Skip to main content

HSP70 in the Immune Responses

  • Chapter
  • First Online:
Immunity, Tumors and Aging: The Role of HSP70

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM,volume 6))

Abstract

HSP70 s play important roles in immune responses. The specific physiological context substantially influences the immune functions of HSP70. The first factor is the localization of HSP70; whether it is intracellular, on the cell surface, or in circulation. Intracellular HSP70 protects the cell and restricts cytokine production, whereas extracellular HSP70 stimulates cytokine production and labels cells for destruction. The second factor is the type of receptors on the target cells that bind HSP70. Signaling receptors, such as the toll-like receptor (TLR), confer to HSP70 the ability to activate cytokine production and stimulate the innate response, whereas scavenger receptors help HSP70 to deliver antigens to antigen-presenting cells and therefore stimulate an adaptive response. The third factor is the circumstances of synthesis and release of HSP70 from the cell. For example, in the case of microbial invasion, HSP70 s are involved in the formation of antigen-dependent immune memory, and in the case of different stresses in the formation of antigen-independent immune memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. They are membrane-spanning receptors that recognize structurally conserved molecules derived from microbes.

  2. 2.

    Major histocompatibility complex (MHC) is a cell surface molecule encoded by a large gene family in all vertebrates. MHC molecules mediate interactions of immune cells, with other leukocytes or body cells. In humans, MHC is also called human leukocyte antigen (HLA).

  3. 3.

    Lipopolysaccharides are large molecules consisting of a lipid and a polysaccharide joined by a covalent bond. They are found in the outer membrane of Gram-negative bacteria, act as endotoxins and elicit strong immune responses in animals.

References

  • Arnold-Schild D, Hanau D, Spehner D et al (1999) Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 162:3757–3760

    PubMed  CAS  Google Scholar 

  • Asea A, Kabingu E, Stevenson MA, Calderwood SK (2000a) HSP70 peptide-bearing and peptide-negative preparations act as chaperokines. Cell Stress Chaperones 5:425–431

    PubMed  CAS  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA et al (2000b) HSP70 stimulates cytokine production through a CD-14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    PubMed  CAS  Google Scholar 

  • Asea A, Rehli M, Kabingu E et al (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of Toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034

    PubMed  CAS  Google Scholar 

  • Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κB pathway. Int Immunol 12:1539–1546

    PubMed  CAS  Google Scholar 

  • Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, HSP90, HSP70, and calreticulin. Immunity 14:303–313

    PubMed  CAS  Google Scholar 

  • Bausero MA, Gastpar R, Multhoff G, Asea A (2005) Alternative mechanism by which IFN-{γ} enhances tumor recognition: active release of heat shock protein 72. J Immunol 175:2900–2912

    PubMed  CAS  Google Scholar 

  • Bausinger H, Lipsker D, Ziylan U et al (2002) Endotoxin-free heat shock protein 70 fails to induce APC activation. Eur J Immunol 32:3708–3713

    PubMed  CAS  Google Scholar 

  • Beagley KW, Fujihashi K, Black CA et al (1993) The Mycobacterium tuberculosis 71-kDa heat-shock protein induces proliferation and cytokine secretion by murine gut intraepithelial lymphocytes. Eur J Immunol 23(8):2049–2052

    PubMed  CAS  Google Scholar 

  • Belles C, Kuhl A, Nosheny R, Carding SR (1999) Plasma membrane expression of heat shock protein 60 in vivo in response to infection. Infect Immun 67(8):4191–4200

    PubMed  CAS  Google Scholar 

  • Bendz H, Ruhland SC, Pandya MJ et al (2007) Human heat shock protein 70 enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signaling. J Biol Chem 282:31688–31702

    PubMed  CAS  Google Scholar 

  • Bendz H, Marincek BC, Momburg F et al (2008) Calcium signaling in dendritic cells by human or mycobacterial HSP70 is caused by contamination and is not required for HSP70-mediated enhancement of cross-presentation. J Biol Chem 283:26477–26483

    PubMed  CAS  Google Scholar 

  • Binder RJ, Anderson KM, Basu S, Srivastava PK (2000a) Cutting edge: heat shock protein gp96 induces maturation and migration of CD11c + cells in vivo. J Immunol 165(11):6029–6035

