Skip to main content

Hematopoietic Stem Cell Quiescence and Long Term Maintenance: Role of SCL/TAL1

  • Chapter
  • First Online:
Book cover Tumor Dormancy, Quiescence, and Senescence, Volume 1

Part of the book series: Tumor Dormancy and Cellular Quiescence and Senescence ((DOQU,volume 1))

Abstract

The life-long production of blood cells depends on the maintenance of the hematopoietic stem cell (HSC) pool. The design of quantitative transplantation assays has been instrumental in providing insight into HSC functions, i.e. sustained self-renewal and multipotentiality: competitive transplantation, limiting dilution analysis to estimate stem cell frequency and stem cell activity as well as serial transplantation assays. These assays indicate intrinsic stem cell heterogeneity and reveal the quiescence of adult HSCs with long term reconstituting capacity, contrasting with fetal HSCs that actively proliferate. Importantly, adult HSCs are maintained in quiescence by their interaction with specialized niches in the bone marrow, via cell surface receptors such as KIT, MPL and CXCR4 expressed on HSCs and membrane-bound ligands present on stromal cells. In response to hematopoietic stress, quiescent HSCs transiently switch into active division to produce progenitors and mature blood cells. This regulation of HSC quiescence is critical for the preservation of long-term stem cell functions as shown by genetic studies, which also demonstrated that the process is controlled by a significant number of transcription factors. Among these, the basic helix-loop-helix transcription factor SCL/TAL1 which is essential for the onset of hematopoiesis, has been shown to regulate HSC quiescence and self-renewal, together with its protein partners, E47, GATA2 and LDB1. The SCL complex controls the transcription of genes such as KIT, establishing a functionally important axis in stem cell regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adolfsson J, Borge OJ, Bryder D, Theilgaard-Mönch K, Astrand-Grundström I, Sitnicka E, Sasaki Y, Jacobsen SE (2001) Upregulation of Flt3 expression within the bone marrow Lin(−)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15:659–669

    Article  PubMed  CAS  Google Scholar 

  • Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161

    Article  PubMed  CAS  Google Scholar 

  • Barroca V, Mouthon MA, Lewandowski D, Brunet de la Grange P, Gauthier LR, Pflumio F, Boussin FD, Arwert F, Riou L, Allemand I, Romeo PH, Fouchet P (2012) Impaired functionality and homing of Fancg-deficient hematopoietic stem cells. Hum Mol Genet 21:121–135

    Article  PubMed  CAS  Google Scholar 

  • Benveniste P, Cantin C, Hyam D, Iscove NN (2003) Hematopoietic stem cells engraft in mice with absolute efficiency. Nat Immunol 4:708–713

    Article  PubMed  CAS  Google Scholar 

  • Benveniste P, Frelin C, Janmohamed S, Barbara M, Herrington R, Hyam D, Iscove NN (2010) Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 6:48–58

    Article  PubMed  CAS  Google Scholar 

  • Bersenev A, Wu C, Balcerek J, Tong W (2008) Lnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2. J Clin Invest 118:2832–2844

    PubMed  CAS  Google Scholar 

  • Bowie MB, Kent DG, Dykstra B, McKnight KD, McCaffrey L, Hoodless PA, Eaves CJ (2007) Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc Natl Acad Sci U S A 104:5878–5882

    Article  PubMed  CAS  Google Scholar 

  • Brunet de la Grange P, Armstrong F, Duval V, Rouyez MC, Goardon N, Romeo PH, Pflumio F (2006) Low SCL/TAL1 expression reveals its major role in adult hematopoietic myeloid progenitors and stem cells. Blood 108:2998–3004

    Article  PubMed  CAS  Google Scholar 

  • Cao YA, Wagers AJ, Beilhack A, Dusich J, Bachmann MH, Negrin RS, Weissman IL, Contag CH (2004) Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc Natl Acad Sci U S A 101:221–226

    Article  PubMed  CAS  Google Scholar 

  • Chagraoui H, Kassouf M, Banerjee S, Goardon N, Clark K, Atzberger A, Pearce AC, Skoda RC, Ferguson DJP, Watson SP, Vyas P, Porcher C (2011) SCL-mediated regulation of the cell-cycle regulator p21 is critical for murine megakaryopoiesis. Blood 118:723–735

