Skip to main content

Conjugative Plasmids in Anthropogenic Soils

  • Chapter
  • 2267 Accesses

Abstract

Horizontal transfer of mobile genetic elements such as plasmids and bacteriophages and their associated hitchhiking elements such as transposons, integrative and conjugative elements and insertion sequences shapes bacterial chromosomes and enables their adaptation to changing environmental conditions. In soils, a diversity of conjugative plasmids involved in microbial metabolism, coping with stress factors or providing their carriers with traits outcompeting competitors in the ecological niche have been detected by classical and molecular techniques. The rhizosphere displays a hot spot for conjugative plasmid transfer in soil. Plasmid transfer has been studied in a variety of soil habitats from pristine to heavily polluted soils, such as heavy metal and radionuclide contaminated ones. In all of these environments, plasmid transfer has been demonstrated to contribute to the spread of genes that provide their recipients with ecological traits conferring adaptation to contaminant stress, to cope with the presence of toxic pharmaceuticals (e.g. antibiotics) or enable them to degrade xenobiotic compounds. Transconjugants harbouring the traits acquired by horizontal transfer were shown to survive in soil and to spread the acquired beneficial factors to both indigenous related and phylogenetically distant microorganisms. PCR screens have been developed to detect conjugative plasmids of different incompatibility groups and virulence/pathogenicity-encoded traits in a rapid, reliable and sensible way. This chapter summarizes the state of the art of mobile genetic elements and their transmission in soils.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abajy MY, Kopec J, Schiwon K, Burzynski M, Doring M, Bohn C, Grohmann E (2007) A type IV-secretion-like system is required for conjugative DNA transport of broad-host-range plasmid pIP501 in gram-positive bacteria. J Bacteriol 189:2487–2496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Achtman M (1975) Mating aggregates in Escherichia coli conjugation. J Bacteriol 123:505–515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ackermann M, Stecher B, Freed NE, Songhet P, Hardt W-D, Doebeli M (2008) Self-destructive cooperation mediated by phenotypic noise. Nature 454:987–990

    Article  CAS  PubMed  Google Scholar 

  • Adamczyk M, Jagura-Burdzy G (2003) Spread and survival of promiscuous IncP1 plasmids. Acta Biochim Pol 50:425–453

    CAS  PubMed  Google Scholar 

  • Ahmer BMM, Tran M, Heron F (1999) The virulence plasmid of Salmonella typhimurium is self-transmissible. J Bacteriol 181:1364–1368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson RM, May RM (1992) Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  • Anjum R, Grohmann E, Malik A (2011) Molecular characterization of conjugative plasmids in pesticide tolerant and multi-resistant bacterial isolates from contaminated alluvial soil. Chemosphere 84:175–181

    Article  CAS  PubMed  Google Scholar 

  • Anjum R, Grohmann E, Malik A (2012) Exogenous isolation of conjugative plasmids from pesticide contaminated soil. World J Microbiol Biotechnol 28:567–574

    Article  CAS  PubMed  Google Scholar 

  • Ansari MI, Grohmann E, Malik A (2008) Conjugative plasmids in multi-resistant bacterial isolates from Indian soil. J Appl Microbiol 104:1774–1781

    Article  CAS  PubMed  Google Scholar 

  • Arends K, Schiwon K, Sakinc T, Huebner J, Grohmann E (2012) A GFP-labeled monitoring tool to quantify conjugative plasmid transfer between gram-positive and gram-negative bacteria. Appl Environ Microbiol 78:895–899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baharoglu Z, Bikard D, Mazel D (2010) Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation. PLoS Genet 6(10):e1001165

    Article  CAS  PubMed  Google Scholar 

  • Bahl MI, Hansen LH, Goesmann A, Sorensen SJ (2007) The multiple antibiotic resistance IncP-1 plasmid pKJK5 isolated from a soil environment is phylogenetically divergent from members of the previously established alpha, beta and delta sub-groups. Plasmid 58:31–43

    Article  CAS  PubMed  Google Scholar 

  • Bale MJ, Day MJ, Fry JC (1988) Novel method for studying plasmid transfer in undisturbed river epilithon. Appl Environ Microbiol 54:2756–2758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banjard L, Richaume A (2001) Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol 152:707–716

    Article  Google Scholar 

  • Barlow M (2009) What antimicrobial resistance has taught us about horizontal gene transfer. In: Gogarten MB, Gogarten JP, Olendzenski LC (eds) Horizontal gene transfer – genomes in flux. Humana Press/Springer, New York, pp 397–411

