Skip to main content

p21 Mediates Senescence by a Mechanism Involving Accumulation of Reactive Oxygen Species

  • Chapter
  • First Online:
Book cover Tumor Dormancy, Quiescence, and Senescence, Volume 1

Part of the book series: Tumor Dormancy and Cellular Quiescence and Senescence ((DOQU,volume 1))

  • 1490 Accesses

Abstract

p21Waf1/Cip1/Sdi1 is a potent inhibitor of cyclin-dependent kinases (CDKs) and one of the best characterized p53 direct target genes. Moreover, it is one of the principal inducers of senescence, a permanent arrest phenotype related to ageing and the prevention of cell transformation. It was initially thought that p21 had tumour suppressor properties, due to its ability to stop cell cycle at different stages, either transitorily or permanently. However, recent evidence points to a much more complex picture. It is now well established that p21 itself can trigger apoptosis in certain situations, even independently of p53. On the other hand, p21-mediated cell arrest can actually limit the sensitivity to apoptotic stimuli. To complicate matters even further, p21 has been shown to have other direct pro-survival functions and could even be contributing to tumourigenesis through the secretion of growth factors by arrested cells. At the core of these antagonistic functions of p21 is the generation of Reactive Oxygen Species (ROS), which have been shown to be important both in the induction of apoptosis and the establishment of senescence, and could also participate in the negative effects on tissue homeostasis of the senescent cell secretome. p21 has the ability to stop cancer cell growth and is not mutated in cancer. However, without a better understanding of its pleiotropic functions we will not be able to harness its clinical potential. It is therefore important to investigate the mechanisms by which p21 affects cell physiology and its use of ROS as messengers and effectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414

    Article  PubMed  CAS  Google Scholar 

  • Bai J, Cederbaum AI (2003) Catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents by accelerating the degradation of p53. J Biol Chem 278:4660–4667

    Article  PubMed  CAS  Google Scholar 

  • Barzilai A, Yamamoto K (2004) DNA damage responses to oxidative stress. DNA Repair 3:1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Borgdorff V, Lleonart ME, Bishop CL, Fessart D, Bergin AH, Overhoff MG, Beach DH (2010) Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21(Waf1/Cip1). Oncogene 29:2262–2271

    Article  PubMed  CAS  Google Scholar 

  • Broude EV, Demidenko ZN, Vivo C, Swift ME, Davis BM, Blagosklonny MV, Roninson IB (2007a) p21 (CDKN1A) is a negative regulator of p53 stability. Cell Cycle 6:1468–1471

    Article  PubMed  CAS  Google Scholar 

  • Broude EV, Swift ME, Vivo C, Chang BD, Davis BM, Kalurupalle S, Blagosklonny MV, Roninson IB (2007b) p21(Waf1/Cip1/Sdi1) mediates retinoblastoma protein degradation. Oncogene 26:6954–6958

    Article  PubMed  CAS  Google Scholar 

  • Campisi J, Kim S, Lim CS, Rubio M (2001) Cellular senescence, cancer and aging: the telomere connection. Exp Gerontol 36:1619–1637

    Article  PubMed  CAS  Google Scholar 

  • Chang BD, Broude EV, Fang J, Kalinichenko TV, Abdryashitov R, Poole JC, Roninson IB (2000a) p21Waf1/Cip1/Sdi1-induced growth arrest is associated with depletion of mitosis-control proteins and leads to abnormal mitosis and endoreduplication in recovering cells. Oncogene 19:2165–2170

    Article  PubMed  CAS  Google Scholar 

  • Chang BD, Watanabe K, Broude EV, Fang J, Poole JC, Kalinichenko TV, Roninson IB (2000b) Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc Natl Acad Sci USA 97:4291–4296

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Sun Z, Wang XJ, Jiang T, Huang Z, Fang D, Zhang DD (2009) Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell 34:663–673

    Article  PubMed  CAS  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  PubMed  CAS  Google Scholar 

  • el-Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54:1169–1174

    PubMed  CAS  Google Scholar 

  • Gartel AL (2005) The conflicting roles of the cdk inhibitor p21(CIP1/WAF1) in apoptosis. Leuk Res 29:1237–1238

    Article  PubMed  CAS  Google Scholar 

  • Hampton MB, Orrenius S (1998) Redox regulation of apoptotic cell death in the immune system. Toxicol Lett 102–103:355–358

    Article  PubMed  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin- dependent kinases. Cell 75:805–816