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Liu Y, Zheng P (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205:2397–2408

    Article  PubMed  CAS  Google Scholar 

  • Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden DT (2000) Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287:1804–1808

    Article  PubMed  CAS  Google Scholar 

  • Curtis DJ, Hall MA, Van Stekelenburg LJ, Robb L, Jane SM, Begley CG (2004) SCL is required for normal function of short-term repopulating hematopoietic stem cells. Blood 103:3342–3348

    Article  PubMed  CAS  Google Scholar 

  • Dey S, Curtis DJ, Jane SM, Brandt SJ (2010) The TAL1/SCL transcription factor regulates cell cycle progression and proliferation in differentiating murine bone marrow monocyte precursors. Mol Cell Biol 30:2181–2192

    Article  PubMed  CAS  Google Scholar 

  • Driessen RL, Johnston HM, Nilsson SK (2003) Membrane-bound stem cell factor is a key regulator in the initial lodgment of stem cells within the endosteal marrow region. Exp Hematol 31:1284–1291

    Article  PubMed  CAS  Google Scholar 

  • Du J, Yang YC (2012) HIF-1 and its antagonist Cited2: regulators of HSC quiescence. Cell Cycle 11:2413–2414

    Article  PubMed  CAS  Google Scholar 

  • Ema H, Nakauchi H (2000) Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 95:2284–2288

    PubMed  CAS  Google Scholar 

  • Ema M, Faloon P, Zhang WJ, Hirashima M, Reid T, Stanford WL, Orkin S, Choi K, Rossant J (2003) Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. Genes Dev 17:380–393

    Article  PubMed  CAS  Google Scholar 

  • Feng CG, Weksberg DC, Taylor GA, Sher A, Goodell MA (2008) The p47 GTPase Lrg-47 (Irgm1) links host defense and hematopoietic stem cell proliferation. Cell Stem Cell 2:83–89

    Article  PubMed  CAS  Google Scholar 

  • Ficara F, Murphy MJ, Lin M, Cleary ML (2008) Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence. Cell Stem Cell 2:484–496

    Article  PubMed  CAS  Google Scholar 

  • Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM, Scadden DT (2008) Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2:274–283

    Article  PubMed  CAS  Google Scholar 

  • Forsberg EC, Passegué E, Prohaska SS, Wagers AJ, Koeva M, Stuart JM, Weissman IL (2010) Molecular signatures of quiescent, mobilized and leukemia-initiating hematopoietic stem cells. PLoS One 5:e8785

    Article  PubMed  CAS  Google Scholar 

  • Foudi A, Hochedlinger K, Van Buren D, Schindler JW, Jaenisch R, Carey V, Hock H (2009) Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat Biotechnol 27:84–90

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara Y, Chang AN, Williams AM, Orkin SH (2004) Functional overlap of GATA-1 and GATA-2 in primitive hematopoietic development. Blood 103:583–585

    Article  PubMed  CAS  Google Scholar 

  • Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, Fletcher-Sananikone E, Colla S, Wang YA, Chin L, Depinho RA (2010) Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468:701–704

    Article  PubMed  CAS  Google Scholar 

  • Goardon N, Lambert JA, Rodriguez P, Nissaire P, Herblot S, Thibault P, Dumenil D, Strouboulis J, Romeo PH, Hoang T (2006) ETO2 coordinates cellular proliferation and differentiation during erythropoiesis. EMBO J 25:357–366

    Article  PubMed  CAS  Google Scholar 

  • Harrison DE (1973) Normal production of erythrocytes by mouse marrow continuous for 73 months. Proc Natl Acad Sci U S A 70:3184–3188

    Article  PubMed  CAS  Google Scholar 

  • Harrison DE (1980) Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood 55:77–81

    PubMed  CAS  Google Scholar 

  • Hock H, Hamblen MJ, Rooke HM, Schindler JW, Saleque S, Fujiwara Y, Orkin SH (2004) Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 431:1002–1007

