Skip to main content

Regulated Proteolysis: Control of the Escherichia coli σE-Dependent Cell Envelope Stress Response

  • Chapter
  • First Online:
Regulated Proteolysis in Microorganisms

Part of the book series: Subcellular Biochemistry ((SCBI,volume 66))

Abstract

Over the past decade, regulatory proteolysis has emerged as a paradigm for transmembrane signal transduction in all organisms, from bacteria to humans. These conserved proteolytic pathways share a common design that involves the sequential proteolysis of a membrane-bound regulatory protein by two proteases. Proteolysis releases the regulator, which is inactive in its membrane-bound form, into the cytoplasm where it performs its cellular function. One of the best-characterized examples of signal transduction via regulatory proteolysis is the pathway governing the σE-dependent cell envelope stress response in Escherichia coli. In unstressed cells, σE is sequestered at the membrane by the transmembrane anti-sigma factor, RseA. Stresses that compromise the cell envelope and interfere with the proper folding of outer membrane proteins (OMPs) activate the proteolytic pathway. The C-terminal residues of unfolded OMPs bind to the inner membrane protease, DegS, to initiate the proteolytic cascade. DegS removes the periplasmic domain of RseA creating a substrate for the next protease in the pathway, RseP. RseP cleaves RseA in the periplasmic region in a process called regulated intramembrane proteolysis (RIP). The remaining fragment of RseA is released into the cytoplasm and fully degraded by the ATP-dependent protease, ClpXP, with the assistance of the adaptor protein, SspB, thereby freeing σE to reprogram gene expression. A growing body of evidence indicates that the overall proteolytic framework that governs the σE response is used to regulate similar anti-sigma factor/sigma factor pairs throughout the bacterial world and has been adapted to recognize a wide variety of signals and control systems as diverse as envelope stress responses, sporulation, virulence, and iron-siderophore uptake. In this chapter, we review the extensive physiological, biochemical, and structural studies on the σE system that provide remarkable insights into the mechanistic underpinnings of this regulated proteolytic signal transduction pathway. These studies reveal design principles that are applicable to related proteases and regulatory proteolytic pathways in all domains of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Literature Cited

  1. Brown MS, Ye J, Rawson RB, Goldstein JL (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100(4):391–398

    PubMed  CAS  Google Scholar 

  2. Chen G, Zhang X (2010) New insights into S2P signaling cascades: regulation, variation, and conservation. Protein Sci 19(11):2015–2030

    PubMed  CAS  Google Scholar 

  3. Ehrmann M, Clausen T (2004) Proteolysis as a regulatory mechanism. Annu Rev Genet 38:709–724

    PubMed  CAS  Google Scholar 

  4. Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89(3):331–340

    PubMed  CAS  Google Scholar 

  5. Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A 96(20):11041–11048

    PubMed  CAS  Google Scholar 

  6. Rudner DZ, Fawcett P, Losick R (1999) A family of membrane-embedded metalloproteases involved in regulated proteolysis of membrane-associated transcription factors. Proc Natl Acad Sci U S A 96(26):14765–14770

    PubMed  CAS  Google Scholar 

  7. Cutting S, Roels S, Losick R (1991) Sporulation operon spoIVF and the characterization of mutations that uncouple mother-cell from forespore gene expression in Bacillus subtilis. J Mol Biol 221(4):1237–1256

    PubMed  CAS  Google Scholar 

  8. Ricca E, Cutting S, Losick R (1992) Characterization of bofA, a gene involved in intercompartmental regulation of pro-sigma K processing during sporulation in Bacillus subtilis. J Bacteriol 174(10):3177–3184

    PubMed  CAS  Google Scholar 

  9. Campo N, Rudner DZ (2007) SpoIVB and CtpB are both forespore signals in the activation of the sporulation transcription factor sigmaK in Bacillus subtilis. J Bacteriol 189(16):6021–6027

    PubMed  CAS  Google Scholar 

  10. Zhou R, Kroos L (2005) Serine proteases from two cell types target different components of a complex that governs regulated intramembrane proteolysis of pro-sigmaK during Bacillus subtilis development. Mol Microbiol 58(3):835–846