    Chapter  Google Scholar 

  • Bergstrom CT, Lipsitch M, Levin BR (2000) Natural selection, infectious transfer and the existence conditions for bacterial plasmids. Genetics 155:1505–1519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Binh CT, Heuer H, Gomes NC, Kotzerke A, Fulle M, Wilke BM, Schloter M, Smalla K (2007) Short-term effects of amoxicillin on bacterial communities in manured soil. FEMS Microbiol Ecol 62:290–302

    Article  CAS  PubMed  Google Scholar 

  • Binh TCT, Heuer H, Kaupenjohann M, Smalla K (2008) Piggery manure used for soil fertilization is a reservoir for transferable resistance plasmids. FEMS Microbiol Ecol 66:25–37

    Article  CAS  PubMed  Google Scholar 

  • Boehm AB, Yamahara KM, Love DC, Peterson BM, McNeill K, Nelson KL (2009) Covariation and photoinactivation of traditional and novel indicator organisms and human viruses at a sewage-impacted marine beach. Environ Sci Technol 43:8046–8052

    Article  CAS  PubMed  Google Scholar 

  • Bonnedahl J, Drobni M, Gauthier-Clerc M, Hernandez J, Granholm S, Kayser Y, Melhus A, Kahlmeter G, Waldenström J, Johansson A, Olsen B (2009) Dissemination of Escherichia coli with CTX-M-type ESBL between humans and yellow-legged gulls in the south of France. PLoS One 4(6):e5958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bouma JE, Lenski RE (1988) Evolution of a bacteria plasmid association. Nature 335:351–352

    Article  CAS  PubMed  Google Scholar 

  • Boxall ABA, Fogg LA, Kay P, Blackwell PA, Pemberton EJ, Croxford A (2003) Prioritisation of veterinary medicines in the UK environment. Toxicol Lett 142:207–218

    Article  CAS  PubMed  Google Scholar 

  • Brown SP, Buckling A (2008) A social life for discerning microbes. Cell 135:600–604

    Article  CAS  PubMed  Google Scholar 

  • Brown SP, Le Chat L, De Paepe M, Taddei F (2006) Ecology of microbial invasions: amplification allows virus carriers to invade more rapidly when rare. Curr Biol 16:2048–2052

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Passiatore JE, Cannon F (1987) The mob and oriT mobilization functions of a bacterial plasmid promote its transfer to plants. Nature 328:170–175

    Article  Google Scholar 

  • Buchrieser C, Glaser P, Rusniok C, Nedjari H, D’Hauteville H, Kunst F et al (2000) The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol Microbiol 38:760–771

    Article  CAS  PubMed  Google Scholar 

  • Carattoli A (2009) Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother 53:2227–2238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ (2005) Identification of plasmids by PCR-based replicontyping. J Microbiol Methods 63:219–228

    Article  CAS  PubMed  Google Scholar 

  • Cattoir V, Poirel L, Mazel D, Soussy CJ, Nordmann P (2007) Vibrio splendidus as the source of plasmid-mediated qnrS-like quinolone resistance determinants. Antimicrob Agents Chemother 51:2650–2651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chao L, Levin BR (1981) Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA 78:6324–6328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Yu Z, Michel FC Jr, Wittum T, Morrison M (2007) Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides lincosamides-streptogram in livestock manure and manure management systems. Appl Environ Microbiol 73:4407–4416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coulliette AD, Noble RT (2008) Impacts of rainfall on the water quality of the Newport River Estuary (Eastern North Carolina, USA). J Water Health 6:473–482

    Article  CAS  PubMed  Google Scholar 

  • Cummings DE, Archer KF, Arriola DJ, Baker PA, Faucett KG, Laroya JB, Pfeil KL, Ryan CR, Ryan KR, Zuill DE (2011) Broad dissemination of plasmid-mediated quinolone resistance genes in sediments of two urban coastal wetlands. Environ Sci Technol 45:447–454

    Article  CAS  PubMed  Google Scholar 

  • Dalkmann P, Broszat M, Willaschek E, Sakinc T, Huebner J, Siebe C, Amelung W, Grohmann E, Siemens J (2012) Accumulation of pharmaceuticals, Enterococcus, and resistance genes in soils after up to 100 years of wastewater irrigation in the Mezquital Valley, Mexico. PLoS ONE 7(9):e45397

