Mol Plant Microbe Interact 9:330–338

    Article  PubMed  CAS  Google Scholar 

  • Tari PH, Anderson AJ (1988) Fusarium wilt suppression and agglutinability of Pseudomonas putida. Appl Environ Microbiol 54:2037–2041

    PubMed  CAS  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:194–208

    Article  Google Scholar 

  • Thaning C, Welch CJ, Borowicz JJ, Hedman R, Gerhardson B (2001) Suppression of Sclerotinia sclerotiorum apothecial formation by the soil bacterium Serratia plymuthica: identification of a chlorinated macrolide as one of the causal agents. Soil Biol Biochem 33:1817–1826

    Article  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    PubMed  CAS  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS III (1990) Production of the antibiotic phenazine-1- carboxylic acid by fluorescent Pseudomonas species in the Rhizosphere of Wheat. Appl Environ Microbiol 56(4):908–912

    PubMed  CAS  Google Scholar 

  • Tilak KVBR, Singh G, Mukkherji KG (1999) In: Mukkherji KG, Chamola BP, Upadhyay RK (eds) Biocontrol-plant growth promoting bacteria: mechanisms of action. Biotechnological approaches in biocontrol of plant pathogens. Kluwer/Plenum, New York, pp 115–132

    Chapter  Google Scholar 

  • van Dijk K, Nelson EB (2000) Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. Appl Environ Microbiol 66:5340–5347

    Article  PubMed  Google Scholar 

  • van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765

    Article  Google Scholar 

  • van Loon LC (2007) Plant responses to plant growth promoting bacteria. Eur J Plant Pathol 119:243–254. doi: 10.1007/s10658-007-9165-1

    Article  CAS  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by sp. strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • van Peer R, Schippers B (1992) Lipopolysaccharides of plant growth promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to fusarium wilt. Neth J Plant Pathol 98:129–139

    Article  Google Scholar 

  • van Wees SCM, Pieterse CMJ, Trijssenaar A, Van’t Westende Y, Hartog F, Van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant Microbe Interact 10:716–724

    Article  PubMed  Google Scholar 

  • Verhagen BW, Trotel-Aziz P, Couderchet M, Hofte M, Aziz A (2010) Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. J Exp Bot 61:249–260. doi: 10.1093/jxb/erp295

    Article  PubMed  CAS  Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact 17:895–908

    Article  PubMed  CAS  Google Scholar 

  • Vesper SJ (1987) Production of pili (fimbriae) by Pseudomonas fluorescens and correlation with attachment to corn roots. Appl Environ Microbiol 53:1397

    PubMed  CAS  Google Scholar 

  • Vesper SJ, Bauer WD (1986) Role of pili (fimbriae) in attachment of Bradyrhizobium japonicum to soybean roots. Appl Environ Microbiol 52:134–141

    PubMed  CAS  Google Scholar 

  • Vincent MN, Harrison LA, Brackin JM, Kovacevich PA, Mukerji P, Weller DM, Pierson EA (1991) Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Appl Environ Microbiol 57:2928–2934

    PubMed  CAS  Google Scholar 

  • Visca P, Colotti G, Serino L, Verzili D, Orsi N, Chiancone E (1992) Metal regulation of siderophores synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes. Appl Environ Microbiol 58:2886–2893

    PubMed  CAS  Google Scholar 

  • Viterbo A, Montero M, Ramot O, Friesem D, Monte E, Llobell A, Chet I (2002) Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Curr Genet 42:114–122

    Article  PubMed  CAS  Google Scholar 

  • Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Liu J, Chen H, Yao J (2007) Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB. Appl Microbiol Biotechnol 76:889–894

    Article  PubMed  CAS  Google Scholar 

  • Wang SL, Chang WT (1997) Purification and characterization of two bifunctional chitinases/lysozymes extracellularly produced by Pseudomonas aeruginosa k-187 in a shrimp and crab shell powder medium. Appl Environ Microbiol 63:380–386

    PubMed  CAS  Google Scholar 

  • Wang SL, Shih IL, Liang TW, Wang CH (2002) Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. J Agric Food Chem 50:2241–2248. doi: 10.1021/jf010885d

    Article  PubMed  CAS  Google Scholar 

  • Wang SL, Yieh TC, Shih IL (1999) Production of antifungal compounds by aeruginosa K-187 using shrimp and crab shell powder as a carbon source. Enzyme Microb Tech 25:142–148

    Article  CAS  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Article  Google Scholar 

  • Wei L, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathology 86:221–224

    Article  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256. doi: 10.1094/PHYTO-97-2-0250

    Article  PubMed  Google Scholar 

  • Weller DM, Thomashow LS (1993) Use of rhizobacteria for biocontrol. Curr Opin Biotechnol 4:306–311. doi: 10.1016/0958-1669(93)90100-B

    Article  Google Scholar 

  • Whipps JM (2001) Microbial Interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann G, Drechsel H (1997) Microbial siderophores. In: Rehm HJ, Stadlers P (eds) Biotechnology, 2nd edn. Weinheim, Germany, pp 200–246

    Google Scholar 

  • Wisniewski M, Wilson C, Hershberger W (1989) Characterization of inhibition of Rhizopus stolonifer germination and growth by Enterobacter cloacae. Can J Bot 67:2317–2323. doi: 10.1139/b89-296

    Article  Google Scholar 

  • Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A (2001) Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopatholohy 91:181–187

    Article  CAS  Google Scholar 

  • Yoshihisa H, Zenji S, Fukushi H, Katsuhiro K, Haruhisa S, Takahito S (1989) Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol Biochem 21:5723–5728

    Article  Google Scholar 

  • Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47:138–145. doi: 10.1016/j.ejsobi.2010.11.001

    Article  Google Scholar 

  • Yuen GY, Schroth MN (1986) Inhibition of Fusarium oxysporum f. sp. dianthi by iron competition with an Alcaligenes sp. Phytopathology 76:171–176

    Article  CAS  Google Scholar 

  • Zhang S, Moyne AL, Reddy MS, Kloepper JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mould of tobacco. Biol Control 25:288–296

    Article  Google Scholar 

  • Zheng XY, Sinclair JB (2000) The effects of traits of Bacillus megaterium on seed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean. BioControl 45:223–243

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank all the persons who helped in design of this manuscript through their critical comments, valuable suggestions and vital discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha Prashar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Prashar, P., Kapoor, N., Sachdeva, S. (2013). Biocontrol of Plant Pathogens Using Plant Growth Promoting Bacteria. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5961-9_10

Download citation

Publish with us

Policies and ethics