    PubMed  CAS  Google Scholar 

  • Binder RJ, Han DK, Srivastava PK (2000b) CD91: a receptor for heat shock protein gp96. Nat Immunol 1(2):151–155

    PubMed  CAS  Google Scholar 

  • Binder RJ, Vatner R, Srivastava P (2004) The heat-shock protein receptors: some answers and more questions. Tissue Antigens 64(4):442–451

    PubMed  CAS  Google Scholar 

  • Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-gamma. Annu Rev Immunol 15:749–795

    PubMed  CAS  Google Scholar 

  • Born W, Cady C, Jones-Carson J, Mukasa A, Lahn M, O’Brien R (1999) Immunoregulatory functions of gamma delta T cells. Adv Immunol 71:77–144

    PubMed  CAS  Google Scholar 

  • Breloer M, Dorner B, Moré SH, Roderian T, Fleischer B, von Bonin A (2001) Heat shock proteins as “danger signals”: eukaryotic HSP60 enhances and accelerates antigen-specific IFN-γ production in T cells. Eur J Immunol 31:2051–2059

    PubMed  CAS  Google Scholar 

  • Cahill CM, Waterman WR, Xie Y, Auron PE, Calderwood SK (1996) Transcriptional repression of the prointerleukin 1ß gene by heat shock factor 1. J Biol Chem 271:24874–24879

    PubMed  CAS  Google Scholar 

  • Cahill CM, Lin HS, Price BD, Bruce JL, Calderwood SK (1997) Potential role of heat shock transcription factor in the expression of inflammatory cytokines. Adv Exp Med Biol 400B:625–630

    PubMed  CAS  Google Scholar 

  • Calderwood SK (2005) Regulatory interfaces between the stress protein response and other gene expression programs in the cell. Methods 35(2):139–148

    PubMed  CAS  Google Scholar 

  • Calderwood SK, Mambula SS, Gray PJ Jr, Theriault JR (2007) Extracellular heat shock proteins in cell signaling. FEBS Lett 581:3689–3694

    PubMed  CAS  Google Scholar 

  • Campisi J, Fleshner M (2003) The role of extracellular HSP72 in acute stress-induced potentiation of innate immunity in physically active rats. J Appl Physiol 94:43–52

    PubMed  CAS  Google Scholar 

  • Campisi J, Leem TH, Fleshner M (2003) Stress-induced extracellular HSP72 is a functionally significant danger signal to the immune system. Cell Stress Chaperones 8:272–286

    PubMed  CAS  Google Scholar 

  • Carding SR, Egan PJ (2000) The importance of gamma delta T cells in the resolution of pathogen-induced inflammatory immune responses. Immunol Rev 173:98–108

    PubMed  CAS  Google Scholar 

  • Chen T, Cao X (2010) Stress for maintaining memory: HSP70 as a mobile messenger for innate and adaptive immunity. Eur J Immunol 40:1541–1544

    PubMed  CAS  Google Scholar 

  • Chen T, Guo J, Han C, Yang M, Cao X (2009) Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J Immunol 182:1449–1459

    PubMed  CAS  Google Scholar 

  • Chu CT, Pizzo SV (1993) Receptor-mediated antigen delivery into macrophages. Complexing antigen to alpha 2-macroglobulin enhances presentation to T cells. J Immunol 150(1):48–58

    PubMed  CAS  Google Scholar 

  • Chung CS, Watkins L, Funches A, Lomas-Neira J, Cioffi WG, Ayala A (2006) Deficiency of gammadelta T lymphocytes contributes to mortality and immunosuppression in sepsis. Am J Physiol Regul Integr Comp Physiol 291(5):R1338–R1343

    PubMed  CAS  Google Scholar 

  • Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z (2005) Induction of heat shock proteins in B-cell exosomes. J Cell Sci 118:3631–3638

    PubMed  CAS  Google Scholar 

  • D’Andrea A, Aste-Amezaga M, Valiante NM, Ma X, Kubin M, Trinchieri G (1993) Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J Exp Med 178(3):1041–1048