    Article  PubMed  CAS  Google Scholar 

  • Hsu HL, Huang L, Tsan JT, Funk W, Wright WE, Hu JS, Kingston RE, Baer R (1994) Preferred sequences for DNA recognition by the TAL1 helix-loop-helix proteins. Mol Cell Biol 14:1256–1265

    PubMed  CAS  Google Scholar 

  • Ichihara E, Kaneda K, Saito Y, Yamakawa N, Morishita K (2011) Angiopoietin1 contributes to the maintenance of cell quiescence in EVI1(high) leukemia cells. Biochem Biophys Res Commun 416:239–245

    Article  PubMed  CAS  Google Scholar 

  • Ikuta K, Weissman IL (1992) Evidence that hematopoietic stem cells express mouse c-Kit but do not depend on Steel factor for their generation. Proc Natl Acad Sci U S A 89:1502–1506

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, Rosenblatt J, Avigan DE, Teruya-Feldstein J, Pandolfi PP (2008) PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453:1072–1078

    Article  PubMed  CAS  Google Scholar 

  • Jankovic V, Ciarrocchi A, Boccuni P, DeBlasio T, Benezra R, Nimer SD (2007) Id1 restrains myeloid commitment, maintaining the self-renewal capacity of hematopoietic stem cells. Proc Natl Acad Sci U S A 104:1260–1265

    Article  PubMed  CAS  Google Scholar 

  • Jordan CT, Lemischka IR (1990) Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes Dev 4:220–232

    Article  PubMed  CAS  Google Scholar 

  • Juntilla MM, Patil VD, Calamito M, Joshi RP, Birnbaum MJ, Koretzky GA (2010) AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115:4030–4038

    Article  PubMed  CAS  Google Scholar 

  • Kiel MJ, Morrison SJ (2006) Maintaining hematopoietic stem cells in the vascular niche. Immunity 25:862–864

    Article  PubMed  CAS  Google Scholar 

  • Kim I, Saunders TL, Morrison SJ (2007) Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell 130:470–483

    Article  PubMed  CAS  Google Scholar 

  • Krosl G, He G, Lefrancois M, Charron F, Roméo PH, Jolicoeur P, Kirsch IR, Nemer M, Hoang T (1998) Transcription factor SCL is required for c-kit expression and c-Kit function in hemopoietic cells. J Exp Med 188:439–450

    Article  PubMed  CAS  Google Scholar 

  • Ku CJ, Hosoya T, Maillard I, Engel JD (2012) GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry. Blood 119:2242–2251

    Article  PubMed  CAS  Google Scholar 

  • Lacombe J, Herblot S, Rojas-Sutterlin S, Haman A, Barakat S, Iscove NN, Sauvageau G, Hoang T (2010) Scl regulates the quiescence and the long-term competence of hematopoietic stem cells. Blood 115:792–803

    Article  PubMed  CAS  Google Scholar 

  • Lacorazza HD, Yamada T, Liu Y, Miyata Y, Sivina M, Nunes J, Nimer SD (2006) The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells. Cancer Cell 9:175–187

    Article  PubMed  CAS  Google Scholar 

  • Lécuyer E, Herblot S, Saint-Denis M, Martin R, Begley CG, Porcher C, Orkin SH, Hoang T (2002) The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1. Blood 100:2430–2440

    Article  PubMed  CAS  Google Scholar 

  • Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423:255–260

    Article  PubMed  CAS  Google Scholar 

  • Li L, Jothi R, Cui K, Lee JY, Cohen T, Gorivodsky M, Tzchori I, Zhao Y, Hayes SM, Bresnick EH, Zhao K, Westphal H, Love PE (2011) Nuclear adaptor Ldb1 regulates a transcriptional program essential for the maintenance of hematopoietic stem cells. Nat Immunol 12:129–136

    Article  PubMed  CAS  Google Scholar 

  • Lin KK, Rossi L, Boles NC, Hall BE, George TC, Goodell MA (2011) CD81 is essential for the re-entry of hematopoietic stem cells to quiescence following stress-induced proliferation via deactivation of the Akt pathway. PLoS Biol 9:e1001148