    PubMed  CAS  Google Scholar 

  11. Molière N, Turgay K (2013) General and regulatory proteolysis in Bacillus subtilis. In: Dougan DA (ed) Regulated proteolysis: from bacteria to yeast. Springer, Subcell Biochem 66:73–103

    Google Scholar 

  12. Ades SE (2006) AAA+  molecular machines: firing on all cylinders. Curr Biol 16(2):R46–R48

    PubMed  CAS  Google Scholar 

  13. Alba BM, Gross CA (2004) Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol Microbiol 52(3):613–619

    PubMed  CAS  Google Scholar 

  14. Alba B, Leeds J, Onufryk C, Lu C et al (2002) DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma’E-dependent extracytoplasmic stress response. Genes Dev 16:2156–2168

    PubMed  CAS  Google Scholar 

  15. Kanehara K, Ito K, Akiyama Y (2002) YaeL (EcfE) activates the sigmaE pathway of stress response through a site-2 cleavage of anti-sigma’E, RseA. Genes Dev 16:2147–2155

    PubMed  CAS  Google Scholar 

  16. Ades SE (2004) Control of the alternative sigma factor sigmaE in Escherichia coli. Curr Opin Microbiol 7(2):157–162

    PubMed  CAS  Google Scholar 

  17. Flynn JM, Levchenko I, Sauer RT, Baker TA (2004) Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+  protease ClpXP for degradation. Genes Dev 18(18):2292–2301

    PubMed  CAS  Google Scholar 

  18. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414

    PubMed  Google Scholar 

  19. MacRitchie DM, Buelow DR, Price NL, Raivio TL (2008) Two-component signaling and gram negative envelope stress response systems. Adv Exp Med Biol 631:80–110

    PubMed  CAS  Google Scholar 

  20. Rowley G, Spector M, Kormanec J, Roberts M (2006) Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4(5):383–394

    PubMed  CAS  Google Scholar 

  21. De Las Penas A, Connolly L, Gross CA (1997) SigmaE is an essential sigma factor in Escherichia coli. J Bacteriol 179(21):6862–6864

    Google Scholar 

  22. Hayden JD, Ades SE (2008) The extracytoplasmic stress factor, sigma, is required to maintain cell envelope integrity in Escherichia coli. PLoS One 3(2):e1573

    PubMed  Google Scholar 

  23. Gruber TM, Gross CA (2003) Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466

    PubMed  CAS  Google Scholar 

  24. Helmann JD (2002) The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47–110

    PubMed  CAS  Google Scholar 

  25. Erickson JW, Gross CA (1989) Identification of the sigma E subunit of Escherichia coli RNA polymerase: a second alternate sigma factor involved in high-temperature gene expression. Genes Dev 3(9):1462–1471

    PubMed  CAS  Google Scholar 

  26. Micevski D, Dougan DA (2013) Proteolytic regulation of stress response pathways in Escherichia coli. In: Dougan DA (ed) Regulated proteolysis: from bacteria to yeast. Springer, Subcell Biochem 66:105–128

    Google Scholar 

  27. Mecsas J, Rouviere PE, Erickson JW, Donohue TJ et al (1993) The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes Dev 7(12B):2618–2628

    PubMed  CAS  Google Scholar 

  28. Missiakas D, Betton JM, Raina S (1996) New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol 21(4):871–884

    PubMed  CAS  Google Scholar 

  29. Raina S, Missiakas D, Georgopoulos C (1995) The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli. EMBO J 14(5):1043–1055

    PubMed  CAS  Google Scholar 

  30. Rouviere PE, Gross CA (1996) SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev 10(24):3170–3182

    PubMed  CAS  Google Scholar 

  31. Connolly L, De Las PA, Alba BM, Gross CA (1997) The response to extracytoplasmic stress in Escherichia coli is controlled by partially overlapping pathways. Genes Dev 11(15):2012–2021