    Article  CAS  PubMed  Google Scholar 

  • Daniel R (2004) The soil metagenome – a rich resource for the discovery of novel natural products. Curr Opin Biotechnol 15:199–204

    Article  CAS  PubMed  Google Scholar 

  • Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42:73–91

    Article  CAS  PubMed  Google Scholar 

  • De Gelder L, Ponciano J, Joyce P, Top EM (2007) Stability of a promiscuous plasmid in different hosts: no guarantee for a long-term relationship. Microbiology 153:452–463

    Article  CAS  PubMed  Google Scholar 

  • De Gelder L, Williams JJ, Ponciano JM, Sota M, Top EM (2008) Adaptive plasmid evolution results in host-range expansion of a broad-host-range plasmid. Genetics 178:2179–2190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de la Cruz F, Davies J (2000) Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8:128–133

    Article  PubMed  Google Scholar 

  • Degnan PH, Ochman H (2012) Illumina-based analysis of microbial community diversity. ISME J 6:183–194

    Article  CAS  PubMed  Google Scholar 

  • Diaz Ricci JC, Hernandez ME (2000) Plasmid effects on Escherichia coli metabolism. Crit Rev Biotechnol 20:79–108

    Article  CAS  PubMed  Google Scholar 

  • DiGiovanni GD, Neilson JW, Pepper IL, Sinclair NA (1996) Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous soil recipients. Appl Environ Microbiol 62:3297–3304

    Google Scholar 

  • Dionisio F (2007) Selfish and spiteful behaviour through parasites and pathogens. Evol Ecol Res 9:1199–1210

    Google Scholar 

  • Dionisio F, Matic I, Radman M, Rodrigues OR, Taddei F (2002) Plasmids spread very fast in heterogeneous bacterial communities. Genetics 162:1525–1532

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doolittle W (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128

    Article  CAS  PubMed  Google Scholar 

  • Eberhard WG (1990) Evolution in bacterial plasmids and levels of selection. Q Rev Biol 65:3–22

    Article  CAS  PubMed  Google Scholar 

  • Egan ES, Waldor MK (2003) Distinct replication requirements for the two Vibrio cholerae chromosomes. Cell 114:521–530

    Article  CAS  PubMed  Google Scholar 

  • Ferdy JB, Godelle B (2005) Diversification of transmission modes and the evolution of mututalism. Am Nat 166:613–627

    Article  PubMed  Google Scholar 

  • Fondi M, Bacci G, Brilli M, Papaleo MC, Mengoni M, Vaneechoutte M, Dijkshoorn L, Fani R (2010) Exploring the evolutionary dynamics of plasmids: the Acinetobacter panplasmidome. BMC Evol Biol 10:59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foster RC (1988) Microenvironments of soil microorganisms. Biol Fertil Soils 6:189–203

    Article  Google Scholar 

  • Foster KR, Ratnieks FLW, Wenseleers T (2000) Spite in social insects. Trends Ecol Evol 15:469–470

    Article  Google Scholar 

  • Foster KR, Wenseleers T, Ratnieks FLW (2001) Spite: Hamilton’s unproven theory. Ann Zool Fennici 38:229–238

    Google Scholar 

  • Fox RE, Zhong X, Krone SM, Top EM (2008) Spatial structure and nutrients promote invasion of IncP-1 plasmids in bacterial populations. ISME J 2:1024–1039

    Article  PubMed Central  PubMed  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    Article  CAS  PubMed  Google Scholar 

  • Gardner A, West SA (2004a) Spite among siblings. Science 305:1413–1414

    Article  CAS  PubMed  Google Scholar 

  • Gardner A, West SA (2004b) Spite and the scale of competition. J Evol Biol 17:1195–1203

    Article  CAS  PubMed  Google Scholar 

  • Gardner A, West SA (2006) Spite. Curr Biol 16:R662–R664

    Article  CAS  PubMed  Google Scholar 

  • Gardner A, West SA, Buckling A (2004) Bacteriocins, spite and virulence. Proc R Soc Lond B 271:1529–1535

    Article  CAS  Google Scholar 

  • Gardner A, Hardy ICW, Taylor PD, West SA (2007) Spiteful soldiers and sex ratio conflict in polyembryonic parasitoid wasps. Am Nat 169:519–533

