Skip to main content

The Kinase MIRK/DYRK1B Mediates a Reversible Quiescent State in a Subset of Ovarian, Pancreatic and Colon Cancers

  • Chapter
  • First Online:
Tumor Dormancy, Quiescence, and Senescence, Volume 1

Part of the book series: Tumor Dormancy and Cellular Quiescence and Senescence ((DOQU,volume 1))

Abstract

The serine/threonine kinase Mirk is an active kinase in pancreatic, ovarian and colon cancers, but is not activated by mutation. Mirk was upregulated or amplified in the majority of resected pancreatic or ovarian adenocarcinomas, and may be selected for by enabling cancer cells to enter a reversible quiescent state and thus survive suboptimal conditions. Mirk/dyrk1B levels and activity are highest when cells are quiescent. Some cancer cells can enter a reversible quiescent phase dependent on p130/Rb2 and Mirk/dyrk1B when deprived of growth factors, while others undergo autophagy or apoptosis. Mirk blocks cell cycle progression in G0 by complexing with GSK3ß and destabilizing cyclin D isoforms and by activating by phosphorylation Lin52, which is part of the DREAM complex including p130/Rb2 which sequesters E2F4 and other transcription factors necessary for cells to enter cycle. Mirk transcriptional co-activator activity allows Mirk to decrease ROS levels by increasing expression of a group of antioxidant genes. Since Mirk is activated by oncogenic K-ras/H-ras, its upregulation of antioxidant genes may compensate for the increase in ROS induced by ras oncoproteins. Mirk competes with the SAPK p38 for binding to their common activator MKK3. Thus Mirk is upregulated or amplified in certain pancreatic and ovarian cancers, is an active kinase in these cancers, and under suboptimal growth conditions, maintains these cancer cells in a viable, quiescent state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam AP, George A, Schewe D, Bragado P, Iglesias BV, Ranganathan AC, Kourtidis A, Conklin DS, Aguirre-Ghiso JA (2009) Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Res 69:5664–5672

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Liu Y, Liu R, Ikenoue T, Guan K-L, Liu Y, Zheng P (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205:2397–2408

    Article  PubMed  CAS  Google Scholar 

  • Coller H, Sang L, Roberts JM (2006) A new description of cellular quiescence. PLoS Biol 4:329–349

    Article  CAS  Google Scholar 

  • D’Andrilli G, Masciullo V, Bagella L, Tonini T, Minimo C, Zannoni GF, Giuntoli RL II, Carlson JA Jr, Soprano DR, Soprano KJ, Scambia G, Giordano A (2004) Frequent loss of pRb2/p130 in human ovarian carcinoma. Clin Cancer Res 10:3098–3103

    Article  PubMed  Google Scholar 

  • Deng X, Mercer SE, Shah S, Ewton DZ, Friedman E (2004) The cyclin-dependent kinase inhibitor p27kip1 is stabilized in G0 by Mirk/dyrk1b kinase. J Biol Chem 279:22498–22504

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Ewton DZ, Li S, Naqvi A, Mercer SE, Landas S, Friedman E (2006) The kinase Mirk/Dyrk1B mediates cell survival in pancreatic ductal adenocarcinoma. Cancer Res 66:4149–4158

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Ewton DZ, Friedman E (2009) Mirk/Dyrk1B maintains the viability of quiescent pancreatic cancer cells by decreasing ROS levels. Cancer Res 69:3317–3324

    Article  PubMed  CAS  Google Scholar 

  • Ewton D, Hu J, Vilenchik M, Deng X, Luk K-C, Polonskaia A, Hoffman A, Zipf K, Heimbrook D, Boylan J, Friedman E (2011) Inactivation of Mirk/dyrk1b kinase targets quiescent pancreatic cancer cells. Mol Cancer Ther 10:2104–2114

    Article  PubMed  CAS  Google Scholar 

  • Friedman E (2007) Mirk/dyrk1B in cancer. J Cell Biochem 102:274–279

    Article  PubMed  CAS  Google Scholar 

  • Germain D, Russell A, Thompson A, Hendley J (2000) Ubiquitination of free cyclin D1 is independent of phosphorylation on threonine 286. J Biol Chem 275:12074–12079

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Friedman E (2010) Depleting Mirk kinase increases cisplatin toxicity in ovarian cancer cells. Genes Cancer 1:803–811

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Nakhla H, Friedman E (2011) Mirk/dyrk1B and p130/Rb2 mediate quiescence in ovarian cancer cells. Int J Cancer 129:307–318

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Lim S, Mercer SE, Friedman E (2005) The survival kinase Mirk/dyrk1B is activated through Rac1-MKK3 signaling. J Biol Chem 280:42097–42105

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Park S-J, Ewton D, Friedman E (2007) The survival kinase Mirk/dyrk1B is a downstream effector of oncogenic K-ras. Cancer Res 67:7247–7255

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Ewton D, Park S, Hu J, Friedman E (2009) Mirk regulates the exit of colon cancer cells from quiescence. J Biol Chem 284:22916–22925

    Article  PubMed  CAS  Google Scholar 

  • Karhu R, Mahlamaki E, Kallioniemi A (2006) Pancreatic adenocarcinoma- genetic portrait from chromosomes to microarrays. Genes Chromosomes Cancer 45:721–730