    Article  PubMed  CAS  Google Scholar 

  • Helmbold H, Komm N, Deppert W, Bohn W (2009) Rb2/p130 is the dominating pocket protein in the p53-p21 DNA damage response pathway leading to senescence. Oncogene 28:3456–3467

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Kato K, Kato H, Asanoma K, Kuboyama A, Ueoka Y, Yamaguchi SI, Ohgami T, Wake N (2009) Level of reactive oxygen species induced by p21(WAF(1)CIP(1)) is critical for the determination of cell fate. Cancer Sci 100(7):1275–1283

    Article  PubMed  CAS  Google Scholar 

  • Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, Yu ZX, Ferrans VJ, Howard BH, Finkel T (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 274:7936–7940

    Article  PubMed  CAS  Google Scholar 

  • Lin JH, Morikawa T, Chan AT, Kuchiba A, Shima K, Nosho K, Kirkner G, Zhang SM, Manson JE, Giovannucci E, Fuchs CS, Ogino S (2012) Postmenopausal hormone therapy is associated with a reduced risk of colorectal cancer lacking CDKN1A expression. Cancer Res 72:3020–3028

    Article  PubMed  CAS  Google Scholar 

  • Macip S, Igarashi M, Fang L, Chen A, Pan ZQ, Lee SW, Aaronson SA (2002) Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 21:2180–2188

    Article  PubMed  CAS  Google Scholar 

  • Macip S, Igarashi M, Berggren P, Yu J, Lee SW, Aaronson SA (2003) Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol Cell Biol 23:8576–8585

    Article  PubMed  CAS  Google Scholar 

  • Macip S, Kosoy A, Lee SW, O’Connell MJ, Aaronson SA (2006) Oxidative stress induces a prolonged but reversible arrest in p53-null cancer cells, involving a Chk1-dependent G2 checkpoint. Oncogene 25:6037–6047

    Article  PubMed  CAS  Google Scholar 

  • Masgras I, Carrera S, de Verdier PJ, Brennan P, Majid A, Makhtar W, Tulchinksy E, Jones GD, Roninson IB, Macip S (2012) Reactive oxygen species and mitochondrial sensitivity to oxidative stress determine induction of cancer cell death by p21. J Biol Chem 23 287(13):9845–9854

    Article  CAS  Google Scholar 

  • Ni Chonghaile T, Sarosiek KA, Vo TT, Ryan JA, Tammareddi A, del Moore VG, Deng J, Anderson KC, Richardson P, Tai YT, Mitsiades CS, Matulonis UA, Drapkin R, Stone R, Deangelo DJ, McConkey DJ, Sallan SE, Silverman L, Hirsch MS, Carrasco DR, Letai A (2011) Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 334:1129–1133

    Article  PubMed  Google Scholar 

  • Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211:90–98

    Article  PubMed  CAS  Google Scholar 

  • Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, Miwa S, Olijslagers S, Hallinan J, Wipat A, Saretzki G, Rudolph KL, Kirkwood TB, von Zglinicki T (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347

    Article  PubMed  Google Scholar 

  • Rego MA, Harney JA, Mauro M, Shen M, Howlett NG (2012) Regulation of the activation of the fanconi anemia pathway by the p21 cyclin-dependent kinase inhibitor. Oncogene 31:366–375

    Article  PubMed  CAS  Google Scholar 

  • Roninson IB (2002) Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett 179:1–14

    Article  PubMed  CAS  Google Scholar 

  • Roninson IB (2003) Tumor cell senescence in cancer treatment. Cancer Res 63:2705–2715

    PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  PubMed  CAS  Google Scholar 

  • te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:1876–1883

    Google Scholar 

  • Tsao YP, Huang SJ, Chang JL, Hsieh JT, Pong RC, Chen SL (1999) Adenovirus-mediated p21((WAF1/SDII/CIP1)) gene transfer induces apoptosis of human cervical cancer cell lines. J Virol 73:4983–4990

    PubMed  CAS  Google Scholar 

  • von Zglinicki T, Saretzki G, Docke W, Lotze C (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 220:186–193

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the MRC and the University of Leicester. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Macip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Masgras, I., Macip, S. (2013). p21 Mediates Senescence by a Mechanism Involving Accumulation of Reactive Oxygen Species. In: Hayat, M. (eds) Tumor Dormancy, Quiescence, and Senescence, Volume 1. Tumor Dormancy and Cellular Quiescence and Senescence, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5958-9_13

Download citation

Publish with us

Policies and ethics