    PubMed  Google Scholar 

  • Davies EL, Bacelar MM, Marshall MJ et al (2006) Heat shock proteins form part of a danger signal cascade in response to lipopolysaccharide and GroEL. Clin Exp Immunol 145:183–189

    PubMed  CAS  Google Scholar 

  • Delneste Y, Charbonnier P, Herbault N et al (2002a) Interferon-gamma switches monocyte differentiation from dendritic cells to macrophages. Blood 101(1):143–150

    PubMed  Google Scholar 

  • Delneste Y, Magistrelli G, Gauchat J et al (2002b) Involvement of LOX-1indendriticcell-mediatedantigen cross-presentation. Immunity 17:353–362

    PubMed  CAS  Google Scholar 

  • Di Cesare S, Poccia F, Mastino A, Colizzi V (1992) Surface expressed heat-shock proteins by stressed or human immunodeficiency virus (HIV)-infected lymphoid cells represent the target for antibody-dependent cellular cytotoxicity. Immunology 76(2):341–343

    PubMed  Google Scholar 

  • Ding XZ, Fernandez-Prada CM, Bhattacharjee AK, Hoover DL (2001) Over-expression of HSP-70 inhibits bacterial lipopolysaccharide-induced production of cytokines in human monocyte-derived macrophages. Cytokine 16:210–219

    PubMed  CAS  Google Scholar 

  • Dybdahl B, Wahba A, Lien E et al (2002) Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through Toll-like receptor-4. Circulation 105:685–690

    PubMed  CAS  Google Scholar 

  • Egan PJ, Carding SR (2000) Downmodulation of the inflammatory response to bacterial infection by gammadelta T cells cytotoxic for activated macrophages. J Exp Med 191(12):2145–2158

    PubMed  CAS  Google Scholar 

  • Falcone FH, Haas H, Gibbs BF (2000) The human basophil: a new appreciation of its role in immune responses. Blood 96(13):4028–4038

    PubMed  CAS  Google Scholar 

  • Febbraio MA, Ott P, Nielsen HB et al (2002) Exercise induces hepatosplanchnic release of heat shock protein 72 in humans. J Physiol 544:957–962

    PubMed  CAS  Google Scholar 

  • Ferrarini M, Heltai S, Zocchi MR, Rugarli C (1992) Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer 51(4):613–619

    PubMed  CAS  Google Scholar 

  • Figueiredo C, Wittmann M, Wang D et al (2009) Heat shock protein 70 (HSP70) induces cytotoxicity of T-helper cells. Blood 113:3008–3016

    PubMed  CAS  Google Scholar 

  • Fleshner M, Johnson JD (2005) Exogenous extra-cellular heat shock protein 72: releasing signal(s) and function. Int J Hyperthermia 21:457–471

    PubMed  CAS  Google Scholar 

  • Fleshner M, Campisi J, Johnson JD (2003) Can exercise stress facilitate innate immunity? A functional role for stress-induced extracellular HSP72. Exerc Immunol Rev 9:6–24

    PubMed  Google Scholar 

  • Fleshner M, Campisi J, Amiri L, Diamond DM (2004) Cat exposure induces both intra- and extracellular HSP72: the role of adrenal hormones. Psychoneuroendocrinology 29(9):1142–1152

    PubMed  CAS  Google Scholar 

  • Fleshner M, Sharkey CM, Nickerson M, Johnson JD (2006) Endogenous extracellular HSP72 release is an adaptive feature of the acute stress response. In: Ader R, Felton DL, Cohen N (eds) Psychoneuroimmunology, vol 2. Academic Press, San Diego, pp 1013–1014

    Google Scholar 

  • Gao B, Tsan M-F (2003a) Recombinant human heat shock protein 60 does not induce the release of tumor necrosis factor α from murine macrophages. J Biol Chem 278:22523–2252

    PubMed  CAS  Google Scholar 

  • Gao B, Tsan M-F (2003b) Endotoxin contamination in recombinant human HSP70 preparation is responsible for the induction of TNFα release by murine macrophages. J Biol Chem 278:174–179

    PubMed  CAS  Google Scholar 

  • Gastpar R, Gross C, Rossbacher L, Ellwart J, Riegger J, Multhoff G (2004) The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells. J Immunol 172:972–980