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Elf SE, Miyata Y, Sashida G, Liu Y, Huang G, Di Giandomenico S, Lee JM, Deblasio A, Menendez S, Antipin J, Reva B, Koff A, Nimer SD (2009) p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4:37–48

    Article  PubMed  CAS  Google Scholar 

  • Lucas D, Battista M, Shi PA, Isola L, Frenette PS (2008) Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell 3:364–366

    Article  PubMed  CAS  Google Scholar 

  • Martin R, Lahlil R, Damert A, Miquerol L, Nagy A, Keller G, Hoang T (2004) SCL interacts with VEGF to suppress apoptosis at the onset of hematopoiesis. Development 131:693–702

    Article  PubMed  CAS  Google Scholar 

  • Maryanovich M, Oberkovitz G, Niv H, Vorobiyov L, Zaltsman Y, Brenner O, Lapidot T, Jung S, Gross A (2012) The ATM-BID pathway regulates quiescence and survival of haematopoietic stem cells. Nat Cell Biol 14:535–541

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto A, Takeishi S, Kanie T, Susaki E, Onoyama I, Tateishi Y, Nakayama K, Nakayama KI (2011) p57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell 9:262–271

    Article  PubMed  CAS  Google Scholar 

  • McColloch EA, Siminovitch L, Till JE (1964) Spleen-colony formation in anemic mice of genotype WW. Science 144:844–846

    Article  Google Scholar 

  • McCulloch EA, Siminovitch L, Till JE, Russell ES, Bernstein SE (1965) The cellular basis of the genetically determined hemopoietic defect in anemic mice of genotype Sl-Sld. Blood 26:399–410

    PubMed  CAS  Google Scholar 

  • Méndez-Ferrer S, Lucas D, Battista M, Frenette PS (2008) Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:442–447

    Article  PubMed  CAS  Google Scholar 

  • Miharada K, Karlsson G, Rehn M, Rörby E, Siva K, Cammenga J, Karlsson S (2011) Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell 9:330–344

    Article  PubMed  CAS  Google Scholar 

  • Mikkola HKA, Klintman J, Yang H, Hock H, Schlaeger TM, Fujiwara Y, Orkin SH (2003) Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature 421:547–551

    Article  PubMed  CAS  Google Scholar 

  • Min IM, Pietramaggiori G, Kim FS, Passegué E, Stevenson KE, Wagers AJ (2008) The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2:380–391

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S, Matsuoka S, Miyamoto T, Ito K, Ohmura M, Chen C, Hosokawa K, Nakauchi H, Nakayama K, Nakayama KI, Harada M, Motoyama N, Suda T, Hirao A (2007) Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 1:101–112

    Article  PubMed  CAS  Google Scholar 

  • Miyata Y, Liu Y, Jankovic V, Sashida G, Lee JM, Shieh JH, Naoe T, Moore M, Nimer SD (2010) Cyclin C regulates human hematopoietic stem/progenitor cell quiescence. Stem Cells 28:308–317

    PubMed  CAS  Google Scholar 

  • Morrison SJ, Weissman IL (1994) The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1:661–673

    Article  PubMed  CAS  Google Scholar 

  • Nemeth MJ, Topol L, Anderson SM, Yang Y, Bodine DM (2007) Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci U S A 104:15436–15441

    Article  PubMed  CAS  Google Scholar 

  • Nemeth MJ, Mak KK, Yang Y, Bodine DM (2009) Beta-catenin expression in the bone marrow microenvironment is required for long-term maintenance of primitive hematopoietic cells. Stem Cells 27:1109–1119

    Article  PubMed  CAS  Google Scholar 

  • Ng AP, Loughran SJ, Metcalf D, Hyland CD, de Graaf CA, Hu Y, Smyth GK, Hilton DJ, Kile BT, Alexander WS (2011) Erg is required for self-renewal of hematopoietic stem cells during stress hematopoiesis in mice. Blood 118:2454–2461

    Article  PubMed  CAS  Google Scholar 

  • Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106:1232–1239

    Article  PubMed  CAS  Google Scholar 

  • Nygren JM, Bryder D, Jacobsen SEW (2006) Prolonged cell cycle transit is a defining and developmentally conserved hemopoietic stem cell property. J Immunol 177:201–208