    Article  PubMed  CAS  Google Scholar 

  • Kops G, Dansen TB, Polderman PE, Saarloos I, Wirtz KWA, Coffer PJ, Huang T-T, Bos JL, Medema RH, Burgering BMT (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316

    Article  PubMed  CAS  Google Scholar 

  • Kuuselo R, Savinainen K, Azorsa DO, Basu GD, Karhu R, Tuzmen S, Mousses S, Kallioniemi A (2007) Intersex-like (IXL) is a cell survival regulator in pancreatic cancer with 19q13 amplification. Cancer Res 67:1943–1949

    Article  PubMed  CAS  Google Scholar 

  • Kuuselo R, Simon R, Karhu R, Tennstedt P, Marx AH, Izbicki JR, Yekebas E, Sauter G, Kallioniemi A (2010) 19q13 amplification is associated with high grade and stage in pancreatic cancer. Genes Chromosomes Cancer 49:569–575

    PubMed  CAS  Google Scholar 

  • Lauth M, Bergstrom A, Shimokawa T, Tostar U, Jin Q, Fendrich V, Guerra C, Barbacid M, Toftgard R (2010) DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS. Nat Struct Mol Biol 17:718–725

    Article  PubMed  CAS  Google Scholar 

  • Leder S, Czajkowska H, Maenz B, de Graaf K, Barthel A, Joost H-G, Becker W (2003) Alternative splicing variants of the protein kinase DYRK1B exhibit distinct patterns of expression and functional properties. Biochem J 372:881–888

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Deng X, Friedman E (2000) Mirk protein kinase is a mitogen-activated protein kinase substrate that mediates survival of colon cancer cells. Cancer Res 60:3631–3637

    PubMed  CAS  Google Scholar 

  • Lim S, Jin K, Friedman E (2002a) Mirk protein kinase is activated by MKK3 and functions as a transcriptional activator of HNF1alpha. J Biol Chem 277:25040–25046

    Article  PubMed  CAS  Google Scholar 

  • Lim S, Zou Y, Friedman E (2002b) The transcriptional activator Mirk/Dyrk1B is sequestered by p38alpha/beta MAP Kinase. J Biol Chem 277:49438–49445

    Article  PubMed  CAS  Google Scholar 

  • Litovchick L, Florens LA, Swanson SK, Washburn MP, DeCaprio JA (2011) DYRK1A protein kinase promotes quiescence and senescence through DREAM complex assembly. Genes Dev 25:801–813

    Article  PubMed  CAS  Google Scholar 

  • Schindlbeck C, Hantschmann P, Zerzer M, Jahns B, Rjosk D, Janni W, Rack B, Sommer H, Friese K (2007) Prognostic impact of KI67, p53, human epithelial growth factor receptor 2, topoisomerase IIalpha, epidermal growth factor receptor, and nm23 expression of ovarian carcinomas and disseminated tumor cells in the bone marrow. Int J Gynecol Cancer 17(5):1047–1055

    Article  PubMed  CAS  Google Scholar 

  • Smith E, Leone G, Nevins J (1998) Distinct mechanisms control the accumulation of the Rb-related p107 and p130 proteins during cell growth. Cell Growth Differ 9:297–303

    PubMed  CAS  Google Scholar 

  • Sosa MS, Avivar-Valderas A, Bragado P, Wen H-C, Aguirre-Ghiso JA (2011) ERK1/2 and p38 signaling in tumor cell quiescence: opportunities to control dormant residual disease. Clin Cancer Res 17:5850–5857

    Article  PubMed  CAS  Google Scholar 

  • Stanton KJ, Sidner RA, Miller GA, Cummings OW, Schmidt CM, Howard TJ, Wiebke EA (2003) Analysis of Ki-67 antigen expression, DNA proliferative fraction, and survival in resected cancer of the pancreas. Am J Surg 186:486–492

    Article  PubMed  CAS  Google Scholar 

  • Thompson FH, Nelson MA, Trent JM, Guan X-Y, Liu Y, Yang J-M, Emerson J, Adair L, Wymer J, Balfour C, Massey K, Weinstein R, Alberts DS, Taetle R (1996) Amplification of 19q13.1-q13.2 sequences in ovarian cancer: G-band, FISH, and molecular studies. Cancer Genet Cytogenet 87:55

    Article  PubMed  CAS  Google Scholar 

  • Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao P, Achanta G, Arlinghaus R, Liu J, Huang P (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell 10:241–252

    Article  PubMed  CAS  Google Scholar 

  • Zou Y, Ewton D, Deng D, Mercer S, Friedman E (2004) Mirk/dyrk1B kinase destabilizes cyclin D1 by phosphorylation at threonine 288. J Biol Chem 279:27790–27798

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen A. Friedman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Friedman, E.A. (2013). The Kinase MIRK/DYRK1B Mediates a Reversible Quiescent State in a Subset of Ovarian, Pancreatic and Colon Cancers. In: Hayat, M. (eds) Tumor Dormancy, Quiescence, and Senescence, Volume 1. Tumor Dormancy and Cellular Quiescence and Senescence, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5958-9_10

Download citation

Publish with us

Policies and ethics