Skip to main content

Suppression of Cellular Senescence in Glioblastoma: Role of Src Homology Domain-Containing Phosphatase 2

  • Chapter
  • First Online:
Tumor Dormancy, Quiescence, and Senescence, Volume 1

Part of the book series: Tumor Dormancy and Cellular Quiescence and Senescence ((DOQU,volume 1))

  • 1475 Accesses

Abstract

Resisting cellular senescence and becoming immortal is a pre-requisite step in the tumorigenic transformation of a cell. In this chapter we describe a novel mechanism by which inhibition of a key phosphatase can induce cellular senescence in the aggressive brain tumor, Glioblastoma Multiforme (GBM). We also provide an overview of recently published data suggesting additional mechanisms of senescence observed in this tumor type. Epidermal Growth Factor Receptor (EGFR) signaling is frequently altered during glioblastoma pathogenesis. An important downstream modulator of this signal cascade is Src Homology domain-containing Phosphatase 2 (SHP2/PTPN11). The Cancer Genome Atlas (TCGA) data demonstrates SHP2 to be mutated in 2% of the GBM’s studied. Both mutations identified are likely to be activating mutations. We found that the four subgroups of GBM as defined by TCGA differed significantly with regard to expression level of specific phosphatases by comparative marker analysis. Surprisingly, the four subgroups can be defined solely on the basis of phosphatase expression by principle component analysis. This result suggests that critical phosphatases are responsible for modulation of specific molecular pathways within each subgroup. SHP2 constitutes one of the 12 phosphatases that define the classical subgroup. We confirmed the biological significance of this phosphatase by siRNA knockdown. The loss of cell viability induced by SHP2 silencing could not be explained by a significant increase in apoptosis alone, as demonstrated by TUNEL and propidium iodide staining. SHP2 silencing, however, did induce an increase in β-galactosidase staining and significant morphological changes. Propidium iodide staining also showed SHP2 silencing to reduce the population of cells in G2/M and S-phase. Since G1 arrest is also a marker of cellular senescence these data suggest that the inhibitory effect of SHP2 silencing is largely due to increased senescence rather than necrosis or apoptosis. Our data suggests that SHP2 may in part promote the growth of glioblastoma cells by suppression of cellular senescence, a phenomenon not previously described. Since it is becoming clear that both accelerated senescence and conventional growth arrest are likely to represent alternative options to apoptosis in GBM cells, it is feasible that as more selective inhibitors of SHP2 become commercially available they should be considered as a therapeutic strategy for glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agazie YM, Hayman MJ (2003) Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Mol Cell Biol 23:7875–7886

    Article  PubMed  CAS  Google Scholar 

  • Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K, Maris JM, Richardson A, Bardelli A, Sugarbaker DJ, Richards WG, Du J, Girard L, Minna JD, Loh ML, Fisher DE, Velculescu VE, Vogelstein B, Meyerson M, Sellers WR, Neel BG (2004) Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res 64:8816–8820

    Article  PubMed  CAS  Google Scholar 

  • Bredel M, Scholtens DM, Yadav AK, Alvarez AA, Renfrow JJ, Chandler JP, Yu IL, Carro MS, Dai F, Tagge MJ, Ferrarese R, Bredel C, Phillips HS, Lukac PJ, Robe PA, Weyerbrock A, Vogel H, Dubner S, Mobley B, He X, Scheck AC, Sikic BI, Aldape KD, Chakravarti A, Harsh GR (2010) NFKBIA deletion in glioblastomas. N Engl J Med 364:627–637

    Article  PubMed  Google Scholar 

  • Castelo-Branco P, Zhang C, Lipman T, Fujitani M, Hansford L, Clarke I, Harley CB, Tressler R, Malkin D, Walker E, Kaplan DR, Dirks P, Tabori U (2011) Neural tumor-initiating cells have a distinct telomere maintenance and can be safely targeted for telomerase inhibition. Clin Cancer Res 17(1):111–121