    PubMed  CAS  Google Scholar 

  • Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9:115–128

    Article  PubMed  CAS  Google Scholar 

  • Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423:302–305

    Article  PubMed  CAS  Google Scholar 

  • Passegué E, Wagers AJ, Giuriato S, Anderson WC, Weissman IL (2005) Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med 202:1599–1611

    Article  PubMed  CAS  Google Scholar 

  • Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–848

    Article  PubMed  CAS  Google Scholar 

  • Perry SS, Zhao Y, Nie L, Cochrane SW, Huang Z, Sun XH (2007) Id1, but not Id3, directs long-term repopulating hematopoietic stem-cell maintenance. Blood 110:2351–2360

    Article  PubMed  CAS  Google Scholar 

  • Pietras EM, Warr MR, Passegué E (2011) Cell cycle regulation in hematopoietic stem cells. J Cell Biol 195:709–720

    Article  PubMed  CAS  Google Scholar 

  • Purton LE, Scadden DT (2007) Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell 1:263–270

    Article  PubMed  CAS  Google Scholar 

  • Qian H, Buza-Vidas N, Hyland CD, Jensen CT, Antonchuk J, Månsson R, Thoren LA, Ekblom M, Alexander WS, Jacobsen SEW (2007) Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1:671–684

    Article  PubMed  CAS  Google Scholar 

  • Rathinam C, Thien CBF, Langdon WY, Gu H, Flavell RA (2008) The E3 ubiquitin ligase c-Cbl restricts development and functions of hematopoietic stem cells. Genes Dev 22:992–997

    Article  PubMed  CAS  Google Scholar 

  • Reynaud D, Ravet E, Titeux M, Mazurier F, Rénia L, Dubart-Kupperschmitt A, Romeo PH, Pflumio F (2005) SCL/TAL1 expression level regulates human hematopoietic stem cell self-renewal and engraftment. Blood 106:2318–2328

    Article  PubMed  CAS  Google Scholar 

  • Robb L, Lyons I, Li R, Hartley L, Köntgen F, Harvey RP, Metcalf D, Begley CG (1995) Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci U S A 92:7075–7079

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues NP, Janzen V, Forkert R, Dombkowski DM, Boyd AS, Orkin SH, Enver T, Vyas P, Scadden DT (2005) Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-cell homeostasis. Blood 106:477–484

    Article  PubMed  CAS  Google Scholar 

  • Santaguida M, Schepers K, King B, Sabnis AJ, Forsberg EC, Attema JL, Braun BS, Passegué E (2009) JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer Cell 15:341–352

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Onai N, Yoshihara H, Arai F, Suda T, Ohteki T (2009) Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion. Nat Med 15:696–700

    Article  PubMed  CAS  Google Scholar 

  • Semerad CL, Mercer EM, Inlay MA, Weissman IL, Murre C (2009) E2A proteins maintain the hematopoietic stem cell pool and promote the maturation of myelolymphoid and myeloerythroid progenitors. Proc Natl Acad Sci U S A 106:1930–1935

    Article  PubMed  CAS  Google Scholar 

  • Shivdasani RA, Mayer EL, Orkin SH (1995) Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373:432–434

    Article  PubMed  CAS  Google Scholar 

  • Siminovitch L, Till JE, McCulloch EA (1964) Decline in colony-forming ability of marrow cells subjected to serial transplantation into irradiated mice. J Cell Physiol 64:23–31

    Article  PubMed  CAS  Google Scholar 

  • Sirin O, Lukov GL, Mao R, Conneely OM, Goodell MA (2010) The orphan nuclear receptor Nurr1 restricts the proliferation of haematopoietic stem cells. Nat Cell Biol 12:1213–1219

    Article  PubMed  CAS  Google Scholar 

  • Souroullas GP, Salmon JM, Sablitzky F, Curtis DJ, Goodell MA (2009) Adult hematopoietic stem and progenitor cells require either Lyl1 or Scl for survival. Cell Stem Cell 4:180–186

    Article  PubMed  CAS  Google Scholar 

  • Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241:58–62

    Article  PubMed  CAS  Google Scholar 

  • Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grünewald E, Cheng T, Dombkowski D, Calvi LM, Rittling SR, Scadden DT (2005) Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 201:1781–1791