    PubMed  CAS  Google Scholar 

  32. Raivio TL, Silhavy TJ (1999) The sigmaE and Cpx regulatory pathways: overlapping but distinct envelope stress responses. Curr Opin Microbiol 2(2):159–165

    PubMed  CAS  Google Scholar 

  33. Ruiz N, Silhavy TJ (2005) Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr Opin Microbiol 8(2):122–126

    PubMed  CAS  Google Scholar 

  34. Mecsas J, Welch R, Erickson JW, Gross CA (1995) Identification and characterization of an outer membrane protein, OmpX, in Escherichia coli that is homologous to a family of outer membrane proteins including Ail of Yersinia enterocolitica. J Bacteriol 177(3):799–804

    PubMed  CAS  Google Scholar 

  35. Staron A, Sofia HJ, Dietrich S, Ulrich LE et al (2009) The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family. Mol Microbiol 74(3):557–581

    PubMed  CAS  Google Scholar 

  36. Davis BM, Waldor MK (2009) High-throughput sequencing reveals suppressors of Vibrio cholerae rpoE mutations: one fewer porin is enough. Nucleic Acids Res 37(17):5757–5767

    PubMed  CAS  Google Scholar 

  37. Heusipp G, Schmidt MA, Miller VL (2003) Identification of rpoE and nadB as host responsive elements of Yersinia enterocolitica. FEMS Microbiol Lett 226(2):291–298

    PubMed  CAS  Google Scholar 

  38. Humphreys S, Stevenson A, Bacon A, Weinhardt AB et al (1999) The alternative sigma factor, sigmaE, is critically important for the virulence of Salmonella typhimurium. Infect Immun 67(4):1560–1568

    PubMed  CAS  Google Scholar 

  39. Testerman TL, Vazquez-Torres A, Xu Y, Jones-Carson J et al (2002) The alternative sigma factor sigmaE controls antioxidant defences required for Salmonella virulence and stationary-phase survival. Mol Microbiol 43(3):771–782

    PubMed  CAS  Google Scholar 

  40. Barchinger SE, Zhang X, Hester SE, Rodriguez ME, Harvill ET, Ades SE (2012) sigE facilitates the adaptation of Bordetella bronchiseptica to stress conditions and lethal infection in immunocompromised mice. BMC Microbiol 12:179

    Google Scholar 

  41. Raivio TL (2005) Envelope stress responses and Gram-negative bacterial pathogenesis. Mol Microbiol 56(5):1119–1128

    PubMed  CAS  Google Scholar 

  42. Rhodius VA, Suh WC, Nonaka G, West J et al (2006) Conserved and variable functions of the sigmaE stress response in related genomes. PLoS Biol 4(1):e2

    PubMed  Google Scholar 

  43. Johansen J, Rasmussen AA, Overgaard M, Valentin-Hansen P (2006) Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins. J Mol Biol 364(1):1–8

    PubMed  CAS  Google Scholar 

  44. Thompson KM, Rhodius VA, Gottesman S (2007) SigmaE regulates and is regulated by a small RNA in Escherichia coli. J Bacteriol 189(11):4243–4256

    PubMed  CAS  Google Scholar 

  45. Vogel J, Papenfort K (2006) Small non-coding RNAs and the bacterial outer membrane. Curr Opin Microbiol 9(6):605–611

    PubMed  CAS  Google Scholar 

  46. Rigel NW, Silhavy TJ (2012) Making a beta-barrel: assembly of outer membrane proteins in Gram-negative bacteria. Curr Opin Microbiol 15(2):189–193

    PubMed  CAS  Google Scholar 

  47. Ruiz N, Kahne D, Silhavy TJ (2006) Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 4(1):57–66

    PubMed  Google Scholar 

  48. Kovacikova G, Skorupski K (2002) The alternative sigma factor sigma(E) plays an important role in intestinal survival and virulence in Vibrio cholerae. Infect Immun 70(10):5355–5362