    Article  PubMed  Google Scholar 

  • Gentry TJ, Wang G, Rensing C, Pepper IL (2004) Chlorobenzoate-degrading bacteria in similar pristine soils exhibit different community structures and population dynamics in response to anthropogenic 2-, 3-, and 4-chlorobenzoate levels. Microb Ecol 48:90–102

    Article  CAS  PubMed  Google Scholar 

  • Gersberg RM, Rose MA, Robles-Sikisaka R, Dhar AK (2006) Quantitative detection of hepatitis A virus and enteroviruses near the United States-Mexico border and correlation with levels of fecal indicator bacteria. Appl Environ Microbiol 72:7438–7444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gil G, Sabater-Muñoz B, Perez-Brocal V, Silva FJ, Latorre A (2006) Plasmids in the aphid endosymbiont Buchnera aphidicola with the smallest genomes. A puzzling evolutionary story. Gene 370:17–25

    Article  CAS  PubMed  Google Scholar 

  • Given S, Pendleton LH, Boehm AB (2006) Regional public health cost estimates of contaminated coastal waters: a case study of gastroenteritis at southern California beaches. Environ Sci Technol 40:4851–4858

    Article  CAS  PubMed  Google Scholar 

  • Goris J, Dejonghe W, Falsen E, De Clerck E, Geeraerts B, Willems A, Top EM, Vandamme P, De Vos P (2002) Diversity of transconjugants that acquired plasmid pJP4 or pEMT1 after inoculation of a donor strain in the A- and B-horizon of an agricultural soil and description of Burkholderia hospital sp. nov. and Burkholderia terricola sp. nov. Syst Appl Microbiol 25:340–352

    Article  CAS  PubMed  Google Scholar 

  • Götz A, Pukall R, Smit E, Tietze E, Prager R, Tschäpe H, van Elsas JD, Smalla K (1996) Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Appl Environ Microbiol 62:2621–2628

    PubMed Central  PubMed  Google Scholar 

  • Griffin AS, West SA, Buckling A (2004) Cooperation and competition in pathogenic bacteria. Nature 430:1024–1027

    Article  CAS  PubMed  Google Scholar 

  • Grohmann E, Muth G, Espinosa M (2003) Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev 67:277–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hacker J, Carniel E (2001) Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep 2:376–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haft RJF, Mittler JE, Traxler B (2009) Competition favours reduced cost of plasmids to host bacteria. ISME J 3:761–769

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour. I & II. J Theor Biol 7:1–52

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WD (1970) Selfish and spiteful behaviour in an evolutionary model. Nature 228:1218–1220

    Article  CAS  PubMed  Google Scholar 

  • Hardin G (1968) The tragedy of the commons. Science 162:1243–1248

    Article  CAS  PubMed  Google Scholar 

  • Heinemann JA, Sprague JF Jr (1989) Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340:205–209

    Article  CAS  PubMed  Google Scholar 

  • Heuer H, Smalla K (2007) Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ Microbiol 9:657–666

    Article  CAS  PubMed  Google Scholar 

  • Heuer H, Smalla K (2012) Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol Rev 36:1083–1104

    Article  CAS  PubMed  Google Scholar 

  • Heuer H, Kroegerrecklenfort E, Wellington EMH et al (2002) Gentamicin resistance genes in environmental bacteria: prevalence and transfer. FEMS Microbiol Ecol 42:289–302

    Article  CAS  PubMed  Google Scholar 

  • Heuer H, Szczepanowski R, Schneiker S, Pühler A, Top EM, Schlüter A (2004) The complete sequences of plasmids pB2 and pB3 provide evidence for a recent ancestor of the IncP-1β group without any accessory genes. Microbiology 150:3591–3599

    Article  CAS  PubMed  Google Scholar 

  • Heuer H, Fox RE, Top EM (2007) Frequent conjugative transfer accelerates adaptation of a broad-host-range plasmid to an unfavorable Pseudomonas putida host. FEMS Microbiol Ecol 59:738–748

    Article  CAS  PubMed  Google Scholar 

  • Heuer H, Kopmann C, Binh CTT, Top EM, Smalla K (2009) Spreading antibiotic resistance through spread manure: characteristics of a novel plasmid type with low %G  +  C content. Environ Microbiol 11:937–949

    Article  CAS  PubMed  Google Scholar 

  • Hill KE, Weightman AJ, Fry JC (1992) Isolation and screening of plasmids from the epilithon which mobilize recombinant plasmid pD10. Appl Environ Microbiol 58:1292–1300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu X, Swiecicka I, Timmery S, Mahillon J (2009a) Sympatric soil communities of Bacillus cereus sensu lato: population structure and potential plasmid dynamics of pXO1- and pXO2-like elements. FEMS Microbiol Ecol 70:344–355