    PubMed  CAS  Google Scholar 

  • Gastpar R, Gehrmann M, Bausero MA et al (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65:5238–5247

    PubMed  CAS  Google Scholar 

  • Gross C, Koelch W, DeMaio A, Arispe N, Multhoff G (2003a) Cell surface-bound heat shock protein 70 (HSP70) mediates perforin-indepen- dent apoptosis by specific binding and uptake of granzyme B. J Biol Chem 278:41173–41181

    PubMed  CAS  Google Scholar 

  • Gross C, Schmidt-Wolf IG, Nagaraj S et al (2003b) Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress Chaperones 8(4):348–360

    PubMed  CAS  Google Scholar 

  • Grossmann ME, Madden BJ, Gao F et al (2004) Proteomics shows HSP70 does not bind peptide sequences indiscriminately in vivo. Exp Cell Res 297:108–117

    PubMed  CAS  Google Scholar 

  • Guarino RD, Perez DM, Piascik MT (1996) Recent advances in the molecular pharmacology of the α 1-adrenergic receptors. Cell Signal 8:323–333

    PubMed  CAS  Google Scholar 

  • Guzhova I, Kislyakova K, Moskaliova O et al (2001) In vitro studies show that HSP70 can be released by glia and that exogenous HSP70 can enhance neuronal stress tolerance. Brain Res 914:66–73

    PubMed  CAS  Google Scholar 

  • Hashiguchi N, Ogura H, Tanaka H et al (2001) Enhanced expression of heat shock proteins in activated polymorphonuclear leukocytes in patients with sepsis. J Trauma 51(6):1104–1109

    PubMed  CAS  Google Scholar 

  • Hightower LE, Guidon PT (1989) Selective release from cultured mam-malian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:257–266

    PubMed  CAS  Google Scholar 

  • Hirsh M, Dyugovskaya L, Kaplan V, Krausz MM (2004) Response of lung gammadelta T cells to experimental sepsis in mice. Immunology 112(1):153–160

    PubMed  CAS  Google Scholar 

  • Hirsh MI, Hashiguchi N, Chen Y, Yip L, Junger WG (2006) Surface expression of HSP72 by LPS-stimulated neutrophils facilitates gammadelta T cell-mediated killing. Eur J Immunol 36(3):712–721

    PubMed  CAS  Google Scholar 

  • Housby JN, Cahill CM, Chu B et al (1999) Non-steroidal anti-inflammatory drugs inhibit the expression of cytokines and induce HSP70 in human monocytes. Cytokine 11:347–358

    PubMed  CAS  Google Scholar 

  • Hu S, Sheng WS, Peterson PK, Chao CC (1995) Differential regulation by cytokines of production of nitric oxide by human astrocytes. Glia 15(4):491–494

    PubMed  CAS  Google Scholar 

  • Huxley TH (1870) Biogenesis and Abiogenesis. In: Collected Essays, Vol 8, p 229

    Google Scholar 

  • Ianaro A, Ialenti A, Maffia P, Pisano B, Di Rosa M (2001) HSF1/HSP72 pathway as an endogenous anti-inflammatory system. FEBS Lett 499:239–244

    PubMed  CAS  Google Scholar 

  • Ishii T, Udono H, Yamano T et al (1999) Isolation of MHC class 1-restricted tumor antigen peptide and its precursors associated with heat shock proteins HSP70, HSP90, and gp96. J Immunol 162:1303–1309

    PubMed  CAS  Google Scholar 

  • Janeway CA, Travers P, Walport M, Shlomchik MJ, Capra JD (2005) Immunobiology: the immune system in health and disease. Garland Science Publishing, USA

    Google Scholar 

  • Javid B, MacAry PA, Oehlmann W, Singh M, Lehner PJ (2004) Peptides complexed with the protein HSP70 generate efficient human cytolytic T-lymphocyte responses. Biochem Soc Trans 32(Pt 4):622–625

    PubMed  CAS  Google Scholar 

  • Javid B, MacAry PA, Lehner PJ (2007) Structure and function: heat shock proteins and adaptive immunity. J Immunol 179(4):2035–2040

    PubMed  CAS  Google Scholar 

  • Johnson JD, Fleshner M (2006) Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. J Leukoc Bio 79:425–434