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988

    Article  PubMed  CAS  Google Scholar 

  • Suh HC, Ji M, Gooya J, Lee M, Klarmann KD, Keller JR (2009) Cell-nonautonomous function of Id1 in the hematopoietic progenitor cell niche. Blood 114:1186–1195

    Article  PubMed  CAS  Google Scholar 

  • Szilvassy SJ, Humphries RK, Lansdorp PM, Eaves AC, Eaves CJ (1990) Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci U S A 87:8736–8740

    Article  PubMed  CAS  Google Scholar 

  • Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, Shima H, Johnson RS, Hirao A, Suematsu M, Suda T (2010) Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7:391–402

    Article  PubMed  CAS  Google Scholar 

  • Taoudi S, Bee T, Hilton A, Knezevic K, Scott J, Willson TA, Collin C, Thomas T, Voss AK, Kile BT, Alexander WS, Pimanda JE, Hilton DJ (2011) ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification. Genes Dev 25:251–262

    Article  PubMed  CAS  Google Scholar 

  • Thompson BJ, Jankovic V, Gao J, Buonamici S, Vest A, Lee JM, Zavadil J, Nimer SD, Aifantis I (2008) Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J Exp Med 205:1395–1408

    Article  PubMed  CAS  Google Scholar 

  • Thorén LA, Liuba K, Bryder D, Nygren JM, Jensen CT, Qian H, Antonchuk J, Jacobsen SEW (2008) Kit regulates maintenance of quiescent hematopoietic stem cells. J Immunol 180:2045–2053

    PubMed  Google Scholar 

  • Tipping AJ, Pina C, Castor A, Hong D, Rodrigues NP, Lazzari L, May GE, Jacobsen SEW, Enver T (2009) High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle. Blood 113:2661–2672

    Article  PubMed  CAS  Google Scholar 

  • Toksoz D, Zsebo KM, Smith KA, Hu S, Brankow D, Suggs SV, Martin FH, Williams DA (1992) Support of human hematopoiesis in long-term bone marrow cultures by murine stromal cells selectively expressing the membrane-bound and secreted forms of the human homolog of the steel gene product, stem cell factor. Proc Natl Acad Sci U S A 89:7350–7354

    Article  PubMed  CAS  Google Scholar 

  • Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams IR, Sears C, Armstrong SA, Passegué E, DePinho RA, Gilliland DG (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128:325–339

    Article  PubMed  CAS  Google Scholar 

  • Trumpp A, Essers M, Wilson A (2010) Awakening dormant haematopoietic stem cells. Nat Rev Immunol 10:201–209

    Article  PubMed  CAS  Google Scholar 

  • van Os R, Kamminga LM, Ausema A, Bystrykh LV, Draijer DP, van Pelt K, Dontje B, de Haan G (2007) A limited role for p21Cip1/Waf1 in maintaining normal hematopoietic stem cell functioning. Stem Cells 25:836–843

    Article  PubMed  CAS  Google Scholar 

  • Venezia TA, Merchant AA, Ramos CA, Whitehouse NL, Young AS, Shaw CA, Goodell MA (2004) Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol 2:e301

    Article  PubMed  CAS  Google Scholar 

  • Viatour P, Somervaille TC, Venkatasubrahmanyam S, Kogan S, McLaughlin ME, Weissman IL, Butte AJ, Passegué E, Sage J (2008) Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell 3:416–428

    Article  PubMed  CAS  Google Scholar 

  • Wadman IA, Osada H, Grütz GG, Agulnick AD, Westphal H, Forster A, Rabbitts TH (1997) The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 16:3145–3157

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Li G, Tse W, Bunting KD (2009) Conditional deletion of STAT5 in adult mouse hematopoietic stem cells causes loss of quiescence and permits efficient nonablative stem cell replacement. Blood 113:4856–4865

    Article  PubMed  CAS  Google Scholar 

  • Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, Pasche AC, Knabenhans C, Macdonald HR, Trumpp A (2004) c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18:2747–2763

    Article  PubMed  CAS  Google Scholar 

  • Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E, Lió P, Macdonald HR, Trumpp A (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135:1118–1129