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Van der Auwera G, Timmery S, Zhu L, Mahillon J (2009b) Distribution, diversity, and potential mobility of extrachromosomal elements related to the Bacillus anthracis pXO1 and pXO2 virulence plasmids. Appl Environ Microbiol 75:3016–3028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • ICOMANTH (International Committee for Anthropogenic Soils) Report No. 2 – Version 2.0, August, 2007

    Google Scholar 

  • Ikuma K, Holzem RM, Gunsch CK (2012) Impacts of organic carbon availability and recipient bacteria characteristics on the potential for TOL plasmid genetic bioaugmentation in soil slurries. Chemosphere 89:158–163

    Article  CAS  PubMed  Google Scholar 

  • Inoue D, Yamazaki Y, Tsutsui H, Sei K, Soda S, Fujita M, Ike M (2011) Impacts of gene bioaugmentation with pJP4-harboring bacteria of 2,4-D-contaminated soil slurry on the indigenous microbial community. Biodegradation 23:263–276

    Article  CAS  PubMed  Google Scholar 

  • Jindal A, Kocherginskaya S, Mehboob A, Robert M, Mackie RI, Raskin L, Zilles JL (2006) Antimicrobial use and resistance in swine waste treatment systems. Appl Environ Microbiol 72:7813–7820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keller L, Ross KG (1998) Selfish genes: a green beard in the red fire ant. Nature 394:573–575

    Article  CAS  Google Scholar 

  • Kopmann C, Jechalke S, Rosendahl I, Groeneweg J, Krögerrecklenfort E, Zimmerling U, Weichelt V, Siemens J, Amelung W, Heuer H, Smalla K (2013) Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. FEMS Microbiol Ecol 83:125–134

    Google Scholar 

  • Kozlowicz BK, Shi K, Gu ZY, Ohlendorf DH, Earhart CA, Dunny GM (2006) Molecular basis for control of conjugation by bacterial pheromone and inhibitor peptides. Mol Microbiol 62:958–969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krasowiak R, Smalla K, Sokolov S, Kosheleva I, Sevastyanovich Y, Titok M, Thomas CM (2002) PCR primers for detection and characterisation of IncP-9 plasmids. FEMS Microbiol Ecol 42:217–225

    Article  CAS  PubMed  Google Scholar 

  • Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegard B, Soederstroem H, Larsson DG (2011) Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One 6:e17038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee K, Lee M, Shin JH, Lee MH, Kang SH, Park AJ et al (2006) Prevalence of plasmid-mediated AmpC β-Lactamases in Escherichia coli and Klebsiella pneumoniae in Korea. Microb Drug Resist 12:44–49

    Article  CAS  PubMed  Google Scholar 

  • Lili LN, Britton NF, Feil EJ (2007) The persistence of parasitic plasmids. Genetics 177:399–405

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin CC, Shen FT, Tan CC, Huang CC, Chen BY, Arun AB, Young CC (2012) Characterization of Gordonia sp. strain CC-NAPH129-6 capable of naphthalene degradation. Microbiol Res 167(7):395–404

    Article  CAS  PubMed  Google Scholar 

  • Livermore DM (1995) Beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8:557–584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malik A, Celik EK, Bohn C, Böckelmann U, Knobel K, Grohmann E (2008) Detection of conjugative plasmids and antibiotic resistance genes in anthropogenic soils from Germany and India. FEMS Microbiol Lett 279:207–216

    Article  CAS  PubMed  Google Scholar 

  • Martínez JL (2008) Antibiotics and antibiotic resistance genes in natural environments. Science 321:365–367

    Article  CAS  PubMed  Google Scholar 

  • Martinez JL (2009) The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc R Soc Lond B 276:2521–2530

    Article  Google Scholar 

  • Mellata M, Touchman JW, Curtiss R III (2009) Full sequence and comparative analysis of the plasmid pAPEC-1 of avian pathogenic E. coli w7122 (O78:K80:H9). PLoS One 4:e4232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohamed RM, Abo-Amer AE (2012) Isolation and characterization of heavy-metal resistant microbes from roadside soil and phylloplane. J Basic Microbiol 52:53–65