    PubMed  CAS  Google Scholar 

  49. Miticka H, Rowley G, Rezuchova B, Homerova D et al (2003) Transcriptional analysis of the rpoE gene encoding extracytoplasmic stress response sigma factor sigmaE in Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 226(2):307–314

    PubMed  CAS  Google Scholar 

  50. Rouviere PE, De Las Penas A, Mecsas J, Lu CZ et al (1995) rpoE, the gene encoding the second heat-shock sigma factor, sigma E, in Escherichia coli. EMBO J 14(5):1032–1042

    PubMed  CAS  Google Scholar 

  51. Schurr MJ, Yu H, Boucher JC, Hibler NS et al (1995) Multiple promoters and induction by heat shock of the gene encoding the alternative sigma factor AlgU (sigma E) which controls mucoidy in cystic fibrosis isolates of Pseudomonas aeruginosa. J Bacteriol 177(19):5670–5679

    PubMed  CAS  Google Scholar 

  52. De Las PA, Connolly L, Gross CA (1997) The sigmaE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of sigmaE. Mol Microbiol 24(2):373–385

    Google Scholar 

  53. Missiakas D, Mayer MP, Lemaire M, Georgopoulos C et al (1997) Modulation of the Escherichia coli sigmaE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol Microbiol 24(2):355–371

    PubMed  CAS  Google Scholar 

  54. Campbell EA, Tupy JL, Gruber TM, Wang S et al (2003) Crystal structure of Escherichia coli sigmaE with the cytoplasmic domain of its anti-sigma RseA. Mol Cell 11(4):1067–1078

    PubMed  CAS  Google Scholar 

  55. Schrodinger LLC (2010) The PyMOL molecular graphics system, Version 1.3r1

    Google Scholar 

  56. Paget MS, Helmann JD (2003) The sigma70 family of sigma factors. Genome Biol 4(1):203

    PubMed  Google Scholar 

  57. Chaba R, Grigorova IL, Flynn JM, Baker TA et al (2007) Design principles of the proteolytic cascade governing the sigmaE-mediated envelope stress response in Escherichia coli: keys to graded, buffered, and rapid signal transduction. Genes Dev 21(1):124–136

    PubMed  CAS  Google Scholar 

  58. Maeda H, Fujita N, Ishihama A (2000) Competition among seven Escherichia coli sigma subunits: relative binding affinities to the core RNA polymerase. Nucleic Acids Res 28(18):3497–3503

    PubMed  CAS  Google Scholar 

  59. Grigorova IL, Chaba R, Zhong HJ, Alba BM et al (2004) Fine-tuning of the Escherichia coli sigmaE envelope stress response relies on multiple mechanisms to inhibit signal-independent proteolysis of the transmembrane anti-sigma factor, RseA. Genes Dev 18(21):2686–2697

    PubMed  CAS  Google Scholar 

  60. Cezairliyan BO, Sauer RT (2007) Inhibition of regulated proteolysis by RseB. Proc Natl Acad Sci U S A 104(10):3771–3776

    PubMed  CAS  Google Scholar 

  61. Chaba R, Alba BM, Guo MS, Sohn J et al (2011) Signal integration by DegS and RseB governs the σ E-mediated envelope stress response in Escherichia coli. Proc Natl Acad Sci U S A 108(5):2106–2111

    PubMed  CAS  Google Scholar 

  62. Ades SE, Connolly LE, Alba BM, Gross CA (1999) The Escherichia coli sigma(E)-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-sigma factor. Genes Dev 13(18):2449–2461

    PubMed  CAS  Google Scholar 

  63. Ades SE, Grigorova IL, Gross CA (2003) Regulation of the alternative sigma factor sigma(E) during initiation, adaptation, and shutoff of the extracytoplasmic heat shock response in Escherichia coli. J Bacteriol 185(8):2512–2519

    PubMed  CAS  Google Scholar 

  64. Alba BM, Zhong HJ, Pelayo JC, Gross CA (2001) degS (hhoB) is an essential Escherichia coli gene whose indispensable function is to provide sigma (E) activity. Mol Microbiol 40(6):1323–1333