    CAS  Google Scholar 

  • Kaplan AP (2001) Chemokines, chemokine receptors and allergy. Int Arch Allergy Immunol 124(4):423–431

    PubMed  CAS  Google Scholar 

  • Karlin S, Brocchieri L (1998) Heat shock protein 70 family: multiple sequence comparisons, function, and evolution. J Mol Evol 47(5):565–577

    PubMed  CAS  Google Scholar 

  • Kimura Y, Yamada K, Sakai T et al (1998) The regulatory role of heat shock protein 70-reactive CD4 + T cells during rat listeriosis. Int Immunol 10(2):117–130

    PubMed  CAS  Google Scholar 

  • Lancaster GI, Febbraio MA (2005) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 280:23349–23355

    PubMed  CAS  Google Scholar 

  • Lancaster GI, Gleeson M, Jeukendrup AE et al (2004) Leukocyte heat shock protein expression before and after intensified training. Int J Sports Med 25(7):522–527

    PubMed  Google Scholar 

  • Lehner T, Bergmeier LA, Wang Y, Tao L, Sing M, Spallek R, van der Zee R (2000a) Heat shock proteins generate ß-chemokines which function as innate adjuvants enhancing adaptive immunity. Eur J Immunol 30:594–603

    PubMed  CAS  Google Scholar 

  • Lehner T, Mitchell E, Bergmeier L et al (2000b) The role of gammadelta T cells in generating antiviral factors and beta-chemokines in protection against mucosal simian immunodeficiency virus infection. Eur J Immunol 30(8):2245–2256

    PubMed  CAS  Google Scholar 

  • Lehner T, Wang Y, Whittall T, McGowan E, Kelly CG, Singh M (2004) Functional domains of HSP70 stimulate generation of cytokines and chemokines, maturation of dendritic cells and adjuvanticity. Biochem Soc Trans 32:629–632

    PubMed  CAS  Google Scholar 

  • Li Z, Menoret A, Srivastava P (2002) Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol 14:45–51

    PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    PubMed  CAS  Google Scholar 

  • Mabula SS, Calderwood SK (2006a) Heat induced release of HSP70 from prostate carcinoma cells involves both active secretion and passive release from necrotic cells. Int J Hyperthermia 22:575–585

    Google Scholar 

  • Mabula SS, Calderwood SK (2006b) Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol 177:7849–7857

    Google Scholar 

  • MacAry PA, Javid B, Floto RA, Smith KG, Oehlmann W, Singh M, Lehner PJ (2004) HSP70 peptide binding mutants separate antigen delivery from dendritic cell stimulation. Immunity 20:95–106

    PubMed  CAS  Google Scholar 

  • Mantovani A (2006) Macrophage diversity and polarization.: in vivo veritas. Blood 108(2):408–409

    CAS  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A, Locati M (2006) New vistas on macrophage differentiation and activation. Eur J Immunol 37(1):14–16

    Google Scholar 

  • Martin CA, Carsons SE, Kowalewski R (2003) Aberrant extracellular and dendritic cell (DC) surface expression of heat shock protein (HSP)70 in the rheumatoid joint: possible mechanisms of HSP/DC-mediated cross-priming. J Immunol 171:5736–5742

    PubMed  CAS  Google Scholar 

  • Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311

    PubMed  CAS  Google Scholar 

  • Moore TA, Moore BB, Newstead MW, Standiford TJ (2000) Gamma delta-T cells are critical for survival and early proinflammatory cytokine gene expression during murine Klebsiella pneumonia. J Immunol 165(5):2643–2650

    PubMed  CAS  Google Scholar 

  • Moser C, Schmidbauer C, Gürtler U et al (2002) Inhibition of tumor growth in mice with severe combined immunodeficiency is mediated by heat shock protein 70 (HSP70)-peptide-activated, CD94 positive natural killer cells. Cell Stress Chaperones 7(4):365–373

    PubMed  CAS  Google Scholar 

  • Multhoff G (2002) Activation of natural killer cells by heat shock protein 70. Int J Hyperthermia 18(6):576–585

    PubMed  CAS  Google Scholar 

  • Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R (1997) Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol 158:4341–4350