    Article  CAS  PubMed  Google Scholar 

  • Musovic S, Oregaard G, Kroer N, Sorensen SJ (2006) Cultivation-independent examination of horizontal transfer and host range of an IncP-1 plasmid among gram-positive and gram-negative bacteria indigenous to the barley rhizosphere. Appl Environ Microbiol 72:6687–6692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakatsu CH, Providenti M, Wyndham RC (1997) The cis-diol dehydrogenase cbaC gene of Tn5271 is required for growth on 3-chlorobenzoate but not 3,4-dichlorobenozate. Gene 196:209–218

    Article  CAS  PubMed  Google Scholar 

  • Nogueira T, Rankin DJ, Touchon M, Taddei F, Brown SP, Rocha EP (2009) Gene mobility drives the evolution of bacterial cooperation and virulence. Curr Biol 19:1683–1691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Norberg P, Bergström M, Jethava V, Dubhashi D, Hermansson M (2011) The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination. Nat Commun 2:268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Norman A, Hansen LH, Sorensen SJ (2009) Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B 364:2275–2289

    Article  CAS  Google Scholar 

  • Normark BH, Normark S (2002) Evolution and spread of antibiotic resistance. J Intern Med 252:91–106

    Article  CAS  PubMed  Google Scholar 

  • Novick RP (1987) Plasmid incompatibility. Microbiol Rev 51:381–395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nuti MP, Lepidi AA, Prakash RK, Schilperoort RA, Cannon FC (1979) Evidence for nitrogen fixation (nif) genes on indigenous Rhizobium plasmids. Nature 282:533–535

    Article  CAS  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  CAS  PubMed  Google Scholar 

  • Øvreås L (2000) Population and community level approaches for analysing microbial diversity in natural environments. Ecol Lett 3:236–251

    Article  Google Scholar 

  • Pansegrau W, Lanka E, Barth PT, Figurski DH, Guiney DG, Haas D, Helinski DR, Schwab H, Stanisich VA, Thomas CM (1994) Complete nucleotide sequence of Birmingham IncP-alpha plasmids – compilation and comparative analysis. J Mol Biol 239:623–663

    Article  CAS  PubMed  Google Scholar 

  • Paulsson J (2002) Multileveled selection on plasmid replication. Genetics 161:1373–1384

    PubMed Central  PubMed  Google Scholar 

  • Pereira SI, Lima AI, Figueira EM (2006) Screening possible mechanisms mediating cadmium resistance in Rhizobium leguminosarum bv. viciae isolated from contaminated Portuguese soils. Microb Ecol 52:176–186

    Article  CAS  Google Scholar 

  • Perez-Mendoza D, de La Cruz F (2009) Escherichia coli genes affecting recipient ability in plasmid conjugation: are there any? BMC Genomics 10:71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perkins EJ, Gordon MP, Caceres O, Lurquin PF (1990) Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J Bacteriol 172:2351–2359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Philppon A, Arlet G, Jacoby GA (2002) Plasmid-determined ampC-type beta-lactamases. Antimicrob Agents Chemother 46:1

    Article  CAS  Google Scholar 

  • Pilloni G, Granitsiotis MS, Engel M, Lueders T (2012) Testing the limits of 454 pyrotag sequencing: reproducibility, quantitative assessment and comparison to T-RFLP fingerprinting of aquifer microbes. PLoS One 7(7):e40467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poirel L, Rodriguez-Martinez J-M, Mammeri H, Liard A, Nordmann P (2005) Origin of plasmid-mediated resistance determinant QnrA. Antimicrob Agents Chemother 49:3523–3525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Polzleitner E, Zechner EL, Renner W, Fratte R, Jauk B, Högenauer G et al (1997) TraM of plasmid R1 controls transfer gene expression as an integrated control element in a complex regulatory network. Mol Microbiol 25:495–507

    Article  CAS  PubMed  Google Scholar 

  • Quan X, Tang H, Ma J (2011) Effects of gene augmentation on the removal of 2,4-dichlorophenoxyacetic acid in a biofilm reactor under different scales and substrate conditions. J Hazard Mater 185:689–695

    Article  CAS  PubMed  Google Scholar 

  • Rankin DJ, Bargum K, Kokko H (2007) The tragedy of the commons in evolutionary biology. Trends Ecol Evol 22:643–651

    Article  PubMed  Google Scholar 

  • Rankin DJ, Rocha EPC, Brown SP (2011) What traits are carried on mobile genetic elements, and why? Heredity 106:1–10