    Article  PubMed  CAS  Google Scholar 

  • CBTRUS (2008) Statistical report: primary brain tumors in the United States, 2000–2004. In Central Brain Tumor Registry of the United States. www.CBTRUS.org

  • Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

    Article  PubMed  CAS  Google Scholar 

  • Giannini C, Sarkaria JN, Saito A, Uhm JH, Galanis E, Carlson BL, Schroeder MA, James CD (2005) Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro-Oncology 7:164–176

    Article  PubMed  CAS  Google Scholar 

  • Grossmann KS, Rosario M, Birchmeier C, Birchmeier W (2010) The tyrosine phosphatase Shp2 in development and cancer. Adv Cancer Res 106:53–89

    Article  PubMed  CAS  Google Scholar 

  • Haque SJ, Flati V, Deb A, Williams BR (1995) Roles of protein-tyrosine phosphatases in Stat1 alpha-mediated cell signaling. J Biol Chem 270:25709–25714

    Article  PubMed  CAS  Google Scholar 

  • Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE (1998) Crystal structure of the tyrosine phosphatase SHP-2. Cell 92:441–450

    Article  PubMed  CAS  Google Scholar 

  • Holzel M, Huang S, Koster J, Ora I, Lakeman A, Caron H, Nijkamp W, Xie J, Callens T, Asgharzadeh S, Seeger RC, Messiaen L, Versteeg R, Bernards R (2010) NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell 142:218–229

    Article  PubMed  Google Scholar 

  • Jakob S, Schroeder P, Lukosz M, Buchner N, Spyridopoulos L, Altschmeid J, Haendeler J (2008) Nuclear protein tyrosine phosphatase Shp-2 is one important negative regulator of nuclear export of telomerase reverse transcriptase. J Biol Chem 283(48):33155–33161

    Article  PubMed  CAS  Google Scholar 

  • Keilhack H, David FS, McGregor M, Cantley LC, Neel BG (2005) Diverse biochemical properties of Shp2 mutants: implications for disease phenotypes. J Biol Chem 280(35):30984–30993

    Article  PubMed  CAS  Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    Article  PubMed  CAS  Google Scholar 

  • Kosar M, Bartkova J, Hubackova S, Hodny Z, Lukas J, Bartek J (2011) Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner, and follow expression of p16 (ink4a). Cell Cycle 10:457–468

    Article  PubMed  CAS  Google Scholar 

  • Lambiv WL, Vassallo I, Delorenzi M, Shay T, Diserens AC, Misra A, Feuerstein B, Murat A, Migliavacca E, Hamou MF, Sciuscio D, Burger R, Domany E, Stupp R, Hegi ME (2011) The Wnt inhibitory factor 1 (WIF1) is targeted in glioblastoma and has a tumor suppressing function potentially by induction of senescence. Neuro-Oncology 13(7):736–747

    Article  PubMed  CAS  Google Scholar 

  • Lehman NL, O’Donnell JP, Whiteley LJ, Stapp RT, Lehman TD, Roszka KM, Schultz LR, Williams CJ, Mikkelsen T, Brown SL, Ecsedy JA, Poisson LM (2012) Aurora A is differentially expressed in gliomas, is associated with patient survival in glioblastoma and is a potential chemotherapeutic target in gliomas. Cell Cycle 11(3):489–502

    Article  PubMed  CAS  Google Scholar 

  • Milenkovic I, Weick M, Wiedemann P, Reichenbach A, Bringmann A (2003) P2Y receptor-mediated stimulation of muller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation. Invest Ophthalmol Vis Sci 44:1211–1220

    Article  PubMed  Google Scholar 

  • Naugler WE, Karin M (2008) NF-KappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev 18:19–26

    Article  PubMed  CAS  Google Scholar 

  • Nogeuira L, Ruiz-Ontanon P, Vazquez-Barquero A, Moris F, Fernandez-Liuna JL (2011) The NFKB pathway: a therapeutic target in glioblastoma. Oncotarget 2(8):646–653

    Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Article  PubMed  CAS  Google Scholar 

  • Quick QA, Gewirtz DA (2006) An accelerated senescence response to radiation in wild-type p53 glioblastoma multiforme cells. J Neurosurg 105:111–118

    Article  PubMed  CAS  Google Scholar 

  • Rai P, Young JJ, Burton DG, Giribaldi MG, Onder TT, Weinberg RA (2010) Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence. Oncogene 30:1489–1496

    Article  PubMed  Google Scholar 

  • Reynolds AR, Tischer C, Verveer PJ, Rocks O, Bastiaens PI (2003) EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat Cell Biol 5:447–453

    Article  PubMed  CAS  Google Scholar 

  • Rich JN, Guo C, McLendon RE, Bigner DD, Wang XF, Counter CM (2001) A genetically tractable model of human glioma formation. Cancer Res 61:3556–3560

    PubMed  CAS  Google Scholar 

  • Sano T, Asai A, Mishima K, Fujimaki T, Kirino T (1998) Telomerase activity in 144 brain tumours. Br J Cancer 77:1633–1637

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Ullrich RK, Contessa JN, Lammering G, Amorino G, Lin PS (2003) ERBB receptor tyrosine kinases and cellular radiation responses. Oncogene 22:5855–5865

    Article  PubMed  CAS  Google Scholar 

  • Shimizu M, Shirakami Y, Moriwaki H (2008) Targeting receptor tyrosine kinases for chemoprevention by green tea catechin, EGCG. Int J Mol Sci 9:1034–1049

    Article  PubMed  CAS  Google Scholar 

  • Sonoda Y, Ozawa T, Hirose Y, Aldape KD, McMahon M, Berger MS, Pieper RO (2001) Formation of intracranial tumors by genetically modified human astrocytes defines four pathways critical in the development of human anaplastic astrocytoma. Cancer Res 61:4956–4960

    PubMed  CAS  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  • Sturla LM, Amorino G, Alexander MS, Mikkelsen RB, Valerie K, Schmidt-Ullrich RK (2005) Requirement of Tyr-992 and Tyr-1173 in phosphorylation of the epidermal growth factor receptor by ionizing radiation and modulation by SHP2. J Biol Chem 280:14597–14604

    Article  PubMed  CAS  Google Scholar 

  • Sturla LM, Zinn PO, Ng K, Nitta M, Kozono D, Chen CC, Kasper EM (2011) Src homology domain-containing phosphatase 2 suppresses cellular senescence in glioblastoma. Br J Cancer 105:1235–1243

    Article  PubMed  CAS  Google Scholar 

  • Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  PubMed  CAS  Google Scholar 

  • Wang V, Davis DA, Veeranna RP, Haque M, Yarchoan R (2010) Characterization of the activation of protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1) by hypoxia inducible factor-2 alpha. PLoS One 5:e9641

    Article  PubMed  Google Scholar 

  • Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  PubMed  CAS  Google Scholar 

  • Zhan Y, Counelis GJ, O’Rourke DM (2009) The protein tyrosine phosphatase SHP-2 is required for EGFRvIII oncogenic transformation in human glioblastoma cells. Exp Cell Res 315:2343–2357

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Chan RJ, Chen H, Yang Z, He Y, Zhang X, Luo Y, Yin F, Moh A, Miller LC, Payne RM, Zhang ZY, Fu XY, Shou W (2009) Negative regulation of Stat3 by activating PTPN11 mutants contributes to the pathogenesis of noonan syndrome and juvenile myelomonocytic leukemia. J Biol Chem 284:22353–22363

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa-Marie Sturla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sturla, LM., Zinn, P., Kasper, E. (2013). Suppression of Cellular Senescence in Glioblastoma: Role of Src Homology Domain-Containing Phosphatase 2. In: Hayat, M. (eds) Tumor Dormancy, Quiescence, and Senescence, Volume 1. Tumor Dormancy and Cellular Quiescence and Senescence, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5958-9_21

Download citation

Publish with us

Policies and ethics