    PubMed  CAS  Google Scholar 

  • Multhoff G, Mizzen L, Winchester CC et al (1999) Heat shock protein 70 (HSP70) stimulates proliferation and cytolytic activity of NK cells. Exp Hematol 27:1627–1636

    PubMed  CAS  Google Scholar 

  • Nelson S (2001) Novel nonantibiotic therapies for pneumonia cytokines and host defence. Chest 119(2):419S–425S

    PubMed  CAS  Google Scholar 

  • Noessner E, Gastpar R, Milani V et al (2002) Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J Immunol 169:5424–5432

    PubMed  CAS  Google Scholar 

  • O’Brien RL, Fu YX, Cranfill R et al (1992) Heat shock protein HSP60-reactive gamma delta cells: a large, diversified T-lymphocyte subset with highly focused specificity. Proc Natl Acad Sci U S A 89(10):4348–4352

    PubMed  Google Scholar 

  • Osterloh A, Kalinke U, Weiss S, Fleischer B, Breloer M (2007) Synergistic and differential modulation of immune responses by HSP60 and LPS. J Biol Chem 282:4669–4680

    PubMed  CAS  Google Scholar 

  • Panjwani NN, Popova L, Srivastava PK (2002) Heat shock protein gp96 and HSP70 activate the release of nitric oxide by APCs. J Immunol 168:2997–3003

    PubMed  CAS  Google Scholar 

  • Pittet JF, Lee H, Morabito D, Howard MB, Welch WJ, Mackersie RC (2002) Serum levels of HSP 72 measured early after trauma correlate with survival. J Trauma 52:611–617

    PubMed  Google Scholar 

  • Poccia F, Piselli P, Vendetti S, Bach S, Amendola A, Placido R, Colizzi V (1996) Heat-shock protein expression on the membrane of T cells undergoing apoptosis. Immunology 88(1):6–12

    PubMed  CAS  Google Scholar 

  • Pockley AG (2002) Heat shock proteins, inflammation, and cardiovascular disease. Circulation 105:1012–1017

    PubMed  CAS  Google Scholar 

  • Pockley AG, Georgiades A, Thulin T, de Faire U, Frostegård J (2003) Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension 42(3):235–238

    PubMed  CAS  Google Scholar 

  • Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79

    PubMed  CAS  Google Scholar 

  • Quintana FJ, Cohen IR (2005) Heat Shock Proteins Regulate Inflammation by Both Molecular and Network Cross-Reactivity. Cambridge University Press, Cambridge

    Google Scholar 

  • Quintana FJ, Carmi P, Mor F, Cohen IR (2004) Inhibition of adjuvant-induced arthritis by DNA vaccination with the 70-kd or the 90-kd human heat-shock protein: immune cross-regulation with the 60-kd heat-shock protein. Arthritis Rheum 50:712–3720

    Google Scholar 

  • Reed RC, Berwin B, Baker JP, Nicchitta CV (2003) GRP94/gp96 elicits ERK activation in murine macrophages: a role for endotoxin contamination in NFκB activation and nitric oxide production. J Biol Chem 278:31853–31860

    PubMed  CAS  Google Scholar 

  • Robinson MB, Tidwell JL, Gould T et al (2005) Extracellular heat shock protein 70: a critical com- ponent for motoneuron survival. J Neurosci 25:9735–9745

    PubMed  CAS  Google Scholar 

  • Sapozhnikov AM, Gusarova GA, Ponomarev ED, Telford WG (2002) Translocation of cytoplasmic HSP70 onto the surface of EL-4 cells during apoptosis. Cell Prolif 35(4):193–206

    PubMed  CAS  Google Scholar 

  • Saunders BM, Frank AA, Cooper AM, Orme IM (1998) Role of gamma delta T cells in immunopathology of pulmonary Mycobacterium avium infection in mice. Infect Immun 66(11):5508–5514

    PubMed  CAS  Google Scholar 

  • Savina A, Furlán M, Vidal M, Colombo MI (2003) Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem 278:20083–20090

    PubMed  CAS  Google Scholar 

  • Sharma M (2010) Chemokines and their receptors: orchestrating a fine balance between health and disease. Crit Rev Biotechnol 30(1):1–22