    Article  CAS  PubMed  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology and application. Annu Rev Microbiol 56:117–137

    Article  CAS  PubMed  Google Scholar 

  • Roselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Article  Google Scholar 

  • Sachs JL, Simms EL (2007) Pathways to mutualism breakdown. Trends Ecol Evol 21:585–592

    Article  Google Scholar 

  • Sambrook J, Russel DW (2001) Purification of closed circular DNA by equilibrium centrifugation in CsCl-Ethidium Bromide gradients: continuous gradients. In: Irwing N (ed) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schlüter A, Szczepanowski R, Pühler A, Top EM (2007) Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev 31:449–477

    Article  CAS  PubMed  Google Scholar 

  • Schneiker S, Keller M, Dröge M, Lanka E, Pühler A, Selbitschka W (2001) The genetic organization and evolution of the broad host range mercury resistance plasmid pSB102 isolated from a microbial population residing in the rhizosphere of alfalfa. Nucleic Acids Res 29:5169–5181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sevastsyanovich YR, Krasowiak R, Bingle LEH, Haines AS, Sokolov SL, Kosheleva IA, Leuchuk AA, Titok MA, Smalla K, Thomas CM (2008) Diversity of IncP-9 plasmids of Pseudomonas. Microbiology 154:2929–2941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skippington E, Ragan MA (2011) Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev 35:707–735

    Article  CAS  PubMed  Google Scholar 

  • Slater FR, Bailey MJ, Tett AJ, Turner SL (2008) Progress towards understanding the fate of plasmids in bacterial communities. FEMS Microbiol Ecol 66:3–13

    Article  CAS  PubMed  Google Scholar 

  • Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW et al (2009) Genome sequences of three Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 191:2501–2511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smalla K, Heuer H, Goetz A, Niemeyer D, Kroegerrecklenfort E, Tietze E (2000a) Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-like plasmids. Appl Environ Microbiol 66:4854–4862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smalla K, Haines AS, Jones K, Kroegerrecklenfort E, Heuer H, Schloter M, Thomas CM (2006) Increased abundance of IncP-1β plasmids and mercury resistance genes in mercury polluted river sediments: first discovery of IncP-1β plasmids with a complex mer transposon as the sole accessory element. Appl Environ Microbiol 72:7253–7259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EP, de la Cruz F (2010) Mobility of plasmids. Microbiol Mol Biol Rev 74:434–452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sommer MOA, Dantas G, Church GM (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325:1128–1131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sota M, Yano H, Hughes JM, Daughdrill GW, Abdo Z, Forney LJ, Top EM (2010) Shifts in the host range of a promiscuous plasmid through parallel evolution of its replication initiation protein. ISME J 4:1568–1580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki H, Yano H, Brown CJ, Top EM (2010) Predicting plasmid promiscuity based on genomic signature. J Bacteriol 192:6045–6055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tauch A, Schneiker S, Selbitschka W et al (2002) The complete nucleotide sequence and environmental distribution of the cryptic, conjugative, broad-host-range plasmid pIPO2 isolated from bacteria of the wheat rhizosphere. Microbiology 148:1637–1653

    Article  CAS  PubMed  Google Scholar 

  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721

    Article  CAS  PubMed  Google Scholar 

  • Thorsted PA, Macartney DP, Akhtar P et al (1998) Complete sequence of the IncP beta plasmid R751: implications for evolution and organisation of the IncP backbone. J Mol Biol 282:969–990

    Article  CAS  PubMed  Google Scholar 

  • Timmery S, Modrie P, Minet O, Mahillon J (2009) Plasmid capture by the Bacillus thuringiensis conjugative plasmid pXO16. J Bacteriol 191:2197–2205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torsvik V, Daa FL, Sandaa RA, Øvreås L (1998) Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol 64:53–62

    Article  CAS  PubMed  Google Scholar 

  • Torsvik V, Daa FL, Sandaa RA, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  PubMed  Google Scholar 

  • Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P et al (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5:e1000344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trefault N, De la Iglesia R, Molina AM, Manzano M, Ledger T, Perez-Pantoja D, Sanchez MA, Stuardo M, Gonzalez B (2004) Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ Microbiol 6:655–668

    Article  CAS  PubMed  Google Scholar 

  • Turner PE (2004) Phenotypic plasticity in bacterial plasmids. Genetics 167:9–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner PE, Cooper VS, Lenski RE (1998) Tradeoff between horizontal and vertical modes of transmission in bacterial plasmids. Evolution 52:315–329