    PubMed  CAS  Google Scholar 

  65. Kanehara K, Akiyama Y, Ito K (2001) Characterization of the yaeL gene product and its S2P-protease motifs in Escherichia coli. Gene 281(1–2):71–79

    PubMed  CAS  Google Scholar 

  66. Flynn JM, Neher SB, Kim YI, Sauer RT et al (2003) Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 11(3):671–683

    PubMed  CAS  Google Scholar 

  67. Levchenko I, Grant RA, Flynn JM, Sauer RT et al (2005) Versatile modes of peptide recognition by the AAA+  adaptor protein SspB. Nat Struct Mol Biol 12(6):520–525

    PubMed  CAS  Google Scholar 

  68. Bohn C, Collier J, Bouloc P (2004) Dispensable PDZ domain of Escherichia coli YaeL essential protease. Mol Microbiol 52(2):427–435

    PubMed  CAS  Google Scholar 

  69. Kanehara K, Ito K, Akiyama Y (2003) YaeL proteolysis of RseA is controlled by the PDZ domain of YaeL and a Gln-rich region of RseA. EMBO J 22(23):6389–6398

    PubMed  CAS  Google Scholar 

  70. Walsh N, Alba B, Bose B, Gross C et al (2003) OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113:61–71

    PubMed  CAS  Google Scholar 

  71. Clausen T, Kaiser M, Huber R, Ehrmann M (2011) HTRA proteases: regulated proteolysis in protein quality control. Nat Rev Mol Cell Biol 12(3):152–162

    PubMed  CAS  Google Scholar 

  72. Wilken C, Kitzing K, Kurzbauer R, Ehrmann M et al (2004) Crystal structure of the DegS stress sensor: how a PDZ domain recognizes misfolded protein and activates a protease. Cell 117(4):483–494

    PubMed  CAS  Google Scholar 

  73. Zeth K (2004) Structural analysis of DegS, a stress sensor of the bacterial periplasm. FEBS Lett 569(1–3):351–358

    PubMed  CAS  Google Scholar 

  74. Cowan SW, Garavito RM, Jansonius JN, Jenkins JA et al (1995) The structure of OmpF porin in a tetragonal crystal form. Structure 3(10):1041–1050

    PubMed  CAS  Google Scholar 

  75. Hagan CL, Silhavy TJ, Kahne D (2011) beta-Barrel membrane protein assembly by the Bam complex. Annu Rev Biochem 80:189–210

    PubMed  CAS  Google Scholar 

  76. Rezuchova B, Miticka H, Homerova D, Roberts M et al (2003) New members of the Escherichia coli sigmaE regulon identified by a two-plasmid system. FEMS Microbiol Lett 225(1):1–7

    PubMed  CAS  Google Scholar 

  77. Collinet B, Yuzawa H, Chen T, Herrera C et al (2000) RseB binding to the periplasmic domain of RseA modulates the RseA:sigmaE interaction in the cytoplasm and the availability of sigmaE.RNA polymerase. J Biol Chem 275(43):33898–33904

    PubMed  CAS  Google Scholar 

  78. Wollmann P, Zeth K (2007) The structure of RseB: a sensor in periplasmic stress response of E. coli. J Mol Biol 372(4):927–941

    PubMed  CAS  Google Scholar 

  79. Kim DY, Kwon E, Choi J, Hwang H-Y et al (2010) Structural basis for the negative regulation of bacterial stress response by RseB. Protein Sci 19(6):1258–1263

    PubMed  CAS  Google Scholar 

  80. Kim DY, Jin KS, Kwon E, Ree M et al (2007) Crystal structure of RseB and a model of its binding mode to RseA. Proc Natl Acad Sci U S A 104(21):8779–8784

    PubMed  CAS  Google Scholar 

  81. Sohn J, Grant RA, Sauer RT (2007) Allosteric activation of DegS, a stress sensor PDZ protease. Cell 131(3):572–583

    PubMed  CAS  Google Scholar 

  82. Sohn J, Sauer RT (2009) OMP peptides modulate the activity of DegS protease by differential binding to active and inactive conformations. Mol Cell 33(1):64–74