    PubMed  CAS  Google Scholar 

  • Shinnick TM (1991) Heat shock proteins as antigens of bacterial and parasitic pathogens. Curr Top Microbiol Immunol 167:145–160

    PubMed  CAS  Google Scholar 

  • Shinnick TM, Coulson AF, Oftung F, Mustafa AS, Lundin KE, Meloen RH (1996) HLA-DR4-restricted T-cell epitopes from the mycobacterial 60,000 MW heat shock protein (HSP 60) do not map to the sequence homology regions with the human HSP 60. Immunology 87(3):421–427

    PubMed  Google Scholar 

  • Sieling PA, Abrams JS, Yamamura M et al (1993) Immunosuppressive roles for IL-10 and IL-4 in human infection. In vitro modulation of T cell responses in leprosy. J Immunol 150(12):5501–5510

    PubMed  CAS  Google Scholar 

  • Singh-Jasuja H, Toes RE, Spee P et al (2000) Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med 191:1965–1974

    PubMed  CAS  Google Scholar 

  • Somersan S, Larsson M, Fonteneau JF, Basu S, Srivastava P, Bhardwaj N (2001) Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol 167:4844–4852

    PubMed  CAS  Google Scholar 

  • Srivastava PK (2002a) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425

    PubMed  CAS  Google Scholar 

  • Srivastava PK (2002b) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185–194

    PubMed  CAS  Google Scholar 

  • Srivastava PK (2003) Hypothesis: controlled necrosis as a tool for immunotherapy of human cancer. Cancer Immun 18(3):4

    Google Scholar 

  • Srivastava PK (2008) New jobs for ancient chaperones. Sci Am 299:50–55

    PubMed  CAS  Google Scholar 

  • Srivastava PK, Heike M (1991) Tumor-specific immunogenicity of stress-induced proteins: convergence of two evolutionary pathways of antigen presentation? Semin Immunol 3:57–64

    PubMed  CAS  Google Scholar 

  • Srivastava PK, Udono H, Blachere NE, Li Z (1994) Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 39:93–98

    PubMed  CAS  Google Scholar 

  • Suto R, Srivastava PK (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269:1585–1588

    PubMed  CAS  Google Scholar 

  • Takemoto S, Nishikawa M, Takakura Y (2005) Pharmacokinetic and tissue distribution mechanism of mouse recombinant heat shock protein 70 in mice. Pharm Res 22(3):419–426

    PubMed  CAS  Google Scholar 

  • Tam S, King DP, Beaman BL (2001) Increase of gammadelta T lymphocytes in murine lungs occurs during recovery from pulmonary infection by Nocardia asteroides. Infect Immun 69(10):6165–6171

    PubMed  CAS  Google Scholar 

  • Terry DF, McCormick M, Andersen S et al (2004) Cardiovascular disease delay in centenarian offspring: role of heat shock proteins. Ann N Y Acad Sci 1019:502–505

    PubMed  CAS  Google Scholar 

  • Thériault JR, Mambula SS, Sawamura T, Stevenson MA, Calderwood SK (2005) Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS Lett 579:1951–1960

    PubMed  Google Scholar 

  • Thériault JR, Adachi H, Calderwood SK (2006) Role of scavenger receptors in the binding and internalization of heat shock protein 70. J Immunol 177:8604–8611

    PubMed  Google Scholar 

  • Todryk S, Melcher AA, Hardwick N et al (1999) Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J Immunol 163:1398–1408

    PubMed  CAS  Google Scholar 

  • Trost M, English L, Lemieux S, Courcelles M, Desjardins M, Thibault P (2009) The phagosomal proteome in interferon-γ-activated macrophages. Immunity 30(1):143–154

    PubMed  CAS  Google Scholar 

  • Tsan M-F, Gao B (2004) Cytokine function of heat shock proteins. Am J Physiol Cell Physiol 286:C739–C744

    PubMed  CAS  Google Scholar 

  • Tsan M-F, Gao B (2007) Pathogen-associated molecular pattern contamination as putative endogenous ligands of toll-like receptors. J Endotoxin Res 13:6–14