    Article  PubMed  CAS  Google Scholar 

  • Wilson NK, Foster SD, Wang X, Knezevic K, Schütte J, Kaimakis P, Chilarska PM, Kinston S, Ouwehand WH, Dzierzak E, Pimanda JE, de Bruijn MFTR, Göttgens B (2010) Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7:532–544

    Article  PubMed  CAS  Google Scholar 

  • Xiao N, Jani K, Morgan K, Okabe R, Cullen DE, Jesneck JL, Raffel GD (2012) Hematopoietic stem cells lacking Ott1 display aspects associated with aging and are unable to maintain quiescence during proliferative stress. Blood 119:4898–4907

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Wang L, Geiger H, Cancelas JA, Mo J, Zheng Y (2007) Rho GTPase Cdc42 coordinates hematopoietic stem cell quiescence and niche interaction in the bone marrow. Proc Natl Acad Sci U S A 104:5091–5096

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Kardava L, St Leger A, Martincic K, Varnum-Finney B, Bernstein ID, Milcarek C, Borghesi L (2008) E47 controls the developmental integrity and cell cycle quiescence of multipotential hematopoietic progenitors. J Immunol 181:5885–5894

    PubMed  CAS  Google Scholar 

  • Yang Q, Esplin B, Borghesi L (2011) E47 regulates hematopoietic stem cell proliferation and energetics but not myeloid lineage restriction. Blood 117:3529–3538

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, Morrison SJ (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441:475–482

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Hazan I, Zhang J, Ng SY, Naito T, Snippert HJ, Heller EJ, Qi X, Lawton LN, Williams CJ, Georgopoulos K (2008) The role of the chromatin remodeler Mi-2beta in hematopoietic stem cell self-renewal and multilineage differentiation. Genes Dev 22:1174–1189

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, Gomei Y, Iwasaki H, Matsuoka S, Miyamoto K, Miyazaki H, Takahashi T, Suda T (2007) Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 1:685–697

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y, Shen H, Franklin DS, Scadden DT, Cheng T (2004) In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol 6:436–442

    Article  PubMed  CAS  Google Scholar 

  • Zeng H, Yücel R, Kosan C, Klein-Hitpass L, Möröy T (2004) Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. EMBO J 23:4116–4125

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT, Haug JS, Rupp D, Porter-Westpfahl KS, Wiedemann LM, Wu H, Li L (2006) PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441:518–522

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Stehling-Sun S, Lezon-Geyda K, Juneja SC, Coillard L, Chatterjee G, Wuertzer CA, Camargo F, Perkins AS (2011) PR-domain-containing Mds1-Evi1 is critical for long-term hematopoietic stem cell function. Blood 118:3853–3861

    Article  PubMed  CAS  Google Scholar 

  • Zhuang Y, Barndt RJ, Pan L, Kelley R, Dai M (1998) Functional replacement of the mouse E2A gene with a human HEB cDNA. Mol Cell Biol 18:3340–3349

    PubMed  CAS  Google Scholar 

  • Zou P, Yoshihara H, Hosokawa K, Tai I, Shinmyozu K, Tsukahara F, Maru Y, Nakayama K, Nakayama KI, Suda T (2011) p57(Kip2) and p27(Kip1) cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70. Cell Stem Cell 9:247–261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was funded by grants from the Canadian Cancer Society Research Institute and the Canadian Institutes of Health Research (Trang Hoang), and in part by a group grant from the Fonds de Recherche Québec-Santé (FRQS) (IRIC infrastructure). S.R.-Sutterlin received a Research Fellowship Award of the Cole Foundation and of the FRQS.We apologize to many of our colleagues for not being able to reference their work due to editorial limitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trang Hoang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rojas-Sutterlin, S., Hoang, T. (2013). Hematopoietic Stem Cell Quiescence and Long Term Maintenance: Role of SCL/TAL1. In: Hayat, M. (eds) Tumor Dormancy, Quiescence, and Senescence, Volume 1. Tumor Dormancy and Cellular Quiescence and Senescence, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5958-9_8

Download citation

Publish with us

Policies and ethics