    PubMed  CAS  Google Scholar 

  83. Sohn J, Grant RA, Sauer RT (2009) OMP peptides activate the DegS stress-sensor protease by a relief of inhibition mechanism. Structure 17(10):1411–1421

    PubMed  CAS  Google Scholar 

  84. Sohn J, Grant RA, Sauer RT (2010) Allostery is an intrinsic property of the protease domain of DegS: implications for enzyme function and evolution. J Biol Chem 285(44):34039–34047

    PubMed  CAS  Google Scholar 

  85. Hasselblatt H, Kurzbauer R, Wilken C, Krojer T et al (2007) Regulation of the E stress response by DegS: how the PDZ domain keeps the protease inactive in the resting state and allows integration of different OMP-derived stress signals upon folding stress. Genes Dev 21(20):2659–2670

    PubMed  CAS  Google Scholar 

  86. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    PubMed  CAS  Google Scholar 

  87. Cui Q, Karplus M (2008) Allostery and cooperativity revisited. Protein Sci 17(8):1295–1307

    PubMed  CAS  Google Scholar 

  88. Kinch LN, Ginalski K, Grishin NV (2006) Site-2 protease regulated intramembrane proteolysis: sequence homologs suggest an ancient signaling cascade. Protein Sci 15(1):84–93

    PubMed  CAS  Google Scholar 

  89. Koide K, Ito K, Akiyama Y (2008) Substrate recognition and binding by RseP, an Escherichia coli intramembrane protease. J Biol Chem 283(15):9562–9570

    PubMed  CAS  Google Scholar 

  90. Inaba K, Suzuki M, Maegawa K, Akiyama S et al (2008) A pair of circularly permutated PDZ domains control RseP, the S2P family intramembrane protease of Escherichia coli. J Biol Chem 283(50):35042–35052

    PubMed  CAS  Google Scholar 

  91. Li X, Wang B, Feng L, Kang H et al (2009) Cleavage of RseA by RseP requires a carboxyl-terminal hydrophobic amino acid following DegS cleavage. Proc Natl Acad Sci U S A 106(35):14837–14842

    PubMed  CAS  Google Scholar 

  92. Feng L, Yan H, Wu Z, Yan N et al (2007) Structure of a site-2 protease family intramembrane metalloprotease. Science 318(5856):1608–1612

    PubMed  CAS  Google Scholar 

  93. Koide K, Maegawa S, Ito K, Akiyama Y (2007) Environment of the active site region of RseP, an Escherichia coli regulated intramembrane proteolysis protease, assessed by site-directed cysteine alkylation. J Biol Chem 282(7):4553–4560

    PubMed  CAS  Google Scholar 

  94. Akiyama Y, Kanehara K, Ito K (2004) RseP (YaeL), an Escherichia coli RIP protease, cleaves transmembrane sequences. EMBO J 23(22):4434–4442

    PubMed  CAS  Google Scholar 

  95. Saito A, Hizukuri Y, Matsuo E, Chiba S et al (2011) Post-liberation cleavage of signal peptides is catalyzed by the site-2 protease (S2P) in bacteria. Proc Natl Acad Sci U S A 108(33):13740–13745

    PubMed  CAS  Google Scholar 

  96. Shah S, Lee SF, Tabuchi K, Hao YH et al (2005) Nicastrin functions as a gamma-secretase-substrate receptor. Cell 122(3):435–447

    PubMed  CAS  Google Scholar 

  97. Gur E, Ottofuelling R, Dougan DA (2013) Machines of destruction – AAA+  proteases and the adaptors that control them. In: Dougan DA (ed) Regulated proteolysis: from bacteria to yeast. Springer, Subcell Biochem 66:3–33

    Google Scholar 

  98. Cezairliyan BO, Sauer RT (2009) Control of Pseudomonas aeruginosa AlgW protease cleavage of MucA by peptide signals and MucB. Mol Microbiol 72(2):368–379