    PubMed  CAS  Google Scholar 

  • Tsuji M, Mombaerts P, Lefrancois L, Nussenzweig RS, Zavala F, Tonegawa S (1994) Gamma delta T cells contribute to immunity against the liver stages of malaria in alpha beta T-cell-deficient mice. Proc Natl Acad Sci U S A 91(1):345–349

    PubMed  CAS  Google Scholar 

  • Tytell M, Greenberg SG, Lasek RJ (1986) Heat shock-like protein is transferred from glia to axon. Brain Res 363:161–164

    PubMed  CAS  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

    PubMed  CAS  Google Scholar 

  • Wallin RP, Lundqvist A, Moré SH, von Bonin A, Kiessling R, Ljunggren HG (2002) Heat-shock proteins as activators of the innate immune system. Trends Immunol 23:130–135

    PubMed  CAS  Google Scholar 

  • Walsh RC, Koukoulas I, Garnham A, Moseley PL, Hargreaves M, Febbraio MA (2001) Exercise increases serum HSP72 in humans. Cell Stress Chaperones 6:386–393

    PubMed  CAS  Google Scholar 

  • Wang Y, Kelly CG, Karttunen JT et al (2001) CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity 15:971–983

    PubMed  CAS  Google Scholar 

  • Wang Y, Kelly CG, Singh M et al (2002) Stimulation of Th-1 polarizing cytokines, C–C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70. J Immunol 169:2422–2429

    PubMed  CAS  Google Scholar 

  • Wang Y, Whittall T, McGowan E et al (2005) Identification of stimulating and inhibitory epitopes within the heat shock protein 70 molecule that modulate cytokine production and maturation of dendritic cells. J Immunol 174:3306–3316

    PubMed  CAS  Google Scholar 

  • Wang Y, Seidl T, Whittall T, Babaahmady K, Lehner T (2010) Stress-activated dendritic cells interact with CD4(1) T cells to elicit homeostatic memory. Eur J Immunol 40:1628–1638

    PubMed  CAS  Google Scholar 

  • Wewers MD (2004) IL-1beta: an endosomal exit. Proc Natl Acad Sci U S A 101:10241–10242

    PubMed  CAS  Google Scholar 

  • Williams JH, Ireland HE (2008) Sensing danger–HSP72 and HMGB1 as candidate signals. J Leukoc Biol 83:489–492

    PubMed  CAS  Google Scholar 

  • Wright BH, Corton JM, El-Nahas AM, Wood RF, Pockley AG (2000) Elevated levels of circulating heat shock protein 70 (HSP70) in peripheral and renal vascular disease. Heart Vessels 15(1):18–22

    PubMed  CAS  Google Scholar 

  • Xie Y, Chen C, Stevenson MA, Auron PE, Calderwood SK (2002a) Heat shock factor 1 represses transcription of the IL-1ß gene through physical interaction with the nuclear factor of interleukin 6. J Biol Chem 277:11802–11810

    PubMed  CAS  Google Scholar 

  • Xie Y, Chen C, Stevenson MA, Hume DA, Auron PE, Calderwood SK (2002b) NF-IL6 and HSF1 have mutually antagonistic effects on transcription in monocytic cells. Biochem Biophys Res Commun 291:1071–1080

    PubMed  CAS  Google Scholar 

  • Yoo CG, Lee S, Lee CT, Kim YW, Han SK, Shim YS (2000) Anti-inflammatory effect of heat shock protein induction is related to stabilization of I κ B α through preventing I κ B kinase activation in respiratory epithelial cells. J Immunol 164:5416–5423

    PubMed  CAS  Google Scholar 

  • Zhu W, Roma P, Pirillo A, Pellegatta F, Catapano AL (1996) Human endothelial cells exposed to oxidized LDL express HSP70 only when proliferating. Arterioscler Thromb Vasc Biol 16(9):1104–1111

    PubMed  CAS  Google Scholar 

  • Zügel U, Kaufmann SH (1999) Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin Microbiol Rev 12(1):19–39

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Malyshev .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Malyshev, I. (2013). HSP70 in the Immune Responses. In: Immunity, Tumors and Aging: The Role of HSP70. SpringerBriefs in Biochemistry and Molecular Biology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5943-5_5

Download citation

Publish with us

Policies and ethics