    Article  Google Scholar 

  • Udiković-Kolić N, Hršak D, Devers M, Klepac-Ceraj V, Petrić I, Martin-Laurent F (2010) Taxonomic and functional diversity of atrazine-degrading bacterial communities enriched from agrochemical factory soil. J Appl Microbiol 109:355–367

    PubMed  Google Scholar 

  • Uhlik O, Wald J, Strejcek M, Musilova L, Ridl J, Hroudova M, Vlcek C, Cardenas E, Mackova M, Macek T (2012) Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PLoS One 7(7):e40653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umamaheswari S, Murali M (2010) Prevalence of plasmid mediated pesticide resistant bacterial assemblages in crop fields. J Environ Biol 31:957–964

    CAS  PubMed  Google Scholar 

  • Van der Auwera GA, Krol JE, Suzuki H, Foster B, Van Houdt R, Brown CJ, Mergeay M, Top EM (2009) Plasmids captured in C. metallidurans CH34: defining the PromA family of broad-host-range plasmids. Antonie Van Leeuwenhoek 96:193–204

    Article  PubMed  CAS  Google Scholar 

  • van der Ploeg JR (2005) Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol 187:3980–3989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Overbeek LS, Wellington EMH, Egan S, Smalla K, Heuer H, Collard JM, Guillaume G, Karagouni AD, Nikolakopoulou TL, van Elsas JD (2002) Prevalence of streptomycin-resistance genes in bacterial populations in European habitats. FEMS Microbiol Ecol 42:277–288

    Article  PubMed  Google Scholar 

  • Waldor MK, Mekalanos J (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914

    Article  CAS  PubMed  Google Scholar 

  • Walsh F, Ingenfeld A, Zampicolli M, Hilber-Bodmer M, Frey JE, Duffy B (2011) Real-time PCR methods for quantitative monitoring of streptomycin and tetracycline resistance genes in agricultural ecosystems. J Microbiol Methods 86:150–155

    Article  CAS  PubMed  Google Scholar 

  • West SA, Griffin AS, Gardner A, Diggle SP (2006) Social evolution theory for microorganisms. Nat Rev Microbiol 4:597–607

    Article  CAS  PubMed  Google Scholar 

  • West SA, Diggle SP, Buckling A, Gardner A, Griffin AS (2007a) The social lives of microbes. Ann Rev Ecol Evol Syst 38:53–77

    Article  Google Scholar 

  • West SA, Griffin AS, Gardner A (2007b) Evolutionary explanations for cooperation. Curr Biol 17:R661–R672

    Article  CAS  PubMed  Google Scholar 

  • West SA, Griffin AS, Gardner A (2007c) Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J Evol Biol 20:415–432

    Article  CAS  PubMed  Google Scholar 

  • White CE, Winans SC (2007) Cell-cell communication in the plant pathogen Agrobacterium tumefaciens. Philos Trans R Soc Lond B Biol Sci 362:1135–1148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Witte W (2000) Selective pressure by antibiotic use in livestock. Int J Antimicrob Agents 16(Suppl 1):S19–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wozniak RAF, Waldor MK (2010) Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8:552–563

    Article  CAS  PubMed  Google Scholar 

  • Wu LT, Tseng YH (2000) Characterization of the IncW cryptic plasmid pXV2 from Xathomonas campetris pv. Vesicatoria. Plasmid 44:163–172

    Article  CAS  PubMed  Google Scholar 

  • Xavier JB, Foster KR (2007) Cooperation and conflict in microbial biofilms. Proc Natl Acad Sci USA 104:876–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yates CM, Shaw DJ, Roe AJ, Woolhouse MEJ, Amyes SGB (2006) Enhancement of bacterial competitive fitness by apramycin resistance plasmids from non-pathogenic Escherichia coli. Biol Lett 2:463–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zupan J, Muth TR, Draper O, Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11–28

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I sincerely thank Miquel Salgot and Jacques Mahillon for critical reading of the manuscript. I regret that not all valuable contributions of colleagues in the field could have been included in this chapter due to space limitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Grohmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grohmann, E. (2013). Conjugative Plasmids in Anthropogenic Soils. In: Malik, A., Grohmann, E., Alves, M. (eds) Management of Microbial Resources in the Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5931-2_9

Download citation

Publish with us

Policies and ethics