    PubMed  CAS  Google Scholar 

  99. Martin DW, Holloway BW, Deretic V (1993) Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor. J Bacteriol 175(4):1153–1164

    PubMed  CAS  Google Scholar 

  100. Schurr MJ, Yu H, Martinez-Salazar JM, Boucher JC et al (1996) Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J Bacteriol 178(16):4997–5004

    PubMed  CAS  Google Scholar 

  101. Qiu D, Eisinger VM, Rowen DW, Yu HD (2007) Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 104(19):8107–8112

    PubMed  CAS  Google Scholar 

  102. Wood LF, Leech AJ, Ohman DE (2006) Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of sigma (AlgT) and the AlgW and Prc proteases. Mol Microbiol 62(2):412–426

    PubMed  CAS  Google Scholar 

  103. Qiu D, Eisinger VM, Head NE, Pier GB et al (2008) ClpXP proteases positively regulate alginate overexpression and mucoid conversion in Pseudomonas aeruginosa. Microbiology 154(Pt 7):2119–2130

    PubMed  CAS  Google Scholar 

  104. Kim DY, Kim DR, Ha SC, Lokanath NK et al (2003) Crystal structure of the protease domain of a heat-shock protein HtrA from Thermotoga maritima. J Biol Chem 278(8):6543–6551

    PubMed  CAS  Google Scholar 

  105. Cao M, Wang T, Ye R, Helmann JD (2002) Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis sigmaW and sigmaM regulons. Mol Microbiol 45(5):1267–1276

    PubMed  CAS  Google Scholar 

  106. Wiegert T, Homuth G, Versteeg S, Schumann W (2001) Alkaline shock induces the Bacillus subtilis sigma(W) regulon. Mol Microbiol 41(1):59–71

    PubMed  CAS  Google Scholar 

  107. Schöbel S, Zellmeier S, Schumann W, Wiegert T (2004) The Bacillus subtilis sigmaW anti-sigma factor RsiW is degraded by intramembrane proteolysis through YluC. Mol Microbiol 52(4):1091–1105

    PubMed  Google Scholar 

  108. Ellermeier CD, Losick R (2006) Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis. Genes Dev 20(14):1911–1922

    PubMed  CAS  Google Scholar 

  109. Heinrich J, Wiegert T (2006) YpdC determines site-1 degradation in regulated intramembrane proteolysis of the RsiW anti-sigma factor of Bacillus subtilis. Mol Microbiol 62(2):566–579

    PubMed  CAS  Google Scholar 

  110. Heinrich J, Hein K, Wiegert T (2009) Two proteolytic modules are involved in regulated intramembrane proteolysis of Bacillus subtilis RsiW. Mol Microbiol 74(6):1412–1426

    PubMed  CAS  Google Scholar 

  111. Zellmeier S, Schumann W, Wiegert T (2006) Involvement of Clp protease activity in modulating the Bacillus subtilissigmaw stress response. Mol Microbiol 61(6):1569–1582

    PubMed  CAS  Google Scholar 

  112. Makinoshima H, Glickman MS (2005) Regulation of Mycobacterium tuberculosis cell envelope composition and virulence by intramembrane proteolysis. Nature 436(7049):406–409

    PubMed  CAS  Google Scholar 

  113. Sklar JG, Makinoshima H, Schneider JS, Glickman MS (2010) M. tuberculosis intramembrane protease Rip1 controls transcription through three anti-sigma factor substrates. Mol Microbiol 77(3):605–617

    PubMed  CAS  Google Scholar 

  114. Hizukuri Y, Akiyama Y (2012) PDZ domains of RseP are not essential for sequential cleavage of RseA or stress-induced σE activation in vivo. Mol Microbiol 86(5):1232–1245

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Ades .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barchinger, S.E., Ades, S.E. (2013). Regulated Proteolysis: Control of the Escherichia coli σE-Dependent Cell Envelope Stress Response. In: Dougan, D. (eds) Regulated Proteolysis in Microorganisms. Subcellular Biochemistry, vol 66. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5940-4_6

Download citation

Publish with us

Policies and ethics